1
|
Li F, Chen W, Ai Y, Zhou X, Xiang J, Lu H, Dong Y, Yang Q, Zhang J. Design and Synthesis of Novel Indole-Derived N-Methylcarbamoylguanidinyl Chitinase Inhibitors with Significantly Improved Insecticidal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21410-21418. [PMID: 39291429 DOI: 10.1021/acs.jafc.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chitinases play an important role in the molting process of insects and are potential targets for the development of green insecticides. Based on the feature that the +1/+2 sites in OfChtI, OfChtII, and OfChi-h have tryptophan residues in mismatch-parallel position, a strategy to introduce indole scaffold into chitinase inhibitors was proposed, and multitarget chitinase inhibitors containing N-methylcarbamoylguanidinyl and indole scaffold were successfully synthesized. The inhibitory activity showed that compound 8u exhibited significant inhibitory activity against OfChtI, OfChtII, and OfChi-h, with IC50 values of 0.7, 0.79, and 0.58 μM, and Ki values of 0.05 ± 0.005, 0.065 ± 0.004, and 0.025 ± 0.006 μM, respectively. In vivo insecticidal activity showed that compounds 8a and 8g exhibited excellent insecticidal activity against Plutella xylostella and Mythimna separata, with LC50 values of 0.79 and 9.17 mg/L against P. xylostella, respectively, and 3.58 and 83.09 mg/L against M. separata, respectively, making them the most potent chitinase inhibitors with in vivo insecticidal activity discovered to date. The inhibition mechanism and binding free energy results suggested that N-methylcarbamoylguanidinyl binds to the -1 catalytic site, while additional interactions acquired by π-π stacking and hydrophobic interactions of the indole scaffold with tryptophan increase the binding affinity of the targets to chitinases. This work provides a new direction for the development of chitinase inhibitors with compounds 8a and 8g potentially serving as promising candidates for pesticide development.
Collapse
Affiliation(s)
- Fang Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yin Ai
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xingyue Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Juncheng Xiang
- Shanghai GreenTech Laboratory Co. Ltd., Shanghai 201600, People's Republic of China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Zhang C, He L, Ding B, Yang H. Identification and functional characterization of the chitinase and chitinase-like gene family in Myzus persicae (Sulzer) during molting. PEST MANAGEMENT SCIENCE 2024. [PMID: 39319496 DOI: 10.1002/ps.8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The crucial role of insect chitinase in molting, pupation, and emergence renders it a promising target for pest control strategies. Despite the extensive investigation of chitinase genes in various pests, there is still a lack of systematic identification and functional analysis related to aphid chitinase. RESULTS We systematically identified a total of nine chitinase/chitinase-like genes and one ENGase gene, which included eight Cht genes, one IDGF gene, and one ENGase gene. Through phylogenetic analysis, the chitinase proteins were classified into nine distinct groups (I, II, III, V, VI, VIII, X, other, and ENGase). The expression profile revealed that the epidermis exhibited relatively high expression levels for three chitinase genes: MpCht5, MpCht7, and MpCht10. Furthermore, transcriptional levels of nine chitinase genes were up-regulated following treatment with 20-hydroxyecdysone (20E) hormone. Silencing MpCht3, MpCht5, MpCht7, MpCht10, and MpCht11-2 via RNA interference (RNAi) during the molting stage resulted in nymph shrinking, hindering normal molting and leading to death. Additionally, it was observed that silencing of MpIDGF induced the body color of the aphids to change from reddish brown to colorless after molting, culminating in eventual mortality. CONCLUSION Our findings suggest that chitinase/chitinase-like genes play a crucial role in the molting process of Myzus persicae. Utilizing RNAi technology, we aimed to elucidate the precise function of MpCht genes in the molting mechanism of M. persicae, this discovery establishes a significant theoretical foundation for future research on aphid control, with chitinase as the target. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Li He
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Forestry Development Centre, Zhenfeng County Forestry Bureau, Southwest Guizhou Buyi and Miao Autonomous Prefecture, Guizhou, P. R. China
| | - Bo Ding
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| |
Collapse
|
3
|
Qu M, Guo X, Ando T, Yang Q. Functional role of carbohydrate-binding modules in multi-modular chitinase OfChtII. J Biol Chem 2024; 300:107622. [PMID: 39098522 PMCID: PMC11402056 DOI: 10.1016/j.jbc.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.
Collapse
Affiliation(s)
- Mingbo Qu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Xiaoxi Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Hao N, Qi Y, Zhao L, Liang S, Sun W, Zhang S, Tian X. Discovery of New Botanical Insecticides: Identification and Insecticidal Activity of Saponins from Clematis obscura Maxim and Insights into the Stress Response of Acyrthosiphon pisum Harris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4596-4609. [PMID: 38385330 DOI: 10.1021/acs.jafc.3c06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To discover new botanical products-based insecticide candidates, 14 triterpenoid saponins (1-14) including four new ones, obscurosides A-D (1-4), were isolated from Clematis obscura Maxim as potential agrochemicals against Acyrthosiphon pisum Harris and Plutella xylostella (L.). Compounds 1-3 were characterized by a rare ribose substitution at C-3, and 4 was a bidesmoside glycosylated at the rare C-23 and C-28 positions of the oleanane aglycone. Compounds 10 (median antifeeding concentration, AFC50 = 1.10 mg/mL; half-lethal concentration, LC50 = 1.21 mg/mL) and 13 (AFC50 = 1.09 mg/mL, LC50 = 1.37 mg/mL) showed significant insecticidal activities against third larvae of P. xylostella at 72 h. All saponins displayed antifeedant activities against A. pisum with the deterrence index of 0.20-1.00 at 400 μg/mL. Compound 8 showed optimal oral toxicity (LC50 = 50.09 μg/mL) against A. pisum, followed by compounds 1, 5-7, 9, and 14 (LC50 = 90.21-179.25 μg/mL) at 72 h. The shrinkage of the cuticle and the destruction of intestinal structures of microvilli, nucleus, endoplasmic reticulum, and mitochondria were toxic symptoms of 8-treated A. pisum. The significantly declined Chitinase activity in 8-treated A. pisum with an inhibition rate of 79.1% at LC70 (70% lethal concentration) could be the main reason for its significant oral toxicities. Molecular docking revealed favorable affinities of compounds 1 and 8 with group I Chitinase OfChtI (Group I Chitinase from Ostrinia furnacalis) through conventional hydrogen bonds and alkey/π-alkey interactions by different patterns. These results will provide valuable information for the development of novel botanical pesticides for the management of insect pests, especially against A. pisum.
Collapse
Affiliation(s)
- Nan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Yinyin Qi
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Long Zhao
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Shuangshuang Liang
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
| | - Wenjing Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Sunao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Xiangrong Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling 712100, PR China
- College of Plant Protection, Northwest A&F University, Yangling 712100, PR China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Li F, Zhao Z, Chen W, Liu R, Lu H, Dong Y, Yang Q, Zhang J. Design, Synthesis, and Biological Investigations of Novel Carbamoylguanidinyl Nitrobenzoxadiazoles against Chitinolytic Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18333-18344. [PMID: 37967522 DOI: 10.1021/acs.jafc.3c06157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Chitinase has been identified as an important target for insecticides. In this study, a series of novel chitinase inhibitors was designed and synthesized with nitrobenzoxadiazoles. Compound 8d, which contains the N-methylcarbamoylguanidinyl, exhibited high enzyme inhibitory activity and achieved nanomolar inhibition against OfChtI (IC50 = 12.3 nM). Delightfully, it was also found to possess significant inhibitory activity against OfHex1 (IC50 = 1.76 μM). The computational simulation results indicated that compound 8d interacted with OfChtI and OfHex1 in similar modes through hydrogen bonds and hydrophobic and π-π interactions. Insecticidal activity studies revealed that compound 8d showed high mortality against the Lepidoptera Plutella xylostella (mortality rate = 81%) at 200 mg/L. Toxicity studies indicated that compound 8d exhibited negligible toxicity to the natural enemy Trichogramma ostriniae. These results indicate that compound 8d may be a promising candidate for the development of environmentally friendly chitinase inhibitors. Moreover, this study provides a new angle for the design of innovative inhibitors of chitinolytic enzymes.
Collapse
Affiliation(s)
- Fang Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhixiang Zhao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ruiyuan Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yanhong Dong
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Zhao Z, Li F, Chen W, Yang Q, Lu H, Zhang J. Discovery of aromatic 2-(3-(methylcarbamoyl) guanidino)-N-aylacetamides as highly potent chitinase inhibitors. Bioorg Med Chem 2023; 80:117172. [PMID: 36709570 DOI: 10.1016/j.bmc.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Chitinases are important glycoside hydrolases that are closely related to bacterial pathogenesis, fungal cell wall remodelling, and insect moulting. Consequently, chitinases have become attractive targets for therapeutic drugs and pesticides. In this study, we designed and synthesised a series of novel chitinase inhibitors based on the N-methylcarbamoylguanidinyl group of the natural product argifin. The most active compound 8h showed strong inhibitory activity against the group I chitinases HsChit1, SmChiB, and OfChi-h, with IC50 values of 0.19 µM, 4.2 nM, and 25 nM, respectively. Binding mode studies revealed that the compound 8h formed π-π stacking/hydrophobic interactions at +1 or +2 subsite of chitinases. In addition, a key hydrogen bond net was formed between the pharmacophore N-methylcarbamoylguanidinyl and key residues at the -1 subsite. Together, the findings of this study provide novel insights into the development of potent small-molecule chitinase inhibitors using a combination of planar structures and N-methylcarbamoylguanidinyl.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Fang Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
7
|
Zhao Z, Chen W, Wang S, Dong Y, Yang Q, Zhang J. Rational Design of N-Methylcarbamoylguanidinyl Derivatives as Highly Potent Dual-Target Chitin Hydrolase Inhibitors for Retarding Growth of Pest Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2817-2826. [PMID: 36735960 DOI: 10.1021/acs.jafc.2c07605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chitin degradation is a vital process for the growth of insects. Chitin hydrolase OfChtI and β-N-acetylhexosaminidase OfHex1 are two key enzymes involved in hydrolyzing the chitin of insects' cuticles. Thus, they are considered promising targets for preventing and controlling agricultural pests. In this study, we designed and synthesized a series of compounds bearing N-methylcarbamoylguanidinyl and N-methoxycarbonylguanidinyl as dual-target inhibitors of OfChtI and OfHex1. The most potent dual-target inhibitor, compound 10d, exhibited half-maximal inhibitory concentration (IC50) values of 27.1 and 249.1 nM against OfChtI and OfHex1, respectively. Furthermore, the insecticidal activity studies showed that compounds 10a-c, 10k, and 10l bear significant effects on the growth and development of Plutella xylostella. This work provides a promising method for the development of novel chitin hydrolase inhibitors as potential pest control and management agents.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
| | - Simin Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| |
Collapse
|
8
|
Zhao Z, Xu Q, Chen W, Wang S, Yang Q, Dong Y, Zhang J. Rational Design, Synthesis, and Biological Investigations of N-Methylcarbamoylguanidinyl Azamacrolides as a Novel Chitinase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4889-4898. [PMID: 35416043 DOI: 10.1021/acs.jafc.2c00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chitinase is one of the most important glycoside hydrolyases, widely existing in bacteria, fungi, insects, and plants. It is involved in fungal cell wall remodeling and insect molting. Chitinase inhibitors are an effective means of controlling pathogens and pests. Natural product argifin is a 17-membered pentapeptide that exhibits efficient chitinase inhibitory activity. However, the complexity of the synthetic process results in a lot of restrictions for wide range of applications. In this work, we designed a series of azamacrolide chitinase inhibitors based on the structural features of argifin that have high inhibitory activities against bacterial and insectile chitinase. The most potent chitinase inhibitor compound 19c exhibited IC50 values of 56 nM and 110 nM against OfChi-h and SmChiB, respectively. The molecular docking and molecular dynamics simulations revealed that all inhibitors were bound to the -1 subsite of chitinases via N-methylcarbamoylguanidinyl as well as argifin. Finally, a bioactivity assay against pests was carried out. Compound 18a showed 80% mortality for Mythimna separata at a concentration of 50 mg/L. Besides, insecticides 19b and 19c exhibited high mortality against Plutella xylostella (76 and 73% mortalities at 50 mg/L, respectively).
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qingbo Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Siming Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Lu Q, Xu L, Liu L, Zhou Y, Liu T, Song Y, Ju J, Yang Q. Lynamicin B is a Potential Pesticide by Acting as a Lepidoptera-Exclusive Chitinase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14086-14091. [PMID: 34797675 DOI: 10.1021/acs.jafc.1c05385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect group h chitinase is a promising target for designing non-target safe pesticides in that it is exclusively distributed in lepidopteran insects, over 80% of which are agricultural pests. In this work, lynamicin B was discovered to be an inhibitor of OfChi-h, the group h chitinase from the lepidopteran pest Ostrinia furnacalis. Lynamicin B was revealed to competitively inhibit OfChi-h with a Ki value of 8.76 μM and does not significantly inhibit other chitinases. The co-crystal structure of lynamicin B and OfChi-h revealed that the dichloroindolyl group of lynamicin B occupies an unexplored pocket below subsites +1 and +2 of the substrate-binding cleft, which is vital for its selectivity. Feeding experiments demonstrated that lynamicin B exhibited high insecticidal activities against other lepidopteran pests Mythimna separata and Spodoptera frugiperda besides O. furnacalis. Moreover, lynamicin B did not affect Trichogramma ostriniae, a natural enemy of O. furnacalis. This study provides a natural-derived potent pesticide for the control of lepidopteran pests, leaving its natural enemy unaffected.
Collapse
Affiliation(s)
- Qiong Lu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Liping Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Academy of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, Dalian 116024, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
10
|
Chen T, Li WQ, Liu Z, Jiang W, Liu T, Yang Q, Zhu XL, Yang GF. Discovery of Biphenyl-Sulfonamides as Novel β- N-Acetyl-d-Hexosaminidase Inhibitors via Structure-Based Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12039-12047. [PMID: 34587743 DOI: 10.1021/acs.jafc.1c01642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel insecticidal targets are always in demand due to the development of resistance. OfHex1, a β-N-acetyl-d-hexosaminidase identified in Ostrinia furnacalis (Asian corn borer), is involved in insect chitin catabolism and has proven an ideal target for insecticide development. In this study, structure-based virtual screening, structure simplification, and biological evaluation are used to show that compounds with a biphenyl-sulfonamide skeleton have great potential as OfHex1 inhibitors. Specifically, compounds 10k, 10u, and 10v have Ki values of 4.30, 3.72, and 4.56 μM, respectively, and thus, they are more potent than some reported nonglycosyl-based inhibitors such as phlegmacin B1 (Ki = 26 μM), berberine (Ki = 12 μM), 2 (Ki = 11.2 μM), and 3 (Ki = 28.9 μM). Furthermore, inhibitory kinetic assessments reveal that the target compounds are competitive inhibitors with respect substrate, and based on toxicity predictions, most of them have potent drug properties. The obtained results indicate that the biphenyl-sulfonamide skeleton characterized by simple chemical structure, synthetic tractability, potent activity, and low toxicity has potential for further development in pest management targeting OfHex1.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Qin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
11
|
Jiang Z, Hu S, Ma J, Liu Y, Qiao Z, Yan Q, Gao Y, Yang S. Crystal structure of a chitinase (RmChiA) from the thermophilic fungus Rhizomucor miehei with a real active site tunnel. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140709. [PMID: 34358705 DOI: 10.1016/j.bbapap.2021.140709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
A chitinase gene (RmChiA) encoding 445 amino acid (aa) residues from a fungus Rhizomucor miehei was cloned and overexpressed in Escherichia coli. Two kinds of RmChiA crystal forms, with space groups P32 2 1 and P1, were obtained by sitting-drop vapor diffusion and the structures were determined by X-ray diffraction. The overall structure of RmChiA monomer, which is the first structure of bacterial-type chitinases from nonpathogenic fungi, adopts a canonical triosephosphate isomerase (TIM) barrel fold with two protruding chitinase insertion domains. RmChiA exhibited a unique NxDxE catalytical motif and a real active site tunnel structure, which are firstly found in GH family 18 chitinases. The motif had high structural homolog with the typical DxDxE motif in other GH family 18 chitinases. The tunnel is formed by two unusual long loops, containing 15 aa and 45 aa respectively, linked by a disulfide bond across the substrate-binding cleft. Mutation experiments found that opening the roof of tunnel structure increased the hydrolysis efficiency of RmChiA, but the thermostability of the mutants decreased. Moreover, the tunnel structure endowed RmChiA with the exo-chitinase character.
Collapse
Affiliation(s)
- Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Songqing Hu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Junwen Ma
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuchun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yonggui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Qu MB, Sun SP, Liu YS, Deng XR, Yang J, Yang Q. Insect group II chitinase OfChtII promotes chitin degradation during larva-pupa molting. INSECT SCIENCE 2021; 28:692-704. [PMID: 32306549 DOI: 10.1111/1744-7917.12791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The insect group II chitinase (ChtII, also known as Cht10) is a unique chitinase with multiple catalytic and chitin-binding domains. It has been proven genetically to be an essential chitinase for molting. However, ChtII's role in chitin degradation during insect development remains poorly understood. Obtaining this knowledge is the key to fully understanding the chitin degradation system in insects. Here, we investigated the role of OfChtII during the molting of Ostrinia furnacalis, a model lepidopteran pest insect. OfChtII was expressed earlier than OfChtI (OfCht5) and OfChi-h, at both the gene and protein levels during larva-pupa molting as evidenced by quantitative polymerase chain reaction and western blot analyses. A truncated OfChtII, OfChtII-B4C1, was recombinantly expressed in Pichia pastoris cells and purified to homogeneity. The recombinant OfChtII-B4C1 loosened compacted chitin particles and produced holes in the cuticle surface as evidenced by scanning electron microscopy. It synergized with OfChtI and OfChi-h when hydrolyzing insoluble α-chitin. These findings suggested an important role for ChtII during insect molting and also provided a strategy for the coordinated degradation of cuticular chitin during insect molting by ChtII, ChtI and Chi-h.
Collapse
Affiliation(s)
- Ming-Bo Qu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shao-Peng Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuan-Sheng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiao-Rui Deng
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Yu H, Ou-Yang YY, Yang CJ, Li N, Nakai M, Huang GH. 3H-31, A Non-structural Protein of Heliothis virescens ascovirus 3h, Inhibits the Host Larval Cathepsin and Chitinase Activities. Virol Sin 2021; 36:1036-1051. [PMID: 33830433 DOI: 10.1007/s12250-021-00374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
3h-31 of Heliothis virescens ascovirus 3h (HvAV-3h) is a highly conserved gene of ascoviruses. As an early gene of HvAV-3h, 3h-31 codes for a non-structural protein (3H-31) of HvAV-3h. In the study, 3h-31 was initially transcribed and expressed at 3 h post-infection (hpi) in the infected Spodoptera exigua fat body cells (SeFB). 3h-31 was further inserted into the bacmid of Autographa californica nucleopolyhedrovirus (AcMNPV) to generate an infectious baculovirus (AcMNPV-31). In vivo experiments showed that budded virus production and viral DNA replication decreased with the expression of 3H-31, and lucent tubular structures were found around the virogenic stroma in the AcMNPV-31-infected SeFB cells. In vivo, both LD50 and LD90 values of AcMNPV-31 were significantly higher than those of the wild-type AcMNPV (AcMNPV-wt) in third instar S. exigua larvae. An interesting finding was that the liquefaction of the larvae killed by the infection of AcMNPV-31 was delayed. Chitinase and cathepsin activities of AcMNPV-31-infected larvae were significantly lower than those of AcMNPV-wt-infected larvae. The possible regulatory function of the chitinase and cathepsin for 3H-31 was further confirmed by RNAi, which showed that larval cathepsin activity was significantly upregulated, but chitinase activity was not significantly changed due to the RNAi of 3h-31. Based on the obtained results, we assumed that the function of 3H-31 was associated with the inhibition of host larval chitinase and cathepsin activities, so as to restrain the hosts in their larval stages.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Madoka Nakai
- Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China. .,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Dong W, Gao YH, Zhang XB, Moussian B, Zhang JZ. Chitinase 10 controls chitin amounts and organization in the wing cuticle of Drosophila. INSECT SCIENCE 2020; 27:1198-1207. [PMID: 32129536 DOI: 10.1111/1744-7917.12774] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Wings are essential for insect fitness. A number of proteins and enzymes have been identified to be involved in wing terminal differentiation, which is characterized by the formation of the wing cuticle. Here, we addressed the question whether chitinase 10 (Cht10) may play an important role in chitin organization in the wings of the fruit fly Drosophila melanogaster. Initially, we first found that Cht10 expression coincides with the expression of the chitin synthase coding gene kkv. This suggests that the respective proteins may cooperate during wing differentiation. In tissue-specific RNA interference experiments, we demonstrate that suppression of Cht10 causes an excess in chitin amounts in the wing cuticle. Chitin organization is severely disrupted in these wings. Based on these data, we hypothesize that Cht10 restricts chitin amounts produced by Kkv in order to ensure normal chitin organization and wing cuticle formation. In addition, we found by scanning electron microscopy that Cht10 suppression also affects the cuticle surface. In turn, cuticle inward permeability is enhanced in Cht10-less wings. Moreover, flies with reduced Cht10 function are unable to fly. In conclusion, Cht10 is essential for wing terminal differentiation and function.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ying-Hao Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xu-Bo Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, Nice, CEDEX 2, France
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
15
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
16
|
Dong Y, Hu S, Zhao X, He Q, Yang Q, Zhang L. Virtual screening, synthesis, and bioactivity evaluation for the discovery of β-N-acetyl-D-hexosaminidase inhibitors. PEST MANAGEMENT SCIENCE 2020; 76:3030-3037. [PMID: 32248665 DOI: 10.1002/ps.5852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Molting is an essential insect developmental process, in which a variety of enzymes are involved. The inhibition of these enzymes effect normal insect growth and development and may even cause death. OfHex1, one of the β-N-acetyl-D-hexosaminidases, is a key enzyme involved in the molting process of the Asian corn borer (Ostrinia furnacalis), and is deemed a potential insecticidal target. RESULTS Based on the crystal structure of OfHex1, virtual screening was carried out to obtain a novel class of OfHex1 inhibitors, of which, 28 compounds were subjected to bioactivity evaluation. The compound 3, N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)benzamide, showed good inhibition against OfHex1 with a Ki value of 11.2 μM. Structure optimization and molecular docking were applied for the structure-activity relationship analysis. The results also showed that the cyano group of this compound was essential for the maintenance of its inhibitory activity against OfHex1. Additionally, the interaction between this compound and Trp490, Glu328, Tyr475 and Trp524 were important for inhibitory activity. CONCLUSION The advantages of the derivatives of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile, which have simple chemical structures and are easily synthesized, suggests them to be developed further as potential OfHex1 inhibitors for pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Song Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiao Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qi He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Jiang B, Jin X, Dong Y, Guo B, Cui L, Deng X, Zhang L, Yang Q, Li Y, Yang X, Smagghe G. Design, Synthesis, and Biological Activity of Novel Heptacyclic Pyrazolamide Derivatives: A New Candidate of Dual-Target Insect Growth Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6347-6354. [PMID: 32427469 DOI: 10.1021/acs.jafc.0c00522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insect growth regulators (IGRs) can cause abnormal growth and development in insects, resulting in incomplete metamorphosis or even death of the larvae. Ecdysone receptor (EcR) and chitinase in insects play indispensable roles in the molting process. Ecdysone analogues and chitinase inhibitors are considered as potential IGRs. In order to find new and highly effective IGR candidates, based on the structure-activity relationship and molecular docking results of the active compound 6i (3-(tert-butyl)-N-(4-(tert-butyl)phenyl)-1-phenyl-1H-pyrazole-5-carboxamide) discovered in our previous work, we changed the t-butyl group on the pyrazole ring into heptacycle to enhance the hydrophobicity. Consequently, a series of novel heptacyclic pyrazolamide derivatives were designed and synthesized. The bioassay results demonstrated that some compounds showed obvious insecticidal activity. Especially, D-27 (N-(4-(tert-butyl)phenyl)-2-phenyl-2,4,5,6,7,8-hexahydrocyclohepta[c]pyrazole-5-carboxamide) showed good activities against Plutella xylostella (LC50, 51.50 mg·L-1) and Mythimna separata (100% mortality at 2.5 mg·L-1). Furthermore, protein validation indicated that D-27 acts not only on the EcR but also on chitinase Of ChtI. Molecular docking and molecular dynamics simulation explained the vital factors in the interaction between D-27 and receptors. D-27 may be a new lead candidate with a dual target in which Of ChtI shall be the main one. This work created a new starting point for discovering a novel type of IGRs.
Collapse
Affiliation(s)
- Biaobiao Jiang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jin
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingbo Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xile Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent B-9000, Belgium
| |
Collapse
|
18
|
Liu T, Guo X, Bu Y, Zhou Y, Duan Y, Yang Q. Structural and biochemical insights into an insect gut-specific chitinase with antifungal activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103326. [PMID: 31968227 DOI: 10.1016/j.ibmb.2020.103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The antifungal activity of insect chitinase has rarely been studied. Here, we show that chitinase ChtIV, which is specifically expressed in the midgut of Asian corn borer (Ostrinia furnacalis), has antifungal activity toward phytopathogenic fungi. ChtIV exhibited high stability and mycelial hydrolytic activity in the extreme midgut environment, which has a pH of 10 and is rich in proteases. Hyper-N-glycosylation and reduced electrostatic interactions ensure the stability of ChtIV in the midgut. The structural characteristics of ChtIV are similar to two plant antifungal chitinases but distinct from an insect chitinase for cuticular chitin degradation in both the substrate-binding cleft and auxiliary binding motif. Since the phytopathogenic fungi are those that frequently invade corn, ChtIV may play a role in insect immune system and become a potential pesticide target. The crystal structures of ChtIV and its complexes with penta-N-acetylchitopentaose (a substrate) and allosamidin (an inhibitor) were obtained, which may facilitate rational design of ChtIV inhibitors as agrichemicals.
Collapse
Affiliation(s)
- Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoguang Guo
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yunfei Bu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, Dalian, 116024, China
| | - Yanwei Duan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
He L, Ou-Yang YY, Li N, Chen Y, Liu SQ, Huang GH. Regulation of Chitinase in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) During Infection by Heliothis virescens ascovirus 3h (HvAV-3h). Front Physiol 2020; 11:166. [PMID: 32210833 PMCID: PMC7077506 DOI: 10.3389/fphys.2020.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Insect chitinases play essential roles in the molting and metamorphosis of insects. The virus Heliothis virescens ascovirus 3h (HvAV-3h) can prolong the total duration of the larval stage in its host larvae. In this study, the molecular character and function of chitinase and chitin-binding domain (CBD) were analyzed in larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In detecting the chitinase activity of mock-infected and HvAV-3h-infected larval whole bodies and four different larval tissues, the results showed that larval chitinase activity was significantly decreased at 48 h post infection (hpi) and that the chitinase activity of HvAV-3h-infected larval fat body and cuticle was notably decreased at 144 and 168 hpi. The transcription level of S. exigua chitinase 7 (SeCHIT7) was down-regulated at the 6, 9, 12, 48, 72, and 96 hpi sample times, the S. exigua chitinase 11 (SeCHIT11) was down-regulated at 3-96 hpi, while both S. exigua chitinases (SeCHITs) were up-regulated at 120-168 hpi. Further tissue-specific detection of SeCHIT7 and SeCHIT11 transcription showed that SeCHIT7 was down-regulated at 144 and 168 hpi in the fat body and cuticle. SeCHIT11 was down-regulated at 168 hpi in the fat body, midgut, and cuticle. Additionally, the transcription and expression of S. exigua chitin-binding domain (SeCBD) could not be detected in HvAV-3h-infected larvae. The in vitro analyses of SeCHIT7N, SeCHIT11, and SeCBD showed that SeCHIT7N and SeCHIT11 were typical chitinases. Conversely, no chitinase activity was detected with SeCBD. SeCBD, however, could significantly increase the activity of SeCHIT7N and SeCHIT11. In conclusion, HvAV-3h not only interfered with the transcription and expression of SeCHITs but also affected the normal transcription and expression of SeCBD and, in doing so, influenced the host larval chitinase activity. These results will aid in providing a foundation for further studies on the pathogenesis of HvAV-3h.
Collapse
Affiliation(s)
- Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ying Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Zhang L, Guan Z, Pan Z, Ge H, Zhou D, Xu J, Zhang W. Functional expression of the Spodoptera exigua chitinase to examine the virtually screened inhibitor candidates. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:741-751. [PMID: 31113496 DOI: 10.1017/s0007485319000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.
Collapse
Affiliation(s)
- L Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Guan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Pan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - H Ge
- Medical College, Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, China
| | - D Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - J Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|
22
|
Omar MAA, Ao Y, Li M, He K, Xu L, Tong H, Jiang M, Li F. The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. INSECT MOLECULAR BIOLOGY 2019; 28:550-567. [PMID: 30739379 DOI: 10.1111/imb.12572] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is a polyphagous insect that attacks tens of plant and causes substantial economic loss. Insect chitinases are required to remove the old cuticle to allow for continued growth and development. Though insect chitinases have been well studied in tens of insects, their functions in mealybug are still not addressed. Here, we sequenced the transcriptomes of adult males and females, from which eight chitinase genes were identified. We then used the method of rapid amplification of cDNA ends to amplify their full length. Phylogenetic analysis indicated that these genes clustered into five subgroups. Among which, group II PsCht2 had the longest transcript and was highly expressed at second instar nymph. PsCht10, PsCht3-3 and PsIDGF were highly expressed in the adult females, whereas PsCht4 and PsCht4-1 were significantly expressed at the male pupa and adult male. Next, we knocked down all eight chitinase genes by feeding the double-stranded RNA. Knockdown of PsCht4 or PsCht4-1 led to the failure of moult and, silencing PsCht5 resulted in pupation defect, while silencing PsCht10 led to small body size, suggesting these genes have essential roles in development and can be used as a potential target for pest control.
Collapse
Affiliation(s)
- Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Y Ao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - M Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - K He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - L Xu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - H Tong
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - M Jiang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - F Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects/Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019; 220:60-70. [PMID: 31196551 DOI: 10.1016/j.carbpol.2019.05.050] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Chitosan oligosaccharides (COS) are the degraded products of chitin or chitosan prepared by chemical or enzymatic hydrolysis. As compared to chitosan, COS not only exhibit some specific physicochemical properties such as excellent water solubility, biodegradability and biocompatibility, but also have a variety of functionally biological activities including anti-inflammation, anti-bacteria, immunomodulation, neuroprotection and so on. This review aims to summarize the preparation and structural characterization methods of COS, and will discuss the application of COS or their derivatives to human health, animal husbandry and agricultural production. COS have been demonstrated to prevent the occurrence of human health-related diseases, enhance the resistance to diseases of livestock and poultry, and improve the growth and quality of crops in plant cultivation. Overall, COS have presented a broad developmental potential and application prospect in the healthy field that deserves further exploration.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
24
|
Dong Y, Hu S, Jiang X, Liu T, Ling Y, He X, Yang Q, Zhang L. Pocket-based Lead Optimization Strategy for the Design and Synthesis of Chitinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3575-3582. [PMID: 30865442 DOI: 10.1021/acs.jafc.9b00837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insect chitinases play an indispensable role in shedding old cuticle during molting. Targeting chitinase inhibition is a promising pest control strategy. Of ChtI, a chitinase from the destructive insect pest Ostrinia furnacalis (Asian corn borer), has been suggested as a potential target for designing green pesticides. A 4,5,6,7-tetrahydrobenzo[ b]thiophene-3-carboxylate scaffold was previously obtained, and further derivatization generated the lead compound 1 as Of ChtI inhibitor. Here, based on the predicted binding mode of compound 1, the pocket-based lead optimization strategy was applied. A series of analogues was synthesized, and their inhibitory activities against Of ChtI were evaluated. Compound 8 with 6- tert-pentyl showed preferential inhibitory activity with a Ki value of 0.71 μM. Their structure-activity relationships suggested that the compound with larger steric hindrance at the 6-nonpolar group was essential for inhibitory activity due to its stronger interactions with surrounding amino acids. This work provides a strategy for designing potential chitinase inhibitors.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Song Hu
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xi Jiang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Yun Ling
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xiongkui He
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Qing Yang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Li Zhang
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
25
|
Zhao X, Situ G, He K, Xiao H, Su C, Li F. Functional analysis of eight chitinase genes in rice stem borer and their potential application in pest control. INSECT MOLECULAR BIOLOGY 2018; 27:835-846. [PMID: 30058753 DOI: 10.1111/imb.12525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insect chitinases participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. These properties make chitinases good targets for pest control. Rice striped stem borer (SSB), Chilo suppressalis Walker, is one of the most destructive pests of rice causing huge yield losses. In our previous work, we reported the identification of 12 SSB chitinase (CsCht) genes, and studied the functions of CsCht1 to 4. Here, we have extended our study to investigate the expression patterns and functions of CsCht5 to 12. All eight chitinase genes displayed distinct temporospatial expression profiles. We looked at the effect of knocking down each gene at the developmental stage where highest expression was observed. Knocking down CsCht5, CsCht6 and CsCht8 resulted in high mortality and delayed development. Although silencing CsCht7, CsCht9, CsCht10, CsCht11 and CsCht12 had no apparent effect on development, knocking down CsCht10 in SSB individuals that were simultaneously treated with Beauveria bassiana (Bb84) led to higher mortality rates and quicker death, suggesting CsCht10 has an essential role in protecting SSB from exogenous microorganisms. In summary, we elucidated the functions of eight SSB chitinase genes and found that CsCht10 could be a good candidate for pest control.
Collapse
Affiliation(s)
- X Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - G Situ
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - K He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - H Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun, China
| | - C Su
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - F Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Dong Y, Jiang X, Liu T, Ling Y, Yang Q, Zhang L, He X. Structure-Based Virtual Screening, Compound Synthesis, and Bioassay for the Design of Chitinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3351-3357. [PMID: 29554796 DOI: 10.1021/acs.jafc.8b00017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chitinases play a vital part in the molting phase of insect pests. Inhibiting their activities by the use of drug-like small chemical molecules is thought to be an efficient strategy in pesticide design and development. On the basis of the crystal structure of OfChtI, a chitinase indispensable for the molting of the insect pest Ostrinia furnacalis (Asian corn borer), here we report a chemical fragment and five variant compounds as inhibitors of OfChtI obtained from a library of over 200 000 chemicals by a structure-based-virtual-screening approach. The compounds were synthesized with high atom economy and tested for their OfChtI-inhibitory activities in a bioassay. Compound 3 showed preferential inhibitory activity with a Ki value of 1.5 μΜ against OfChtI. Analysis of the structure-activity relationships of the compounds provided insight into their interactions with the enzyme active site, which may inform future work in improving the potencies of their inhibitory activities.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xi Jiang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Tian Liu
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Yun Ling
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Qing Yang
- State Key Laboratory of Fine Chemicals and School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Li Zhang
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| | - Xiongkui He
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
27
|
Chen W, Qu M, Zhou Y, Yang Q. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 2018; 293:2652-2660. [PMID: 29317504 PMCID: PMC5827449 DOI: 10.1074/jbc.ra117.000119] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Chitin is a linear homopolymer of N-acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of OfChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of OfChtII, OfChtII-C1 and OfChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that OfChtII-C1 and OfChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. OfChtII exhibited structural characteristics within the substrate-binding cleft similar to those in OfChi-h and OfChtI. However, OfChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in OfChi-h. Nevertheless, the numerous domains in OfChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules (OfChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of OfChi-h and OfChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Mingbo Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
28
|
Liu T, Zhu W, Wang J, Zhou Y, Duan Y, Qu M, Yang Q. The deduced role of a chitinase containing two nonsynergistic catalytic domains. Acta Crystallogr D Struct Biol 2018; 74:30-40. [PMID: 29372897 PMCID: PMC5786006 DOI: 10.1107/s2059798317018289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023] Open
Abstract
The glycoside hydrolase family 18 chitinases degrade or alter chitin. Multiple catalytic domains in a glycoside hydrolase family 18 chitinase function synergistically during chitin degradation. Here, an insect group III chitinase from the agricultural pest Ostrinia furnacalis (OfChtIII) is revealed to be an arthropod-conserved chitinase that contains two nonsynergistic GH18 domains according to its catalytic properties. Both GH18 domains are active towards single-chained chitin substrates, but are inactive towards insoluble chitin substrates. The crystal structures of each unbound GH18 domain, as well as of GH18 domains complexed with hexa-N-acetyl-chitohexaose or penta-N-acetyl-chitopentaose, suggest that the two GH18 domains possess endo-specific activities. Physiological data indicated that the developmental stage-dependent gene-expression pattern of OfChtIII was the same as that of the chitin synthase OfChsA but significantly different from that of the chitinase OfChtI, which is indispensable for cuticular chitin degradation. Additionally, immunological staining indicated that OfChtIII was co-localized with OfChsA. Thus, OfChtIII is most likely to be involved in the chitin-synthesis pathway.
Collapse
Affiliation(s)
- Tian Liu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Weixing Zhu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Yong Zhou
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Yanwei Duan
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Mingbo Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, People’s Republic of China
| |
Collapse
|
29
|
Ueda M, Shioyama T, Nakadoi K, Nakazawa M, Sakamoto T, Iwamoto T, Sakaguchi M. Cloning and expression of a chitinase gene from Eisenia fetida. Int J Biol Macromol 2017; 104:1648-1655. [DOI: 10.1016/j.ijbiomac.2017.03.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/22/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022]
|
30
|
Fan XJ, Yang C, Zhang C, Ren H, Zhang JD. Cloning, Site-Directed Mutagenesis, and Functional Analysis of Active Residues in Lymantria dispar Chitinase. Appl Biochem Biotechnol 2017; 184:12-24. [PMID: 28577192 DOI: 10.1007/s12010-017-2524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Chitinases are glycosyl hydrolases that catalyze the hydrolysis of β-(1,4)-glycosidic bonds in chitin, the major structural polysaccharide presented in the cuticle and gut peritrophic matrix of insects. Two aspartate residues (D143, D145) and one tryptophan (W146) in the Lymantria dispar chitinase are highly conserved residues observed within the second conserved motif of the family 18 chitinase catalytic region. In this study, a chitinase cDNA, LdCht5, was cloned from L. dispar, and the roles of the three residues were investigated using site-directed mutagenesis and substituting them with three other amino acids. Seven mutant proteins, D143E, D145E, W146G, D143E/D145E, D143E/W146G, D145E/W146G, and D143E/D145E/W146G, as well as the wild-type enzyme, were produced using the baculovirus-insect cell line expression system. The enzymatic and kinetic properties of these mutant enzymes were measured using the oligosaccharide substrate MU-(GlcNAc)3. Among the seven mutants, the D145E, D143E/D145E, and D145E/W146G mutations kept some extant catalytic activity toward MU-(GlcNAc)3, while the D143E, W146G, D143E/W146G, and D143E/D145E/W146G mutant enzymes were inactivated. Compared with the mutant enzymes, the wild-type enzyme had higher values of k cat and k cat / K m . A study of the multiple point mutations in the second conserved catalytic region would help to elucidate the role of the critical residues and their relationships.
Collapse
Affiliation(s)
- Xiao-Jun Fan
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Chun Yang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Chang Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Hui Ren
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China.
| |
Collapse
|
31
|
Chen L, Liu T, Duan Y, Lu X, Yang Q. Microbial Secondary Metabolite, Phlegmacin B 1, as a Novel Inhibitor of Insect Chitinolytic Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3851-3857. [PMID: 28457127 DOI: 10.1021/acs.jafc.7b01710] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Periodic chitin remodeling during insect growth and development requires a synergistic action of two glycosyl hydrolase (GH) family enzymes, GH18 chitinase and GH20 β-N-acetylhexosaminidase (Hex). Inhibiting either or both of these enzymes is a promising strategy for pest control and management. In this study, OfChi-h (a GH18 chitinase) and OfHex1 (a GH20 Hex) from Ostrinia furnacalis were used to screen a library of microbial secondary metabolites. Phlegmacin B1 was found to be the inhibitor of both OfChi-h and OfHex1 with Ki values of 5.5 μM and 26 μM, respectively. Injection and feeding experiments demonstrated that phlegmacin B1 has insecticidal effect on O. furnacalis's larvae. Phlegmacin B1 was predicted to bind to the active pockets of both OfChi-h and OfHex1. Phlegmacin B1 also showed moderate inhibitory activities against other bacterial and insect GH18 enzymes. This work provides an example of exploiting microbial secondary metabolites as potential pest control and management agents.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology , Dalian 116024, China
| | - Tian Liu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology , Dalian 116024, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Yanwei Duan
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology , Dalian 116024, China
| | - Xinhua Lu
- New Drug Research & Development Center, North China Pharmaceutical Group Corporation , Shijiazhuang 050015, China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology , Dalian 116024, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| |
Collapse
|
32
|
Chen C, Yang H, Tang B, Yang WJ, Jin DC. Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:19-28. [PMID: 28363844 DOI: 10.1016/j.cbpb.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023]
Abstract
Chitinase is used to degrade chitin in insect cuticles and the peritrophic matrix. In this study, the full-length cDNA sequence of a Cht gene (SfCht7) was identified and characterized from the white-black planthopper, Sogatella furcifera. The SfCht7 cDNA was 3148bp, contained an open reading frame of 2877bp and encoded 958 amino acids with a predicted molecular weight of 107.9kDa. Homology analysis indicated that SfCht7 has typical chitinase features include a chitin-binding domain, two catalytic domains and a signal peptide region. Phylogenetic analysis suggested that SfCht7 belonged to the group III chitinases. Quantitative real-time PCR analyses showed that SfCht7 was highly expressed before molting. After injecting SfCht7 double-stranded RNA in the nymph stage, insects exhibited phenotypes of difficulty in molting and wing development. A lethal phenotype was that nymph bodies exuviated from the head but the old cuticle did not detach completely from the body. Another lethal phenotype was that elongated distal wing pads of fifth-instar nymphs with junctions between the thorax and abdomen in the treatment group that were thinner than in the control group, giving a "wasp-waisted" appearance. In another phenotype that was not lethal, nymphs exuviated and old cuticles detached completely from the body, but the wings of adults did not stretch normally.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; College of Tobacco Science of Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Wen-Jia Yang
- Key & Special Laboratory of Guizhou Education Department for Pest Control and Resource Utilization, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
33
|
Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q. Structure, Catalysis, and Inhibition of OfChi-h, the Lepidoptera-exclusive Insect Chitinase. J Biol Chem 2017; 292:2080-2088. [PMID: 28053084 DOI: 10.1074/jbc.m116.755330] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Chitinase-h (Chi-h) is of special interest among insect chitinases due to its exclusive distribution in lepidopteran insects and high sequence identity with bacterial and baculovirus homologs. Here OfChi-h, a Chi-h from Ostrinia furnacalis, was investigated. Crystal structures of both OfChi-h and its complex with chitoheptaose ((GlcN)7) reveal that OfChi-h possesses a long and asymmetric substrate binding cleft, which is a typical characteristics of a processive exo-chitinase. The structural comparison between OfChi-h and its bacterial homolog SmChiA uncovered two phenylalanine-to-tryptophan site variants in OfChi-h at subsites +2 and possibly -7. The F232W/F396W double mutant endowed SmChiA with higher hydrolytic activities toward insoluble substrates, such as insect cuticle, α-chitin, and chitin nanowhisker. An enzymatic assay demonstrated that OfChi-h outperformed OfChtI, an insect endo-chitinase, toward the insoluble substrates, but showed lower activity toward the soluble substrate ethylene glycol chitin. Furthermore, OfChi-h was found to be inhibited by N,N',N″-trimethylglucosamine-N,N',N″,N″'-tetraacetylchitotetraose (TMG-(GlcNAc)4), a substrate analog which can be degraded into TMG-(GlcNAc)1-2 Injection of TMG-(GlcNAc)4 into 5th-instar O. furnacalis larvae led to severe defects in pupation. This work provides insights into a molting-indispensable insect chitinase that is phylogenetically closer to bacterial chitinases than insect chitinases.
Collapse
Affiliation(s)
- Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Lei Chen
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Xi Jiang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Yanwei Duan
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and .,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
34
|
Su C, Tu G, Huang S, Yang Q, Shahzad MF, Li F. Genome-wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2016; 25:401-412. [PMID: 27080989 DOI: 10.1111/imb.12227] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Some insect chitinases are required to degrade chitin and ensure successful metamorphosis. Although chitinase genes have been well characterized in several model insects, no reports exist for the rice striped stem borer, Chilo suppressalis, a highly destructive pest that causes huge yield losses in rice production. Here, we conducted a genome-level analysis of chitinase genes in C. suppressalis. After amplification of full-length transcripts with rapid amplification of cDNA ends, we identified 12 chitinase genes in C. suppressalis. All these genes had the conserved domains and motifs of glycoside hydrolase family 18 and grouped phylogenetically into five subgroups. C. suppressalis chitinase 1 (CsCht1) was highly expressed in late pupae, whereas CsCht3 was abundant in early pupae. Both CsCht2 and CsCht4 were highly expressed in larvae. CsCht2 was abundant specifically in the third-instar larvae and CsCht4 showed periodic high expression in 2- to 5-day-old larvae in each instar. Tissue specific expression analysis indicated that CsCht1 and CsCht3 were highly expressed in epidermis whereas CsCht2 and CsCht4 were specifically abundant in the midgut. Knockdown of CsCht1 resulted in adults with curled wings, indicating that CsCht1 might have an important role in wing expansion. Silencing of CsCht2 or CsCht4 arrested moulting, suggesting essential roles in larval development. When the expression of CsCht3 was interfered, defects in pupation occurred. Overall, we provide here the first catalogue of chitinase genes in the rice striped stem borer and have elucidated the functions of four chitinases in metamorphosis.
Collapse
Affiliation(s)
- C Su
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G Tu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - S Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang, China
| | - Q Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - M F Shahzad
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- MOA Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Li YL, Song HF, Zhang XY, Li DQ, Zhang TT, Ma EB, Zhang JZ. Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria. INSECT SCIENCE 2016; 23:406-416. [PMID: 26792119 DOI: 10.1111/1744-7917.12316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Insect chitinases are involved in degradation of chitin from the exoskeleton or peritrophic metrix of midgut. In Locusta migratoria, two duplicated Cht5s (LmCht5-1 and LmCht5-2) have been shown to have distinct molecular characteristics and biological roles. To explore the protein properties of the two LmCht5s, we heterologously expressed both enzymes using baculovirus expression system in SF9 cells, and characterized kinetic and carbohydrate-binding properties of purified enzymes. LmCht5-1 and LmCht5-2 exhibited similar pH and temperature optimums. LmCht5-1 has lower Km value for the oligomeric substrate (4MU-(GlcNAc)3 ), and higher Km value for the longer substrate (CM-Chitin-RBV) compared with LmCht5-2. A comparison of amino acids and homology modeling of catalytic domain presented similar TIM barrel structures and differentiated amino acids between two proteins. LmCht5-1 has a chitin-binding domain (CBD) tightly bound to colloidal chitin, but LmCht5-2 does not have a CBD for binding to colloidal chitin. Our results suggested both LmCht5-1 and LmCht5-2, which have the critical glutamate residue in region II of catalytic domain, exhibited chitinolytic activity cleaving both polymeric and oligomeric substrates. LmCht5-1 had relatively higher activity against the oligomeric substrate, 4MU-(GlcNAc)3 , whereas LmCht5-2 exhibited higher activity toward the longer substrate, CM-Chitin-RBV. These findings are helpful for further research to clarify their different roles in insect growth and development.
Collapse
Affiliation(s)
- Ying-Long Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Hui-Fang Song
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Da-Qi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
36
|
Cloning, Expression and 3D Structure Prediction of Chitinase from Chitinolyticbacter meiyuanensis SYBC-H1. Int J Mol Sci 2016; 17:ijms17060825. [PMID: 27240345 PMCID: PMC4926359 DOI: 10.3390/ijms17060825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022] Open
Abstract
Two CHI genes from Chitinolyticbactermeiyuanensis SYBC-H1 encoding chitinases were identified and their protein 3D structures were predicted. According to the amino acid sequence alignment, CHI1 gene encoding 166 aa had a structural domain similar to the GH18 type II chitinase, and CHI2 gene encoding 383 aa had the same catalytic domain as the glycoside hydrolase family 19 chitinase. In this study, CHI2 chitinase were expressed in Escherichia coli BL21 cells, and this protein was purified by ammonium sulfate precipitation, DEAE-cellulose, and Sephadex G-100 chromatography. Optimal activity of CHI2 chitinase occurred at a temperature of 40 °C and a pH of 6.5. The presence of metal ions Fe3+, Fe2+, and Zn2+ inhibited CHI2 chitinase activity, while Na+ and K+ promoted its activity. Furthermore, the presence of EGTA, EDTA, and β-mercaptoethanol significantly increased the stability of CHI2 chitinase. The CHI2 chitinase was active with p-NP-GlcNAc, with the Km and Vm values of 23.0 µmol/L and 9.1 mM/min at a temperature of 37 °C, respectively. Additionally, the CHI2 chitinase was characterized as an N-acetyl glucosaminidase based on the hydrolysate from chitin. Overall, our results demonstrated CHI2 chitinase with remarkable biochemical properties is suitable for bioconversion of chitin waste.
Collapse
|
37
|
Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. Biosynthesis, Turnover, and Functions of Chitin in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:177-96. [PMID: 26982439 DOI: 10.1146/annurev-ento-010715-023933] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.
Collapse
Affiliation(s)
| | | | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China;
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506; ,
| |
Collapse
|
38
|
Fan XJ, Mi YX, Ren H, Zhang C, Li Y, Xian XX. Cloning and functional expression of a chitinase cDNA from the apple leaf miner moth Lithocolletis ringoniella. BIOCHEMISTRY (MOSCOW) 2015; 80:242-50. [PMID: 25756539 DOI: 10.1134/s000629791502011x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insect chitinase plays essential roles in chitin catabolism involved in digestion and molting during insect development. In the current work, we cloned a chitinase cDNA, LrCht5, from the apple leaf miner moth Lithocolletis ringoniella and characterized its amino acid sequence and protein properties. The L. ringoniella chitinase cDNA was 2136 bp in length with an open reading frame of 1737 bp that encodes a polypeptide of 579 amino acid residues with a predicted molecular mass of 64.4 kDa and pI of 5.49. The catalytic domain has several phosphorylation and glycosylation sites. The recombinant LrCht5 was expressed in Escherichia coli and the Spodoptera frugiperda cell line Sf9, and the LrCht5 expressed in insect cells exhibited chitinolytic activity. LrCht5 was most stable at pH 6.0 and 45°C. This work has potential application in the development of novel and more specific synthetic chitinase inhibitors for use as bioinsecticides.
Collapse
Affiliation(s)
- Xiao-Jun Fan
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China.
| | | | | | | | | | | |
Collapse
|
39
|
Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y, Li S, Zhu KY, Zhang J. Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:46-54. [PMID: 25623241 DOI: 10.1016/j.ibmb.2015.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
The duplication of chitinase 5 (Cht5) into two to five different genes has been reported only in mosquito species to date. Here, we report the duplication of Cht5 genes (LmCht5-1 and LmCht5-2) in the migratory locust (Locusta migratoria). Both LmCht5-1 (505 aa) and LmCht5-2 (492 aa) possess a signal peptide and a catalytic domain with four conserved motifs, but only LmCht5-1 contains a chitin-binding domain. Structural and phylogenetic analyses suggest that LmCht5-1 is orthologous to other insect Cht5 genes, whereas LmCht5-2 might be newly duplicated. Both LmCht5 genes were expressed in all tested tissues with LmCht5-1 highly expressed in hindgut and LmCht5-2 highly expressed in integument, foregut, hindgut and fat bodies. From the fourth-instar nymphs to the adults, LmCht5-1 and LmCht5-2 showed similar developmental expression patterns with transcript peaks prior to each nymphal molting, suggesting that their expression levels are similarly regulated. Treatment with 20-hydroxyecdysone (20E; the most active molting hormone) and reducing expression of EcR (ecdysone receptor gene) by RNAi increased and decreased expression of both LmCht5 genes, respectively, indicating that both genes are responsive to 20E. Although transcript level of LmCht5-2 is generally 10-fold higher than that of LmCht5-1, RNAi-mediated suppression of LmCht5-1 transcript led to severe molting defects and lethality, but such effects were not seen with RNAi of LmCht5-2, suggesting that the newly duplicated LmCht5-2 is not essential for development and survivorship of the locust.
Collapse
Affiliation(s)
- Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianqin Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yi Sun
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Biotechnology Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi 030031, China
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
40
|
Chen L, Zhou Y, Qu M, Zhao Y, Yang Q. Fully deacetylated chitooligosaccharides act as efficient glycoside hydrolase family 18 chitinase inhibitors. J Biol Chem 2014; 289:17932-40. [PMID: 24828498 DOI: 10.1074/jbc.m114.564534] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small molecule inhibitors against chitinases have potential applications as pesticides, fungicides, and antiasthmatics. Here, we report that a series of fully deacetylated chitooligosaccharides (GlcN)2-7 can act as inhibitors against the insect chitinase OfChtI, the human chitinase HsCht, and the bacterial chitinases SmChiA and SmChiB with IC50 values at micromolar to millimolar levels. The injection of mixed (GlcN)2-7 into the fifth instar larvae of the insect Ostrinia furnacalis resulted in 85% of the larvae being arrested at the larval stage and death after 10 days, also suggesting that (GlcN)2-7 might inhibit OfChtI in vivo. Crystal structures of the catalytic domain of OfChtI (OfChtI-CAD) complexed with (GlcN)5,6 were obtained at resolutions of 2.0 Å. These structures, together with mutagenesis and thermodynamic analysis, suggested that the inhibition was strongly related to the interaction between the -1 GlcN residue of the inhibitor and the catalytic Glu(148) of the enzyme. Structure-based comparison showed that the fully deacetylated chitooligosaccharides mimic the substrate chitooligosaccharides by binding to the active cleft. This work first reports the inhibitory activity and proposed inhibitory mechanism of fully deacetylated chitooligosaccharides. Because the fully deacetylated chitooligosaccharides can be easily derived from chitin, one of the most abundant materials in nature, this work also provides a platform for developing eco-friendly inhibitors against chitinases.
Collapse
Affiliation(s)
- Lei Chen
- From the School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Yong Zhou
- the School of Software, Dalian University of Technology, Dalian 116620, China, and
| | - Mingbo Qu
- From the School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China
| | - Yong Zhao
- the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing Yang
- From the School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, China,
| |
Collapse
|
41
|
Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q. Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:932-42. [PMID: 24699639 PMCID: PMC3975886 DOI: 10.1107/s1399004713033841] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022]
Abstract
Insects possess a greater number of chitinases than any other organisms. This work is the first report of unliganded and oligosaccharide-complexed crystal structures of the insect chitinase OfChtI from Ostrinia furnacalis, which is essential to moulting. The obtained crystal structures were solved at resolutions between 1.7 and 2.2 Å. A structural comparison with other chitinases revealed that OfChtI contains a long substrate-binding cleft similar to the bacterial chitinase SmChiB from Serratia marcescens. However, unlike the exo-acting SmChiB, which has a blocked and tunnel-like cleft, OfChtI possesses an open and groove-like cleft. The complexed structure of the catalytic domain of OfChtI (OfChtI-CAD) with (GlcNAc)2/3 indicates that the reducing sugar at subsite -1 is in an energetically unfavoured `boat' conformation, a state that possibly exists just before the completion of catalysis. Because OfChtI is known to act from nonreducing ends, (GlcNAc)3 would be a hydrolysis product of (GlcNAc)6, suggesting that OfChtI possesses an endo enzymatic activity. Furthermore, a hydrophobic plane composed of four surface-exposed aromatic residues is adjacent to the entrance to the substrate-binding cleft. Mutations of these residues greatly impair the chitin-binding activity, indicating that this hydrophobic plane endows OfChtI-CAD with the ability to anchor chitin. This work reveals the unique structural characteristics of an insect chitinase.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Higher Education Mega Center, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Yong Zhou
- School of Software, Dalian University of Technology, 321 Tuqiang Street, Dalian, Liaoning 116620, People’s Republic of China
| | - Qi Chen
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People’s Republic of China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, People’s Republic of China
| |
Collapse
|