1
|
Li X, Zhu P, Chen YJ, Huang L, Wang D, Newton DT, Hsu CC, Lin G, Tao WA, Staiger CJ, Zhang C. The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1171957. [PMID: 37324680 PMCID: PMC10264680 DOI: 10.3389/fpls.2023.1171957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Yen-Ju Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - David T. Newton
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X. Cotton proteomics: Dissecting the stress response mechanisms in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1035801. [PMID: 36466262 PMCID: PMC9714328 DOI: 10.3389/fpls.2022.1035801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Tubatsi G, Kebaabetswe LP, Musee N. Proteomic evaluation of nanotoxicity in aquatic organisms: A review. Proteomics 2022; 22:e2200008. [PMID: 36107811 DOI: 10.1002/pmic.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
The alteration of organisms protein functions by engineered nanoparticles (ENPs) is dependent on the complex interplay between their inherent physicochemical properties (e.g., size, surface coating, shape) and environmental conditions (e.g., pH, organic matter). To date, there is increasing interest on the use of 'omics' approaches, such as proteomics, genomics, and others, to study ENPs-biomolecules interactions in aquatic organisms. However, although proteomics has recently been applied to investigate effects of ENPs and associated mechanisms in aquatic organisms, its use remain limited. Herein, proteomics techniques widely applied to investigate ENPs-protein interactions in aquatic organisms are reviewed. Data demonstrates that 2DE and mass spectrometry and/or their combination, thereof, are the most suitable techniques to elucidate ENPs-protein interactions. Furthermore, current status on ENPs and protein interactions, and possible mechanisms of nanotoxicity with emphasis on those that exert influence at protein expression levels, and key influencing factors on ENPs-proteins interactions are outlined. Most reported studies were done using synthetic media and essay protocols and had wide variability (not standardized); this may consequently limit data application in actual environmental systems. Therefore, there is a need for studies using realistic environmental concentrations of ENPs, and actual environmental matrixes (e.g., surface water) to aid better model development of ENPs-proteins interactions in aquatic systems.
Collapse
Affiliation(s)
- Gosaitse Tubatsi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Lemme Prica Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
5
|
Hao JH, Kong HJ, Yan MH, Shen CC, Xu GW, Zhang DJ, Zhang KS, Zheng HX, Liu XT. Inhibition of orf virus replication in goat skin fibroblast cells by the HSPA1B protein, as demonstrated by iTRAQ-based quantitative proteome analysis. Arch Virol 2020; 165:2561-2587. [PMID: 32876795 PMCID: PMC7465882 DOI: 10.1007/s00705-020-04789-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Orf virus (ORFV) infects sheep and goat tissues, resulting in severe proliferative lesions. To analyze cellular protein expression in ORFV-infected goat skin fibroblast (GSF) cells, we used two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ). The proteomics approach was used along with quantitative reverse transcription polymerase chain reaction (RT-qPCR) to detect differentially expressed proteins in ORFV-infected GSF cells and mock-infected GSF cells. A total of 282 differentially expressed proteins were identified. It was found that 222 host proteins were upregulated and 60 were downregulated following viral infection. We confirmed that these proteins were differentially expressed and found that heat shock 70-kDa protein 1B (HSPA1B) was differentially expressed and localized in the cytoplasm. It was also noted that HSPA1B caused inhibition of viral proliferation, in the middle and late stages of viral infection. The differentially expressed proteins were associated with the biological processes of viral binding, cell structure, signal transduction, cell adhesion, and cell proliferation.
Collapse
Affiliation(s)
- Jun-Hong Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Han-Jin Kong
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ming-Hao Yan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Chao-Chao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guo-Wei Xu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Da-Jun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Ke-Shan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China.
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiang-Tao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute of Chinese Academy of Agriculture Science, No. 1, Xujiaping, Lanzhou, 730046, Gansu, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Xin Q, Wu Z, Wang C, Wang Y, Wu Q, Niu R. Application of Isobaric Tags for Relative and Absolute Quantification (iTRAQ) Coupled with Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry in Quantitative Proteomic Analysis for Discovery of Serum Biomarkers for Idiopathic Pulmonary Fibrosis. Med Sci Monit 2018; 24:4146-4153. [PMID: 29909421 PMCID: PMC6036962 DOI: 10.12659/msm.908702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The present study was performed to explore the presence of informative protein biomarkers of human serum proteome in idiopathic pulmonary fibrosis (IPF). Material/Methods Serum samples were profiled using iTRAQ coupled with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) technique, and ELISA was used to validate candidate biomarkers. Results A total of 394 proteins were identified and 97 proteins were associated with IPF. Four biomarker candidates generated from iTRAQ experiments – CRP, fibrinogen-α chain, haptoglobin, and kininogen-1 – were successfully verified using ELISA. Conclusions The present study demonstrates that levels of CRP and fibrinogen-α are higher and levels of haptoglobin and kininogen-1 are lower in patients with IPF compared to levels in healthy controls. We found they are useful candidate biomarkers for IPF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Xin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chaochao Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Niu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
7
|
Han B, Yang N, Pu H, Wang T. Quantitative Proteomics and Cytology of Rice Pollen Sterol-Rich Membrane Domains Reveals Pre-established Cell Polarity Cues in Mature Pollen. J Proteome Res 2018; 17:1532-1546. [PMID: 29508613 DOI: 10.1021/acs.jproteome.7b00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bing Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Pu
- Bruker Daltonics Inc. (China), Beijing 100081, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Yang N, Han B, Liu L, Yang H, Wang T. Plasma Membrane Preparation from Lilium davidii and Oryza sativa Mature and Germinated Pollen. Bio Protoc 2017; 7:e2297. [PMID: 34541066 DOI: 10.21769/bioprotoc.2297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/02/2022] Open
Abstract
Pollen germination is an excellent process to study cell polarity establishment. During this process, the tip-growing pollen tube will start elongating. The plasma membrane as the selectively permeable barrier that separates the inner and outer cell environment plays crucial roles in this process. This protocol described an efficient aqueous polymer two-phase system followed by alkaline solution washing to prepare Lilium davidii or Oryza sativa plasma membrane with high purity.
Collapse
Affiliation(s)
- Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Tremblay RR, Bourassa S, Nehmé B, Calvo EL. Daylily protein constituents of the pollen and stigma a proteomics approach. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:1-12. [PMID: 28242413 DOI: 10.1016/j.jplph.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
This study was aimed at the identification and quantification of the protein components of the pollen grains in parallel with the distal stigmatic tissue of tetraploid cultivars. Proteomes were analyzed using iTRAQ 4plex labeling, peptides separation by online RP-nano-LC and analysis by ESI-MS/MS. Protein identification and quantification were made using the Asparagales database as a reference. A total of 524,037 MS/MS spectra were produced from pollen and stigma samples. From these, a total of 8368 peptides wereidentified corresponding to 994 unique peptides and 432 protein groups. Among them, 128 differentially expressed proteins were retained for further analysis. In absence of the daylily genome availability, we exploited numerous databases and bioinformatics resources to exploring the putative biological functions of these proteins. The profile of differentially expressed proteins suggests an important representation of functions associated to the signalling and response against endogenous and environmental stresses, including several enzymes implicated in the biosynthesis of antibiotics. The abundance in stigma of several structural proteins of the ribosomal sub-units as well as of the core histones suggest that the translation processes and the regulation of gene expression in stigma is a more active mechanism than in pollen. In addition, pollen prioritizes the synthesis of fructose and glucose as opposed to sucrose in stigma as a source of energy. Finally, the modulated proteins in Hemerocallis point to several pathways that give potential clues concerning the molecular mechanisms underlying the functions of the pollen and the stigmatic fluid in daylily reproduction.
Collapse
Affiliation(s)
- Roland R Tremblay
- CHUL Research Center in Reproduction, Centre de Recherche du CHU de Québec,2705 Boulevard Laurier, Suite T3-67, Quebec City, QC, G1 V 4G2, Canada.
| | - Sylvie Bourassa
- Proteomics Platform Quebec Genomics Center, CRCHUL, Centre de Recherche du CHU de Quebec, Canada.
| | - Benjamin Nehmé
- Proteomics Platform Quebec Genomics Center, CRCHUL, Centre de Recherche du CHU de Quebec, Canada.
| | - Ezequiel L Calvo
- Scientific Consultant in Genomics, 701 Leonard, Quebec City, QC, G1X 4C9, Canada.
| |
Collapse
|
10
|
Yang N, Han B, Wang T. Protein Isolation from Plasma Membrane, Digestion and Processing for Strong Cation Exchange Fractionation. Bio Protoc 2017; 7:e2298. [DOI: 10.21769/bioprotoc.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 04/19/2017] [Indexed: 11/02/2022] Open
|
11
|
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. PLANT REPRODUCTION 2016; 29:119-32. [PMID: 27271282 PMCID: PMC4909805 DOI: 10.1007/s00497-016-0283-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
Pollen development and stress. In angiosperms, pollen or pollen grain (male gametophyte) is a highly reduced two- or three-cell structure which plays a decisive role in plant reproduction. Male gametophyte development takes place in anther locules where diploid sporophytic cells undergo meiotic division followed by two consecutive mitotic processes. A desiccated and metabolically quiescent form of mature pollen is released from the anther which lands on the stigma. Pollen tube growth takes place followed by double fertilization. Apart from its importance in sexual reproduction, pollen is also an interesting model system which integrates fundamental cellular processes like cell division, differentiation, fate determination, polar establishment, cell to cell recognition and communication. Recently, pollen functionality has been studied by multidisciplinary approaches which also include OMICS analyses like transcriptomics, proteomics and metabolomics. Here, we review recent advances in proteomics of pollen development and propose the process of developmental priming playing a key role to guard highly sensitive developmental processes.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector No-15, CBD, Belapur, Navi Mumbai, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Li X, Jackson A, Xie M, Wu D, Tsai WC, Zhang S. Proteomic insights into floral biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1050-60. [PMID: 26945514 DOI: 10.1016/j.bbapap.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China; International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China.
| | | | - Ming Xie
- Zhejiang Academy of Agricultural Sciences, Shiqiao Road 139, Hangzhou 310021, PR China.
| | - Dianxing Wu
- International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou 310029, PR China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, New York 14853, USA
| |
Collapse
|
13
|
Li M, Wang K, Li S, Yang P. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J Proteomics 2015; 131:214-226. [PMID: 26546731 DOI: 10.1016/j.jprot.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Pollen-stigma interaction is a multi-step and complex physiological process which contains different signaling and biochemical pathways. However, little is known about the molecular mechanism underlying this process in rice (Oryza sativa). In this study, the changes of gene expression were investigated through a combination study of transcriptome and proteome profiles in rice pistil during pollination. Totally, 1117 differentially expressed genes were identified, among which 962 and 167 were detected at transcriptional and protein level respectively. Functional categorization analysis showed that the genes involved in central metabolism were up-regulated, which can lead to the enhancement of these metabolisms. The reactive oxygen species (ROS) were over-accumulated in the stigma. In response to this, the proteins or transcripts involved in redox homeostasis regulation were differentially expressed. Furthermore, significant changes of protein ubiquitination and its related genes or proteins, especially some E3 ligases encoding genes, indicate that protein ubiquitination might play important roles in cell signal transduction during the pollination process. Our study sheds some lights on gene and protein expression profiles of rice pistil pollination process, and gives us a comprehensive understanding of the basic molecular mechanisms controlling pollination in rice. BIOLOGICAL SIGNIFICANCE Using RNA-seq, 2-DE and iTRAQ assays, we have generated the large-scale transcriptomic and proteomic data containing abundant information on genes involved in pollen and pistil interaction. Our results showed that ROS were significantly accumulated in stigma after pollination, and the abundance of genes involve in redox homeostasis system were changed variously. We also show that, changes of some E3 ligases encoding genes might indicate that protein ubiquitination play important roles in cell signal transduction during the pollination process. Data in this study might be helpful to deeply understand the pollination in rice.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
14
|
Abstract
Background Vibrio parahaemolyticus is a common pathogen infecting humans and marine animals; this pathogen has become a major concern of marine food products and trade. In this study, V. parahaemolyticus isolated from sewage was exposed to different culture conditions and analyzed by isobaric tag for relative and absolute quantitation (iTRAQ) based reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Our goal is to gain further insights into the proteomics of V. parahaemolyticus, particularly differentially expressed proteins closely correlated with growth conditions and pathogenicity associated proteins. Results In this study, a total of 2,717 proteins including numerous membrane proteins were significantly identified, and 616 proteins displayed significant differential expression under different conditions. Of them, 12 proteins mainly participating in metabolism showed the most elastic expression differentiation between different culture conditions. Some membrane proteins such as type I secretion outer membrane protein, TolC, lipoprotein, efflux system proteins iron-regulated protein A and putaive Fe-regulated protein B, ferric siderophore receptor homolog and several V. parahaemolyticus virulence-associated proteins were differentially regulated under different conditions. Some differentially regulated proteins were analyzed and confirmed at gene expression level by quantitative real time polymerase chain reaction (qRT-PCR). Conclusions Proteomics analysis results revealed the characteristics of V. parahaemolyticus proteome expression, provided some promising biomarkers related with growth conditions, the results likely advance insights into the mechanism involved in the response of V. parahaemolyticus to different conditions. Some virulence-associated proteins were discovered to be differentially expressed under different conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0075-4) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Li H, Pan Y, Zhang Y, Wu C, Ma C, Yu B, Zhu N, Koh J, Chen S. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteomics 2015; 127:18-33. [PMID: 25845583 DOI: 10.1016/j.jprot.2015.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/11/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
Abstract
UNLABELLED Understanding how plants respond to and tolerate salt stress is important for engineering and breeding effort to boost plant productivity and bioenergy in an ever challenging environment. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss, and it exhibits tolerance to salt stress. Here we report the changes in membrane proteome of the M14 plants in response to salt stress (0, 200, 400mM NaCl) using an iTRAQ two-dimensional LC-MS/MS technology for quantitative proteomic analysis. In total, 274 proteins, mostly membrane proteins, were identified, and 50 proteins exhibited differential protein level changes, with 40 proteins increased and 10 decreased. The proteins were mainly involved in transport, metabolism, protein synthesis, photosynthesis, protein folding and degradation, signal transduction, stress and defense, energy, and cell structure. These results have revealed interesting mechanisms underlying the M14 response and tolerance to salt stress. BIOLOGICAL SIGNIFICANCE Sugar beet monosomic addition line M14 is a special variety with salt stress tolerance. Analysis of the M14 membrane proteome under salt stress may provide useful information regarding specific adaptive mechanisms underlying salt stress tolerance. Membrane proteins are known to play critical roles in salt stress signaling and adaptation. The purpose of this study was to identify significantly changed membrane proteins and determine their possible relevance to salt tolerance. The proteomic analysis of the M14 line revealed important molecular mechanisms that can be potentially applied to improving crop salt tolerance. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Haiying Li
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Yu Pan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Chuan Wu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Chunquan Ma
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FL, Gainesville, FL 32610, USA
| | - Jin Koh
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FL, Gainesville, FL 32610, USA
| | - Sixue Chen
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FL, Gainesville, FL 32610, USA.
| |
Collapse
|
16
|
Lang V, Usadel B, Obermeyer G. De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. PLANT MOLECULAR BIOLOGY 2015; 87:69-80. [PMID: 25341867 DOI: 10.1007/s11103-014-0261-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Pollen grains of Lilium longiflorum are a long-established model system for pollen germination and tube tip growth. Due to their size, protein content and almost synchronous germination in synthetic media, they provide a simple system for physiological measurements as well as sufficient material for biochemical studies like protein purifications, enzyme assays, organelle isolation or determination of metabolites during germination and pollen tube elongation. Despite recent progresses in molecular biology techniques, sequence information of expressed proteins or transcripts in lily pollen is still scarce. Using a next generation sequencing strategy (RNAseq), the lily pollen transcriptome was investigated resulting in more than 50 million high quality reads with a length of 90 base pairs. Sequenced transcripts were assembled and annotated, and finally visualized with MAPMAN software tools and compared with other RNAseq or genome data including Arabidopsis pollen, Lilium vegetative tissues and the Amborella trichopoda genome. All lily pollen sequence data are provided as open access files with suitable tools to search sequences of interest.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Depatment of Molecular Biology, University of Salzburg, Billrothstr.11, 5020, Salzburg, Austria
| | | | | |
Collapse
|
17
|
Proteomics Advances in the Understanding of Pollen-Pistil Interactions. Proteomes 2014; 2:468-484. [PMID: 28250391 PMCID: PMC5302694 DOI: 10.3390/proteomes2040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022] Open
Abstract
The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI) process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction.
Collapse
|
18
|
Yue X, Gao XQ, Wang F, Dong Y, Li X, Zhang XS. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination. PLoS One 2014; 9:e107046. [PMID: 25215523 PMCID: PMC4162560 DOI: 10.1371/journal.pone.0107046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/07/2014] [Indexed: 01/08/2023] Open
Abstract
It is difficult to derive all qualitative proteomic and metabolomic experimental data in male (pollen tube) and female (pistil) reproductive tissues during pollination because of the limited sensitivity of current technology. In this study, genome-scale enzyme correlation network models for plants (Arabidopsis/maize) were constructed by analyzing the enzymes and metabolic routes from a global perspective. Then, we developed a data-driven computational pipeline using the "guilt by association" principle to analyze the transcriptional coexpression profiles of enzymatic genes in the consecutive steps for metabolic routes in the fast-growing pollen tube and stigma during pollination. The analysis identified an inferred pattern of pollen tube-stigma ethanol coupling. When the pollen tube elongates in the transmitting tissue (TT) of the pistil, this elongation triggers the mobilization of energy from glycolysis in the TT cells of the pistil. Energy-rich metabolites (ethanol) are secreted that can be taken up by the pollen tube, where these metabolites are incorporated into the pollen tube's tricarboxylic acid (TCA) cycle, which leads to enhanced ATP production for facilitating pollen tube growth. In addition, our analysis also provided evidence for the cooperation of kaempferol, dTDP-alpha-L-rhamnose and cell-wall-related proteins; phosphatidic-acid-mediated Ca2+ oscillations and cytoskeleton; and glutamate degradation IV for γ-aminobutyric acid (GABA) signaling activation in Arabidopsis and maize stigmas to provide the signals and materials required for pollen tube tip growth. In particular, the "guilt by association" computational pipeline and the genome-scale enzyme correlation network models (GECN) developed in this study was initiated with experimental "omics" data, followed by data analysis and data integration to determine correlations, and could provide a new platform to assist inachieving a deeper understanding of the co-regulation and inter-regulation model in plant research.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xin-Qi Gao
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Fang Wang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - YuXiu Dong
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - XingGuo Li
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xian Sheng Zhang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
19
|
Wang K, Zhao Y, Li M, Gao F, Yang MK, Wang X, Li S, Yang P. Analysis of phosphoproteome in rice pistil. Proteomics 2014; 14:2319-34. [PMID: 25074045 DOI: 10.1002/pmic.201400004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 11/07/2022]
Abstract
As the female reproductive part of a flower, the pistil consists of the ovary, style, and stigma, and is a critical organ for the process from pollen recognition to fertilization and seed formation. Previous studies on pollen-pistil interaction mainly focused on gene expression changes with comparative transcriptomics or proteomics method. However, studies on protein PTMs are still lacking. Here we report a phosphoproteomic study on mature pistil of rice. Using IMAC enrichment, hydrophilic interaction chromatography fraction and high-accuracy MS instrument (TripleTOF 5600), 2347 of high-confidence (Ascore ≥ 19, p ≤ 0.01), phosphorylation sites corresponding to 1588 phosphoproteins were identified. Among them, 1369 phosphorylation sites within 654 phosphoproteins were newly identified; 41 serine phosphorylation motifs, which belong to three groups: proline-directed, basophilic, and acidic motifs were identified after analysis by motif-X. Two hundred and one genes whose phosphopeptides were identified here showed tissue-specific expression in pistil based on information mining of previous microarray data. All MS data have been deposited in the ProteomeXchange with identifier PXD000923 (http://proteomecentral.proteomexchange.org/dataset/PXD000923). This study will help us to understand pistil development and pollination on the posttranslational level.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mora L, Bramley PM, Fraser PD. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit. Proteomics 2014; 13:2016-30. [PMID: 23616442 DOI: 10.1002/pmic.201200480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit.
Collapse
Affiliation(s)
- Leticia Mora
- Centre for Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | | | | |
Collapse
|
21
|
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 2014; 13:295-310. [PMID: 24078888 PMCID: PMC3879621 DOI: 10.1074/mcp.m113.028100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
Collapse
Affiliation(s)
- Till Ischebeck
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Luis Valledor
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - David Lyon
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stephanie Gingl
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Matthias Nagler
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Mónica Meijón
- ¶Gregor-Mendel-Institute for Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Volker Egelhofer
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Wolfram Weckwerth
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
22
|
European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS One 2013; 8:e73394. [PMID: 24023868 PMCID: PMC3759431 DOI: 10.1371/journal.pone.0073394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/20/2013] [Indexed: 12/22/2022] Open
Abstract
Herbivore-induced plant responses have been widely described following attack on leaves; however, less attention has been paid to analogous local processes that occur in stems. Early studies of maize (Zea mays) responses to stem boring by European corn borer (ECB, Ostrinianubilalis) larvae revealed the presence of inducible acidic diterpenoid phytoalexins, termed kauralexins, and increases in the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-Glc) after 24 h of herbivory. Despite these rapidly activated defenses, larval growth was not altered in short-term feeding assays. Unexpectedly, ECB growth significantly improved in assays using stem tissue preconditioned by 48 h of larval tunneling. Correspondingly, measures of total soluble protein increased over 2.6-fold in these challenged tissues and were accompanied by elevated levels of sucrose and free linoleic acid. While microarray analyses revealed up-regulation of over 1100 transcripts, fewer individual protein increases were demonstrable. Consistent with induced endoreduplication, both wounding and ECB stem attack resulted in similar significant expansion of the nucleus, nucleolus and levels of extractable DNA from challenged tissues. While many of these responses are triggered by wounding alone, biochemical changes further enhanced in response to ECB may be due to larval secreted effectors. Unlike other Lepidoptera examined, ECB excrete exceedingly high levels of the auxin indole-3-acetic acid (IAA) in their frass which is likely to contact and contaminate the surrounding feeding tunnel. Stem exposure to a metabolically stable auxin, such as 2,4-dichlorophenoxyacetic acid (2,4-D), promoted significant protein accumulation above wounding alone. As a future testable hypothesis, we propose that ECB-associated IAA may function as a candidate herbivore effector promoting the increased nutritional content of maize stems.
Collapse
|
23
|
Wang K, Peng X, Ji Y, Yang P, Zhu Y, Li S. Gene, protein, and network of male sterility in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:92. [PMID: 23596452 PMCID: PMC3622893 DOI: 10.3389/fpls.2013.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering, College of Life Science, Nanchang UniversityNanchang, People's Republic of China
| | - Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| |
Collapse
|
24
|
Li M, Sha A, Zhou X, Yang P. Comparative proteomic analyses reveal the changes of metabolic features in soybean (Glycine max) pistils upon pollination. SEXUAL PLANT REPRODUCTION 2012; 25:281-91. [PMID: 22968406 DOI: 10.1007/s00497-012-0197-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/28/2012] [Indexed: 12/27/2022]
Abstract
Siphonogamy is a critical process in plant reproductive growth, during which numerous cell-cell interaction events occur between pistil and pollen. Previous studies in Solanaceae, Papaveraceae, and Brassicaceae focusing on pollen-stigma recognition in self-incompatible systems have provided many important views. In this study, we profiled the proteome in soybean mature pistils before and after pollination. Comparative analyses of two-dimensional gel electrophoresis maps from un-pollinated and pollinated pistils were conducted. The results showed that 22 proteins were increased and 36 proteins decreased after pollination. Functional categorization showed that most of them were metabolism- and redox-related proteins. The enhancement of primary metabolism, biosynthesis of pollen tube guidance compounds, and adjustment of redox homeostasis system might be helpful for a successful pollination. Quantitative reverse transcript-polymerase chain reaction analysis implied that the regulation of gene expression might happen at both transcriptional and posttranscriptional levels during pollination. This study will enhance our understanding of pollen-stigma interaction in plant sexual reproductive growth.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Cui J, He P, Liu F, Tan J, Chen L, Fenn J. 60 years of development of the journal of integrative plant biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:682-702. [PMID: 22966769 DOI: 10.1111/j.1744-7909.2012.01163.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In celebration of JIPB's 60(th) anniversary, this paper summarizes and reviews the development process of the journal. To start, we offer our heartfelt thanks to JIPB's pioneer Editors-in-Chief who helped get the journal off the ground and make it successful. Academic achievement is the soul of academic journals, and this paper summarizes JIPB's course of academic development by analyzing it in four stages: the first two stages are mostly qualitative analyses, and the latter two stages are dedicated to quantitative analyses. Most-cited papers were statistically analyzed. Improvements in editing, publication, distribution and online accessibility--which are detailed in this paper--contribute to JIPB's sustainable development. In addition, JIPB's evaluation index and awards are provided with accompanying pictures. At the end of the paper, JIPB's milestones are listed chronologically. We believe that JIPB's development, from a national journal to an international one, parallels the development of the Chinese plant sciences.
Collapse
|
26
|
Dai S, Chen S. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol Cell Proteomics 2012; 11:1622-30. [PMID: 22982375 DOI: 10.1074/mcp.r112.021550] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.
Collapse
Affiliation(s)
- Shaojun Dai
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
27
|
Shi T, Zhuang W, Zhang Z, Sun H, Wang L, Gao Z. Comparative proteomic analysis of pistil abortion in Japanese apricot (Prunus mume Sieb. et Zucc). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1301-1310. [PMID: 22717137 DOI: 10.1016/j.jplph.2012.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/28/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
The phenomenon of pistil abortion widely occurs in Japanese apricot and has seriously affected the yield in production. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flight/time of flight (MALDI-TOF/TOF) approaches to identify the differentially expressed proteome between perfect and imperfect flower buds in Japanese apricot. More than 400 highly reproducible protein spots (P<0.05) were detected and 27 protein spots showed a greater than two-fold difference in their expression values. The proteins identified were classified into eight functional classifications and ten process categories, according to the Gene Ontology (GO). Acetyl-CoA produced by ATP citrate lyase (ACL) as a structural substance during formation of the cell wall could regulate pistil abortion in Japanese apricot. S-adenosylmethionine (SAM), xyloglucan endotransglucosylase/hydrolases (XTHs) and caffeoyl-CoA-O-methyl transferase (CCoAOMT) could promote cell wall formation in perfect flower buds of Japanese apricot, greatly contributing to pistil development. Spermidine hydroxycinnamoyl transferase (SHT) may be involved in the O-methylation of spermidine conjugates and could contribute to abnormal floral development. The identification of such differentially expressed proteins provides new targets for future studies that will assess their physiological roles and significance in pistil abortion.
Collapse
Affiliation(s)
- Ting Shi
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Lopez-Casado G, Covey PA, Bedinger PA, Mueller LA, Thannhauser TW, Zhang S, Fei Z, Giovannoni JJ, Rose JKC. Enabling proteomic studies with RNA-Seq: The proteome of tomato pollen as a test case. Proteomics 2012; 12:761-74. [PMID: 22539427 DOI: 10.1002/pmic.201100164] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective proteome profiling is generally considered to depend heavily on the availability of a high-quality DNA reference database. As such, proteomics has long been taxonomically restricted, with limited inroads being made into the proteomes of "non-model" organisms. However, next generation sequencing (NGS), and particularly RNA-Seq, now allows deep coverage detection of expressed genes at low cost, which in turn potentially facilitates the matching of peptide mass spectra with cognate gene sequence. To test this, we performed a quantitative analysis of the proteomes of pollen from domesticated tomato (Solanum lycopersicum) and two wild relatives that exhibit differences in mating systems and in interspecific reproductive barriers. Using a custom tomato RNA-Seq database created through 454 pyrosequencing, more than 1200 proteins were identified, with subsets showing expression differences between genotypes or in the accumulation of the corresponding transcripts. Importantly, no major qualitative or quantitative differences were observed in the characterized proteomes when mass spectra were used to interrogate either a highly curated community database of tomato sequences generated through traditional sequencing technologies, or the RNA-Seq database. We conclude that RNA-Seq provides a cost-effective and robust platform for protein identification and will be increasingly valuable to the field of proteomics.
Collapse
|
29
|
Qiu QS. Plant and yeast NHX antiporters: roles in membrane trafficking. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:66-72. [PMID: 22222113 DOI: 10.1111/j.1744-7909.2012.01097.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The plant NHX gene family encodes Na(+)/H(+) antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhx1p, a prevacuole/ vacuolar Na(+)/H(+) antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.
Collapse
Affiliation(s)
- Quan-Sheng Qiu
- School of Life Sciences, Lanzhou University, 222 South Tianshui Rd., Lanzhou 730000, China.
| |
Collapse
|