1
|
Zannino L, Carelli M, Milanesi G, Croce AC, Biggiogera M, Confalonieri M. Histochemical and ultrastructural localization of triterpene saponins in Medicago truncatula. Microsc Res Tech 2024; 87:2143-2153. [PMID: 38706034 DOI: 10.1002/jemt.24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
In the Medicago genus, saponins are complex mixtures of triterpene pentacyclic glycosides extensively studied for their different and economically relevant biological and pharmaceutical properties. This research is aimed at determining for the first time the tissue and cellular localization of triterpene saponins in vegetative organs of Medicago truncatula, a model plant species for legumes, by histochemistry and transmission electron microscopy. The results showed that saponins are present mainly in the palisade mesophyll layer of leaves, whereas in stems they are mostly located in the primary phloem and the subepidermal cells of cortical parenchyma. In root tissue, saponins occur in the secondary phloem region. Transmission electron microscopy revealed prominent saponin accumulation within the leaf and stem chloroplasts, while in the roots the saponins are found in the vesicular structures. Our results demonstrate the feasibility of using histochemistry and transmission electron microscopy to localize M. truncatula saponins at tissue and cellular levels and provide important information for further studies on biosynthesis and regulation of valuable bioactive saponins on agronomic relevant Medicago spp., such as alfalfa (Medicago sativa L.). RESEARCH HIGHLIGHTS: The Medicago genus represents a valuable rich source of saponins, one of the most interesting groups of secondary plant metabolites, which possess relevant biological and pharmacological properties. Plant tissue and cellular localization of saponins is of great importance to better understand their biological functions, biosynthetic pathway, and regulatory mechanisms. We elucidate the localization of saponins in Medicago truncatula with histochemical and transmission electron microscopy studies.
Collapse
Affiliation(s)
- Lorena Zannino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - Maria Carelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| | - Gloria Milanesi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), c/o Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Laboratory of Cell Biology and Neurobiology, University of Pavia, Pavia, Italy
| | - Massimo Confalonieri
- Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| |
Collapse
|
2
|
Ivanauskas L, Uminska K, Gudžinskas Z, Heinrich M, Georgiyants V, Kozurak A, Mykhailenko O. Phenological Variations in the Content of Polyphenols and Triterpenoids in Epilobium angustifolium Herb Originating from Ukraine. PLANTS (BASEL, SWITZERLAND) 2023; 13:120. [PMID: 38202428 PMCID: PMC10781012 DOI: 10.3390/plants13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
The composition of secondary metabolites undergoes significant changes in plants depending on the growth phase and the influence of environmental factors. Therefore, it is important to determine the harvesting time of plant material for the optimum secondary metabolite profile and therapeutic activity of the primary material. The shoots of Epilobium angustifolium are used as a healing tea due to the presence of polyphenolic compounds. The aim of this study was to assess the composition of phenolic compounds and triterpenoid saponins in E. angustifolium leaves and flowers and to estimate the dynamics of their content depending on the flowering phase. Qualitative and quantitative characterisation of polyphenols and triterpenoids in E. angustifolium samples from Ukraine of three flowering phases were performed using the high-performance liquid chromatography photo diode array (HPLC-PDA) method. During the present study, 13 polyphenolic compounds and seven triterpenoids were identified in the plant material. It was noted that the largest content and the best polyphenol profile was in late flowering. The most important polyphenolic compounds in the plant material were chlorogenic acid, hyperoside, isoquercitin, and oenothein B. The triterpenoid profile was at its maximum during mass flowering, with corosolic and ursolic acids being the dominant metabolites. The results of the analysis revealed that the quantity of many of the tested metabolites in the raw material of E. angustifolium is dependent on the plant organ and flowering phase. The largest content of most metabolites in the leaves was in late flowering. In the flowers, the quantity of the metabolites studied was more variable, but decreased during mass flowering and increased significantly again in late flowering. The results show that E. angustifolium raw material is a potential source of oenothein B and triterpenoids.
Collapse
Affiliation(s)
- Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, A. Mickevičiaus Str. 9, 44307 Kaunas, Lithuania
| | - Kateryna Uminska
- Zhytomyr Basic Pharmaceutical Professional College, Chudnivska Str. 99, 10005 Zhytomyr, Ukraine;
| | - Zigmantas Gudžinskas
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200 Vilnius, Lithuania;
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (M.H.); (O.M.)
- Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung City 404, Taiwan
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska Str., 61168 Kharkiv, Ukraine;
| | - Alla Kozurak
- Carpathian Biosphere Reserve, 90600 Rakhiv, Ukraine;
| | - Olha Mykhailenko
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (M.H.); (O.M.)
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska Str., 61168 Kharkiv, Ukraine;
| |
Collapse
|
3
|
Wen F, Chen S, Wang Y, Wu Q, Yan J, Pei J, Zhou T. The synthesis of Paris saponin VII mainly occurs in leaves and is promoted by light intensity. FRONTIERS IN PLANT SCIENCE 2023; 14:1199215. [PMID: 37575916 PMCID: PMC10420111 DOI: 10.3389/fpls.2023.1199215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Unraveling the specific organs and tissues involved in saponin synthesis, as well as the light regulatory mechanisms, is crucial for improving the quality of artificially cultivated medicinal materials of Paris plants. Paris saponin VII (PS VII), a high-value active ingredient, is found in almost all organs of Paris plant species. In this study, we focused on Paris polyphylla var. yunnanensis (Franch.) Hand. - Mzt. (PPY) and found that PS VII synthesis predominantly occurs in leaves and is increased by high light intensity. This intriguing discovery has unveiled the potential for manipulating non-traditional medicinal organ leaves to improve the quality of medicinal organ rhizomes. The analysis of the impact of organ differences on saponin concentration in P. polyphylla var. chinensis (Franch.) Hara (PPC), P. fargesii Franch. (PF), and PPY revealed consistency among the three Paris species and was mainly dominated by PS VII. Notably, the leaves and stems exhibited much higher proportions of PS VII than other organs, accounting for 80-90% of the four main saponins. Among the three Paris species, PPY had the highest concentration of PS VII and was selected for subsequent experiments. Further investigations on saponin subcellular localization, temporal variation, and stem wound fluid composition demonstrated that PS VII is synthesized in mesophyll cells, released into the intercellular space through exocytosis, and then transported to the rhizome via vascular tissue. These findings confirm the significant role of leaves in PS VII synthesis. Additionally, a 13C-glucose feeding to trace PS VII biosynthesis revealed that only PS VII in the leaves exhibited incorporation of the labeled carbon, despite conducting 13C-glucose feeding in leaves, stems, rhizomes, and roots. Thus, the leaves are indeed the primary organ for PS VII synthesis in PPY. Furthermore, compared with plants under 100 μmol m-2 s-1, plants under 400 μmol m-2 s-1 exhibited a higher PS VII concentration, particularly in the upper epidermal cells of the leaves. We propose that high light intensity promotes PS VII synthesis in leaves through three mechanisms: (1) increased availability of substrates for saponin synthesis; (2) protection of leaves from high light damage through enhanced saponin synthesis; and (3) enhanced compartmentalization of saponins within the leaves, which in turn feedback regulates saponin synthesis.
Collapse
Affiliation(s)
- Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Siyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Li Z, Feng L, Wang H, Zhang L, Li H, Li Y, Niu P, Tian G, Yang Y, Mei X, Peng L. The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of Stellaria dichotoma L. var. lanceolata Bge. Reveals the Optimal Harvest Age. PLANTS (BASEL, SWITZERLAND) 2023; 12:2286. [PMID: 37375910 DOI: 10.3390/plants12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The original plant of Chinese medicine Stellariae Radix (Yin Chai Hu) is Stellaria dichotoma L. var. lanceolata Bge (abbreviated as SDL). SDL is a perennial herbaceous plant and a characteristic crop in Ningxia. Growth years are vital factors that affect the quality of perennial medicinal materials. This study aims to investigate the impact of growth years on SDL and screen for the optimal harvest age by comparing the medicinal material characteristics of SDL with different growth years. Additionally, metabolomics analysis using UHPLC-Q-TOF MS was employed to investigate the impact of growth years on the accumulation of metabolites in SDL. The results show that the characteristics of medicinal materials and the drying rate of SDL gradually increase with the increase in growth years. The fastest development period of SDL occurred during the first 3 years, after which the development slowed down. Medicinal materials characteristics of 3-year-old SDL exhibited mature qualities with a high drying rate, methanol extract content, and the highest content of total sterols and total flavonoids. A total of 1586 metabolites were identified, which were classified into 13 major classes with more than 50 sub-classes. Multivariate statistical analysis indicated significant differences in the diversity of metabolites of SDL in different growth years, with greater differences observed in metabolites as the growth years increased. Moreover, different highly expressed metabolites in SDL at different growth years were observed: 1-2 years old was beneficial to the accumulation of more lipids, while 3-5 years old was conducive to accumulating more alkaloids, benzenoids, etc. Furthermore, 12 metabolites accumulating with growth years and 20 metabolites decreasing with growth years were screened, and 17 significantly different metabolites were noted in 3-year-old SDL. In conclusion, growth years not only influenced medicinal material characteristics, drying rate, content of methanol extract, and total sterol and flavonoid contents, but also had a considerable effect on SDL metabolites and metabolic pathways. SDL planted for 3 years presented the optimum harvest time. The screened significantly different metabolites with biological activity, such as rutin, cucurbitacin e, isorhamnetin-3-o-glucoside, etc., can be utilized as potential quality markers of SDL. This research provides references for studying the growth and development of SDL medicinal materials, the accumulation of metabolites, and the selection of optimal harvest time.
Collapse
Affiliation(s)
- Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Lu Feng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Hong Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Haishan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yanqing Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Pilian Niu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Gege Tian
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yan Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiangui Mei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Ningxia Natural Medicine Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
5
|
Zhang C, Li Z, Li L, Li S, Yang L, Chen L, Zhang X, Yang S, Guo Y. Achyranthoside D (AD) improve intervertebral disc degeneration through affect the autophagy and the activation of PI3K/Akt/mTOR pathway. J Orthop Surg (Hong Kong) 2022; 30:10225536221135474. [PMID: 36307202 DOI: 10.1177/10225536221135474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aims to explore the potential mechanism of Achyranthoside D (AD) in improving intervertebral disc (IVD) degeneration (IDD). METHODS The IDD model of SD rats and nucleus pulposus cells (NPCs) was established by lumbar cone annulus puncture and tert-butyl peroxide, respectively. Cell proliferation was detected by CCK8 assay. Apoptosis was detected by flow cytometry and TUNEL staining. IVD tissue injury was observed by HE staining. Alcian blue staining observed the glycoprotein secretion in IVD. Monodansylcadaverin (MDC) staining was used to detect the formation of autophagosomes. The LC3 expression was tested by immunofluorescence. The type II collagen, aggrecan and MMP3 expression were detected by ELISA. RT-qPCR was used to detect the Casp 3, Bax, Bcl2, Acan, Col2a1 and Mmp3 expression. The LC3, P62, type II collagen, aggrecan, Beclin1, Akt, MMP3, p-mTOR, PI3K, mTOR, p-PI3K and p-Akt expression were analyzed by western blot. RESULTS The IVD tissue damage and apoptosis occurred in the Model group, and the glycoprotein secretion decreased. Compared with Model group, AD-H group alleviated the injury of IVD tissue, inhibited the apoptosis of cells, and increased the secretion of glycoprotein. 40 μg/mL AD restored the proliferation activity of NPCs. Compared to the Normal group, the NPCs apoptosis increased, the Collagen II, aggrecan and Bcl2 expressions were significantly decreased, the MMP3, Bax and Casp 3 expression were significantly increased, and the LC-3 II/I expression in IVD tissues were increased significantly in Model group, all of which was reversed in AD group. AD promoted the p-Akt, p-PI3K, p-mTOR, LC-3 II/I and Beclin1 expression, inhibited the P62 expression to alleviate the damage of nucleus pulporeus cells and the degeneration of IVD. CONCLUSION AD improved IDD by affecting the PI3K/Akt/mTOR pathway and autophagy.
Collapse
Affiliation(s)
- Chao Zhang
- Spine Orthopedics Department, The First Hospital of Hunan University of Chinese Medicine, China
| | - Zhaoyong Li
- Spine Orthopedics Department, The First Hospital of Hunan University of Chinese Medicine, China
| | - Linghui Li
- Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Shuofu Li
- The First Hospital of Hunan University of Chinese Medical, Changsha, Hunan, China
| | - Lei Yang
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Long Chen
- The First Hospital of Hunan University of Chinese Medical, Changsha, Hunan, China
| | - Xiao Zhang
- The First Hospital of Hunan University of Chinese Medical, Changsha, Hunan, China
| | - Shaofeng Yang
- Spine Orthopedics Department, The First Hospital of Hunan University of Chinese Medicine, China
| | - Yantao Guo
- Spine Orthopedics Department, The First Hospital of Hunan University of Chinese Medicine, China
| |
Collapse
|
6
|
Abstract
Achyranthes root is a crude drug used as diuretic, tonic and remedy for blood stasis. Characteristic oleanolic acid saponins with a dicarboxylic acid moiety have been isolated as one of the representative constituents of this crude drug. This review focuses on the triterpene saponin constituents, especially those with a characteristic dicarboxylic acid moiety, of A. bidentata and A. fauriei. Several groups isolated the saponins and different names were given to one compound in some cases. The names of the compounds are sorted out and the stereochemistry of the dicarboxylic acid moieties are summarized. HPLC analysis of the composition of the saponin constituents and the effect of processing and extraction conditions on the composition are reviewed. Biological activities of the saponin constituents are also summarized.
Collapse
|
7
|
Patel MK, Pandey S, Kumar M, Haque MI, Pal S, Yadav NS. Plants Metabolome Study: Emerging Tools and Techniques. PLANTS (BASEL, SWITZERLAND) 2021; 10:2409. [PMID: 34834772 PMCID: PMC8621461 DOI: 10.3390/plants10112409] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops. This review describes the recent analytical tools and techniques available to study plants metabolome, along with their significance of sample preparation using targeted and non-targeted methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance (NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge to plant biology.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sonika Pandey
- Independent Researcher, Civil Line, Fathepur 212601, India;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Md Intesaful Haque
- Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization, Volcani Center, Ramat Yishay 3009500, Israel;
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
8
|
Yoo TK, Jeong WT, Kim JG, Ji HS, Ahn MA, Chung JW, Lim HB, Hyun TK. UPLC-ESI-Q-TOF-MS-Based Metabolite Profiling, Antioxidant and Anti-Inflammatory Properties of Different Organ Extracts of Abeliophyllum distichum. Antioxidants (Basel) 2021; 10:70. [PMID: 33430473 PMCID: PMC7827262 DOI: 10.3390/antiox10010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Plant extracts have gained more attention as natural therapeutic agents against inflammation characterized by an overproduction of several inflammatory mediators such as reactive oxygen species and pro-inflammatory cytokines. Although Abeliophyllum distichum Nakai is generally known for its ornamental value, recent pharmacological research has demonstrated its potential therapeutic properties. Thus, to further evaluate the applicability of A. distichum in the food, cosmetic, and medical industries, we identified the phytochemicals in three organ extracts (fruits: AF, branches: AB, leaves: AL) of A. distichum and determined their antioxidant and anti-inflammatory activities. Using UPLC-ESI-Q-TOF-MS, a total of 19 compounds, including dendromoniliside D, forsythoside B, isoacteoside, isomucronulatol 7-O-Glucoside, plantamajoside, and wighteone were identified in the A. distichum organ extracts. AB exhibited a strong reducing power, an oxygen radical antioxidant capacity, and radical scavenging values compared with other samples, whereas AL exhibited the best anti-inflammatory properties. Gene expression, western blot, and molecular docking analyses suggested that the anti-inflammatory effect of AL was mediated by its ability to suppress lipopolysaccharide (LPS)-induced production of reactive oxygen species and/or inhibit LPS-stimulated activation of extracellular signal-regulated protein kinases (ERK1/2) in RAW264.7 cells. Collectively, these results indicate that AL is a potential source of phytochemicals that could be used to treat inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Heung Bin Lim
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea; (T.-K.Y.); (W.T.J.); (J.G.K.); (H.S.J.); (M.-A.A.); (J.-W.C.)
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea; (T.-K.Y.); (W.T.J.); (J.G.K.); (H.S.J.); (M.-A.A.); (J.-W.C.)
| |
Collapse
|
9
|
Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:80-89. [PMID: 31951944 DOI: 10.1016/j.plaphy.2020.01.006] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 01/04/2020] [Indexed: 05/25/2023]
Abstract
Secondary metabolites (SMs) of medicinal plants are the material basis of their clinically curative effects. They are also important indicators for evaluating the quality of medicinal materials. However, the synthesis and accumulation of SMs are very complex, which are affected by many factors including internal developmental genetic circuits (regulated gene, enzyme) and by external environment factors (light, temperature, water, salinity, etc.). Currently, lots of literatures focused on the effect of environmental factors on the synthesis and accumulation of SMs of medicinal plants, the effect of the developmental growth and genetic factors on the synthesis and accumulation of SMs still lack systematic classification and summary. Here, we have given the review base on our previous works on the morphological development of medicinal plants and their secondary metabolites, and systematically outlined the literature reports how different environmental factors affected the synthesis and accumulation of SMs. The results of our reviews can know how developmental and environmental factors qualitatively and quantitatively influence SMs of medicinal plants and how these can be integrated as tools to quality control, as well as on the improvement of clinical curative effects by altering their genomes, and/or growth conditions.
Collapse
Affiliation(s)
- Yanqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Liu Y, Tang L, Wang C, Li J. NAA and 6-BA promote accumulation of oleanolic acid by JA regulation in Achyranthes bidentata Bl. PLoS One 2020; 15:e0229490. [PMID: 32107496 PMCID: PMC7046271 DOI: 10.1371/journal.pone.0229490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 11/25/2022] Open
Abstract
Application of plant growth regulators has become one of the most important means of improving yield and quality of medicinal plants. To understand the molecular basis of phytohormone-regulated oleanolic acid metabolism, RNA-seq was used to analyze global gene expression in Achyranthes bidentata treated with 2.0 mg/L 1-naphthaleneacetic acid (NAA) and 1.0 mg/L 6-benzyladenine (6-BA). Compared with untreated controls, the expression levels of 20,896 genes were significantly altered with phytohormone treatment. We found that 13071 (62.5%) unigenes were up-regulated, and a lot of differentially expressed genes involved in hormone or terpenoid biosynthesis, or transcription factors were significantly up-regulated. These results suggest that oleanolic acid biosynthesis induced by NAA and 6-BA occurs due to the expression of key genes involved in jasmonic acid signal transduction. This study is the first to analyze the production and hormonal regulation of medicinal A. bidentata metabolites at the molecular level. The results herein contribute to a better understanding of the regulation of oleanane-type triterpenoid saponins accumulation and define strategies to improve the yield of these useful metabolites.
Collapse
Affiliation(s)
- Yanqing Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Tang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Can Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jinting Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan Province, Xinxiang, China
- * E-mail:
| |
Collapse
|
11
|
Yi TG, Yeoung YR, Choi IY, Park NI. Transcriptome analysis of Asparagus officinalis reveals genes involved in the biosynthesis of rutin and protodioscin. PLoS One 2019; 14:e0219973. [PMID: 31329616 PMCID: PMC6645489 DOI: 10.1371/journal.pone.0219973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Garden asparagus (Asparagus officinalis L.) is a popular vegetable cultivated worldwide. The secondary metabolites in its shoot are helpful for human health. We analyzed A. officinalis transcriptomes and identified differentially expressed genes (DEGs) involved in the biosynthesis of rutin and protodioscin, which are health-promoting functional compounds, and determined their association with stem color. We sequenced the complete mRNA transcriptome using the Illumina high-throughput sequencing platform in one white, three green, and one purple asparagus cultivars. A gene set was generated by de novo assembly of the transcriptome sequences and annotated using a BLASTx search. To investigate the relationship between the contents of rutin and protodioscin and their gene expression levels, rutin and protodioscin were analyzed using high-performance liquid chromatography. A secondary metabolite analysis using high-performance liquid chromatography showed that the rutin content was higher in green asparagus, while the protodioscin content was higher in white asparagus. We studied the genes associated with the biosynthesis of the rutin and protodioscin. The transcriptomes of the five cultivars generated 336 599 498 high-quality clean reads, which were assembled into 239 873 contigs with an average length of 694 bp, using the Trinity v2.4.0 program. The green and white asparagus cultivars showed 58 932 DEGs. A comparison of rutin and protodioscin biosynthesis genes revealed that 12 of the 57 genes associated with rutin and two of the 50 genes associated with protodioscin showed more than four-fold differences in expression. These DEGs might have caused a variation in the contents of these two metabolites between green and white asparagus. The present study is possibly the first to report transcriptomic gene sets in asparagus. The DEGs putatively involved in rutin and protodioscin biosynthesis might be useful for molecular engineering in asparagus.
Collapse
Affiliation(s)
- Tae Gyu Yi
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Young Rog Yeoung
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail: (IYC); (NIP)
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- * E-mail: (IYC); (NIP)
| |
Collapse
|
12
|
Song W, Yan S, Li Y, Feng S, Zhang JJ, Li JR. Functional characterization of squalene epoxidase and NADPH-cytochrome P450 reductase in Dioscorea zingiberensis. Biochem Biophys Res Commun 2019; 509:822-827. [PMID: 30638657 DOI: 10.1016/j.bbrc.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Dioscorea zingiberensis is a perennial medicinal herb rich in a variety of pharmaceutical steroidal saponins. Squalene epoxidase (SE) is the key enzyme in the biosynthesis pathways of triterpenoids and sterols, and catalyzes the epoxidation of squalene in coordination with NADPH-cytochrome P450 reductase (CPR). In this study, we cloned DzSE and DzCPR gene sequences from D. zingiberensis leaves, encoding proteins with 514 and 692 amino acids, respectively. Recombinant proteins were successfully expressed in vitro, and enzymatic analysis indicated that, when SE and CPR were incubated with the substrates squalene and NADPH, 2,3-oxidosqualene was formed as the product. Subcellular localization revealed that both the DzSE and DzCPR proteins are localized to the endoplasmic reticulum. The changes in transcription of DzSE and DzCPR were similar in several tissues. DzSE expression was enhanced in a time-dependent manner after methyl jasmonate (MeJA) treatments, while DzCPR expression was not inducible.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shan Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shan Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jia-Jiao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jia-Ru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
13
|
Li J, Wang C, Han X, Qi W, Chen Y, Wang T, Zheng Y, Zhao X. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl. FRONTIERS IN PLANT SCIENCE 2016; 7:1860. [PMID: 28018396 PMCID: PMC5149546 DOI: 10.3389/fpls.2016.01860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 05/27/2023]
Abstract
Achyranthes bidentata is a popular perennial medicine herb used for 1000s of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 1146.8 base pairs. A total of 31,634 (31.33%) unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette transporters, some of which might be involved in the translocation of secondary metabolites.
Collapse
Affiliation(s)
- Jinting Li
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan ProvinceXinxiang, China
| | - Can Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Xueping Han
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Wanzhen Qi
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Yanqiong Chen
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Taixia Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Yi Zheng
- Boyce Thompson Institute, IthacaNY, USA
| | - Xiting Zhao
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan ProvinceXinxiang, China
| |
Collapse
|
14
|
Molecular cloning and differential expression analysis of a squalene synthase gene from Dioscorea zingiberensis, an important pharmaceutical plant. Mol Biol Rep 2014; 41:6097-104. [PMID: 24996285 DOI: 10.1007/s11033-014-3487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Diosgenin is a steroid derived from cholesterol in plants and used as a typical initial intermediate for synthesis of numerous steroidal drugs in the world. Commercially, this compound is extracted mainly from the rhizomes or tubers of some Dioscorea species. Squalene synthase (SQS: EC 2.5.1.21) catalyzes the condensation of two molecules of farnesyl diphosphate to form squalene, the first committed step for biosynthesis of plant sterols including cholesterol, and is thought to play an important role in diosgenin biosynthesis. A full-length cDNA of a putative squalene synthase gene was cloned from D. zingiberensis and designated as DzSQS (Genbank Accession Number KC960673). DzSQS was contained an open reading frame of 1,230 bp encoding a polypeptide of 409 amino acids with a predicted molecular weight of 46 kDa and an isoelectric point of 6.2. The deduced amino acid sequence of DzSQS shared over 70 % sequence identity with those of SQSs from other plants. The truncated DzSQS in which 24 amino acids were deleted from the carboxy terminus was expressed in Escherichia coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. GC-MS analysis showed that squalene was detected in the in vitro reaction mixture. Quantitative real-time PCR analysis revealed that DzSQS was expressed from highest to lowest order in mature leaves, newly-formed rhizomes, young leaves, young stems, and two-year-old rhizomes of D. zingiberensis.
Collapse
|
15
|
Kalra S, Kumar S, Lakhanpal N, Kaur J, Singh K. Characterization of Squalene synthase gene from Chlorophytum borivilianum (Sant. and Fernand.). Mol Biotechnol 2013; 54:944-53. [PMID: 23338982 DOI: 10.1007/s12033-012-9645-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saponins are important group of secondary metabolites known for their pharmacological properties. Chlorophytum borivilianum contains high amount of saponins and is thus, recognized as an important medicinal plant with aphrodisiac properties. Though the plant is well known for its pharmaceutical properties, there is meager information available about the genes and enzymes responsible for biosynthesis of saponins from this plant. Squalene synthase (SqS) is the key enzyme of saponin biosynthesis pathway and here, we report cloning and characterization of SqS gene from C. borivilianum. A full-length CbSqS cDNA consisting of 1,760 bp was cloned which contained an open reading frame (ORF) of 1,233 bp, encoding a protein of 411 amino acids. Analysis of deduced amino acid sequence of CbSqS predicted the presence of conserved isoprenoid family domain and catalytic sites. Phylogenetic analysis revealed that CbSqS is closer to Glycine max and monocotyledonous plants. 3D structure prediction using various programs showed CbSqS structure to be similar to SqS from other species. C-terminus truncated recombinant squalene synthase (TruncCbSqS) was expressed in E. coli M15 cells with optimum expression induced with 1 mM IPTG at 37 °C. The gene expression level was analyzed through semi-quantitative RT-PCR and was found to be higher in leaves as compared to the roots.
Collapse
Affiliation(s)
- Shikha Kalra
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| | | | | | | | | |
Collapse
|
16
|
Isolation and antioxidative properties of phenolics-saponins rich fraction from defatted rice bran. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Munafo JP, Gianfagna TJ. Quantitative analysis of steroidal glycosides in different organs of Easter lily (Lilium longiflorum Thunb.) by LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:995-1004. [PMID: 21235207 DOI: 10.1021/jf1036454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The bulbs of the Easter lily ( Lilium longiflorum Thunb.) are regularly consumed in Asia as both food and medicine, and the beautiful white flowers are appreciated worldwide as an attractive ornamental. The Easter lily is a rich source of steroidal glycosides, a group of compounds that may be responsible for some of the traditional medicinal uses of lilies. Since the appearance of recent reports on the role steroidal glycosides in animal and human health, there is increasing interest in the concentration of these natural products in plant-derived foods. A LC-MS/MS method performed in multiple reaction monitoring (MRM) mode was used for the quantitative analysis of two steroidal glycoalkaloids and three furostanol saponins, in the different organs of L. longiflorum. The highest concentrations of the total five steroidal glycosides were 12.02 ± 0.36, 10.09 ± 0.23, and 9.36 ± 0.27 mg/g dry weight in flower buds, lower stems, and leaves, respectively. The highest concentrations of the two steroidal glycoalkaloids were 8.49 ± 0.3, 6.91 ± 0.22, and 5.83 ± 0.15 mg/g dry weight in flower buds, leaves, and bulbs, respectively. In contrast, the highest concentrations of the three furostanol saponins were 4.87 ± 0.13, 4.37 ± 0.07, and 3.53 ± 0.06 mg/g dry weight in lower stems, fleshy roots, and flower buds, respectively. The steroidal glycoalkaloids were detected in higher concentrations as compared to the furostanol saponins in all of the plant organs except the roots. The ratio of the steroidal glycoalkaloids to furostanol saponins was higher in the plant organs exposed to light and decreased in proportion from the aboveground organs to the underground organs. Additionally, histological staining of bulb scales revealed differential furostanol accumulation in the basal plate, bulb scale epidermal cells, and vascular bundles, with little or no staining in the mesophyll of the bulb scale. An understanding of the distribution of steroidal glycosides in the different organs of L. longiflorum is the first step in developing insight into the role these compounds play in plant biology and chemical ecology and aids in the development of extraction and purification methodologies for food, health, and industrial applications. In the present study, (22R,25R)-spirosol-5-en-3β-yl O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside, (22R,25R)-spirosol-5-en-3β-yl O-α-l-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside, (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside, (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→3)-β-d-glucopyranoside, and (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-xylopyranosyl-(1→3)-β-d-glucopyranoside were quantified in the different organs of L. longiflorum for the first time.
Collapse
Affiliation(s)
- John P Munafo
- Department of Plant Biology and Pathology, Rutgers - The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|