1
|
Barr JS, Estevez-Lao TY, Khalif M, Saksena S, Yarlagadda S, Farah O, Shivere Y, Hillyer JF. Temperature and age, individually and interactively, shape the size, weight, and body composition of adult female mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2023; 148:104525. [PMID: 37236342 DOI: 10.1016/j.jinsphys.2023.104525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Most insects are poikilotherms and ectotherms, so their body temperature fluctuates and closely aligns with the temperature of their environment. The rise in global temperatures is affecting the physiology of insects by altering their ability to survive, reproduce, and transmit disease. Aging also impacts insect physiology because the body deteriorates via senescence as the insect ages. Although temperature and age both impact insect biology, these factors have historically been studied in isolation. So, it is unknown whether or how temperature and age interact to shape insect physiology. Here, we investigated the effects of warmer temperature (27 °C, 30 °C and 32 °C), aging (1, 5, 10, and 15 days post-eclosion), and their interaction on the size and body composition of the mosquito, Anopheles gambiae. We found that warmer temperatures result in slightly smaller adult mosquitoes, as measured by abdomen and tibia length. Aging alters both abdominal length and dry weight in a manner that correlates with the increase in energetic resources and tissue remodeling that occurs after metamorphosis and the senescence-based decline that ensues later. Moreover, the carbohydrate and lipid contents of adult mosquitoes are not meaningfully affected by temperature but are altered by aging: carbohydrate content increases with age whereas lipid content increases over the first few days of adulthood and then decreases. Protein content decreases with both rising temperature and aging, and the aging-associated decrease accelerates at warmer temperatures. Altogether, temperature and age, individually and to a lesser extent interactively, shape the size and composition of adult mosquitoes.
Collapse
Affiliation(s)
- Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tania Y Estevez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marina Khalif
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Saksham Saksena
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Sagnik Yarlagadda
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ommay Farah
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Yasmine Shivere
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Ye Z, Liu F, Ferguson ST, Baker A, Pitts RJ, Zwiebel LJ. Ammonium transporter AcAmt mutagenesis uncovers reproductive and physiological defects without impacting olfactory responses to ammonia in the malaria vector mosquito Anopheles coluzzii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103578. [PMID: 33933561 PMCID: PMC8187335 DOI: 10.1016/j.ibmb.2021.103578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 05/25/2023]
Abstract
Anopheline mosquitoes are the sole vectors of malaria and rely on olfactory cues for host seeking in which ammonia derived from human sweat plays an essential role. To investigate the function of the Anopheles coluzzii ammonium transporter (AcAmt) in the mosquito olfactory system, we generated an AcAmt null mutant line using CRISPR/Cas9. AcAmt-/- mutants displayed a series of novel phenotypes compared with wild-type mosquitoes including significantly lower insemination rates during mating and increased mortality during eclosion. Furthermore, AcAmt-/- males showed significantly lower sugar consumption while AcAmt-/- females and pupae displayed significantly higher ammonia levels than their wild-type counterparts. Surprisingly, in contrast to previous studies in Drosophila that revealed that the mutation of the ammonium transporter (DmAmt) induces a dramatic reduction of ammonia responses in antennal coeloconic sensilla, no significant differences were observed across a range of peripheral sensory neuron responses to ammonia and other odorants between wild-type and AcAmt-/- females. These data support the existence in mosquitoes of novel compensatory ammonia-sensing mechanisms that are likely to have evolved as a result of the importance of ammonia in host-seeking and other behaviors.
Collapse
Affiliation(s)
- Zi Ye
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Feng Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stephen T Ferguson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Adam Baker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - R Jason Pitts
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
3
|
Ben Ayed W, Amraoui F, M'ghirbi Y, Schaffner F, Rhaim A, Failloux AB, Bouattour A. A Survey of Aedes (Diptera: Culicidae) Mosquitoes in Tunisia and the Potential Role of Aedes detritus and Aedes caspius in the Transmission of Zika Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1377-1383. [PMID: 31121045 DOI: 10.1093/jme/tjz067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to update the list of Aedes mosquito species occurring in Tunisia and to test the vector competence of Aedes (Ochlerotatus) caspius (Pallas) and Ae. (Ochlerotatus) detritus (Haliday), the locally most abundant and widespread species, to transmit Zika virus (ZIKV). In 2017-2018, mosquito larvae were collected from 39 different larval habitats in seven bioclimatic zones of Tunisia. The salinity and pH of each breeding site were measured. The survey revealed the presence of 10 Aedes species in Tunisia: Ae. (Stegomyia) albopictus (Skuse), Ae. (Ochlerotatus) berlandi (Séguy), Ae. caspius, Ae. detritus, Ae. (Finlaya) echinus (Edwards), Ae. (Finlaya) geniculatus (Olivier), Ae. (Acartomyia) mariae (Sergent and Sergent), Ae. (Ochlerotatus) pulcritarsis (Rondani), Ae. (Aedimorphus) vexans (Meigen), and Ae. (Fredwardsius) vittatus (Bigot). Of these 10 species, Ae. caspius and Ae. detritus were the most abundant in Tunisia. Aedes detritus and Ae. caspius larvae were reared until the imago stage under insectary conditions to test autogeny. The study showed that Ae. detritus is autogenous and stenogamous and Ae. caspius, anautogenous and eurygamous. Finally, the collected strains of these two species were experimentally infected with the Asian genotype of ZIKV, originally isolated from a patient in April 2014 in New Caledonia, to test their vector competence. Neither of these species was able to transmit ZIKV at 7 and 14 d postexposure. Further investigations are needed to test the competence of other Tunisian mosquito species that may be associated with ZIKV transmission.
Collapse
Affiliation(s)
- Wiem Ben Ayed
- Laboratory of Epidemiology and Veterinarian Microbiology, Medical Entomology, Institut Pasteur, 13 Place Pasteur, B.P. 74., 1002 Tunis-Belvédère, Tunisia
| | - Fadila Amraoui
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Youmna M'ghirbi
- Laboratory of Epidemiology and Veterinarian Microbiology, Medical Entomology, Institut Pasteur, 13 Place Pasteur, B.P. 74., 1002 Tunis-Belvédère, Tunisia
| | - Francis Schaffner
- Institute of Parasitology, Swiss National Centre for Vector Entomology, University of Zurich, Zurich, Switzerland
| | - Adel Rhaim
- Laboratory of Epidemiology and Veterinarian Microbiology, Medical Entomology, Institut Pasteur, 13 Place Pasteur, B.P. 74., 1002 Tunis-Belvédère, Tunisia
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Ali Bouattour
- Laboratory of Epidemiology and Veterinarian Microbiology, Medical Entomology, Institut Pasteur, 13 Place Pasteur, B.P. 74., 1002 Tunis-Belvédère, Tunisia
| |
Collapse
|
4
|
Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors 2016; 9:375. [PMID: 27363842 PMCID: PMC4929711 DOI: 10.1186/s13071-016-1660-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
Background Aedes aegypti and A. atropalpus are related mosquitoes that differ reproductively. Aedes aegypti must blood-feed to produce eggs (anautogenous) while A. atropalpus always produces a first clutch of eggs without blood-feeding (facultatively autogenous). We recently characterized the gut microbiota of A. aegypti and A. atropalpus that were reared identically in the laboratory. Here, we assessed the effects of specific members of the gut microbiota in A. aegypti and A. atropalpus on female fitness including egg production. Methods Gnotobiotic A. aegypti and A. atropalpus larvae were colonized by specific members of the gut microbiota. Survival, development time, size and egg production for each treatment was then compared to axenic and conventionally reared larvae. Results Most species of bacteria we tested supported normal development and egg production by A. aegypti but only one betaproteobacterium, a Comamonas, supported development and egg production by A. atropalpus to equivalent levels as conventionally reared females. Aedes atropalpus females colonized by Comamonas contained similar stores of glycogen and protein as conventionally reared females, whereas females colonized by Aquitalea did not. Small differences in bacterial loads were detected between gnotobiotic and conventionally reared A. aegypti and A. atropalpus, but this variation did not correlate with the beneficial effects of Comamonas in A. atropalpus. Conclusions Specific members of the gut microbiota more strongly affected survival, size and egg production by A. atropalpus than A. aegypti. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1660-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerri L Coon
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Gulia-Nuss M, Elliot A, Brown MR, Strand MR. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:8-16. [PMID: 26255841 PMCID: PMC4630150 DOI: 10.1016/j.jinsphys.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously.
Collapse
Affiliation(s)
- Monika Gulia-Nuss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Anne Elliot
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Ellison HE, Estévez-Lao TY, Murphree CS, Hillyer JF. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase. JOURNAL OF INSECT PHYSIOLOGY 2015; 74:1-9. [PMID: 25640058 DOI: 10.1016/j.jinsphys.2015.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology.
Collapse
Affiliation(s)
- Haley E Ellison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biology, Belmont University, Nashville, TN, USA
| | - Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|