1
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Ramirez G, Broeckling C, Herndon M, Stoltz M, Ebel GD, Dobos KM. Investigating the lipid profile of Anopheles stephensi mosquitoes across developmental life stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101312. [PMID: 39178499 DOI: 10.1016/j.cbd.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Holometabolous insects undergo a distinct transition in their development, tightly correlated with shifting feeding patterns from larval stages and some adult phases to non-feeding phases as pupae and during other adult phases. Furthermore, the intricate life cycle of mosquitoes involves a sequence of developmental stages influenced by aquatic and terrestrial factors, demanding precise energy resource orchestration. Lipids serve multifaceted roles, encompassing energy storage, membrane structure, and participation in signal transduction and molecular recognition processes. A significant gap in the current research landscape is the need for a comprehensive study exploring the lipid repertoire throughout the developmental stages of Anopheles stephensi mosquitoes. We undertook an analysis of the An. stephensi metabolome across all life stages. We hypothesized that An. stephensi mosquitoes will have unique lipid metabolite markers for each life stage. A specific extraction and LC-MS based lipidomic approach was used to test this hypothesis. Our findings demonstrated that our methods were successful, with lipids comprising 62.15 % of the analyzed metabolome. Additionally, phospholipids (PL), lysophospholipids (LPL), sphingomyelin (SM), and triglycerides (TG) were abundant and dynamic across all life stages. Interestingly, comparison between the L1 and L2 lipidome revealed a dominant pattern of specific TGs in decreased abundance between these two life stages. Lastly, 20-hydroxyecdysone (20E), was found to be present in similar abundance across all 4 larval stages. These data indicate that there may be lipid metabolome pathways serving unique roles during mosquito development that may be used to explore laboratory management of colonies, parasite resistance, and environmental adaptation.
Collapse
Affiliation(s)
- Gabriela Ramirez
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Corey Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, CO, USA
| | - MaKala Herndon
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Madison Stoltz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Gao L, Yang W, Wang J. Implications of mosquito metabolism on vector competence. INSECT SCIENCE 2024; 31:674-682. [PMID: 37907431 DOI: 10.1111/1744-7917.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Cheseto X, Ochieng BO, Subramanian S, Tanga CM. Unravelling the nutritional and health benefits of marketable winged termites (Macrotermes spp.) as sustainable food sources in Africa. Sci Rep 2024; 14:9993. [PMID: 38693201 PMCID: PMC11063174 DOI: 10.1038/s41598-024-60729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Termites are widely distributed globally and serve as a valuable food source in many countries. However, information on the myriad nutritional benefits of processed termite products in African markets remain largely unexploited. This study evaluated the phytochemicals, fatty acids, amino acids, minerals, vitamins and proximate composition of the edible winged termites (Macrotermes spp.) from three major Counties of Kenya. A total of 9 flavonoids, 5 alkaloids, and 1 cytokinin were identified. The oil content varied from 33 to 46%, exhibiting significant levels of beneficial omega 3 fatty acids, such as methyl (9Z,12Z,15Z)-octadecatrienoate and methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate, ranging from 82.7-95.1 to 6.3-8.1 µg/g, respectively, across the different regions. Four essential and cereal-limiting amino acids lysine (1.0-1.3 mg/g), methionine (0.08-0.1 mg/g), leucine (0.6-0.9 mg/g) and threonine (0.1-0.2 mg/g), were predominant. Moreover, termites had a rich profile of essential minerals, including iron (70.7-111.8 mg/100 g), zinc (4.4-16.2 mg/100 g) and calcium (33.1-53.0 mg/100 g), as well as vitamins A (2.4-6.4 mg/kg), C (0.6-1.9 mg/kg) and B12 (10.7-17.1 mg/kg). The crude protein (32.2-44.8%) and fat (41.2-49.1%) contents of termites from the various Counties was notably high. These findings demonstrated the promising nutrients potential of winged termites and advocate for their sustainable utilization in contemporary efficacious functional food applications to combat malnutrition.
Collapse
Affiliation(s)
- Xavier Cheseto
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772-00100, Nairobi, Kenya.
| | - Brian O Ochieng
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772-00100, Nairobi, Kenya
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772-00100, Nairobi, Kenya
| |
Collapse
|
5
|
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. INSECTS 2023; 14:873. [PMID: 37999072 PMCID: PMC10672513 DOI: 10.3390/insects14110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.
Collapse
Affiliation(s)
- Shirleen S. Prasad
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Matthew C. Taylor
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Valentina Colombo
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - John G. Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| |
Collapse
|
6
|
Pietz S, Kolbenschlag S, Röder N, Roodt AP, Steinmetz Z, Manfrin A, Schwenk K, Schulz R, Schäfer RB, Zubrod JP, Bundschuh M. Subsidy Quality Affects Common Riparian Web-Building Spiders: Consequences of Aquatic Contamination and Food Resource. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1346-1358. [PMID: 36946335 DOI: 10.1002/etc.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin®) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. Environ Toxicol Chem 2023;42:1346-1358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Sebastian Pietz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Nina Röder
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Alexis P Roodt
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Zacharias Steinmetz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Alessandro Manfrin
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Klaus Schwenk
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Zubrod Environmental Data Science, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Pietz S, Kainz MJ, Schröder H, Manfrin A, Schäfer RB, Zubrod JP, Bundschuh M. Metal Exposure and Sex Shape the Fatty Acid Profile of Midges and Reduce the Aquatic Subsidy to Terrestrial Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:951-962. [PMID: 36599118 DOI: 10.1021/acs.est.2c05495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aquatic micropollutants can be transported to terrestrial systems and their consumers by emergent aquatic insects. However, micropollutants, such as metals, may also affect the flux of physiologically important polyunsaturated fatty acids (PUFAs). As certain PUFAs have been linked to physiological fitness and breeding success of terrestrial consumers, reduced fluxes from aquatic systems could affect terrestrial populations and food webs. We chronically exposed larvae of the aquatic insect Chironomus riparius to a range of environmentally relevant sediment contents of cadmium (Cd) or copper (Cu) in a 28-day microcosm study. Since elevated water temperatures can enhance metals' toxic effects, we used two temperature regimes, control and periodically elevated temperatures (heat waves) reflecting an aspect of climate change. Cd and Cu significantly reduced adult emergence by up to 95% and 45%, respectively, while elevated temperatures had negligible effects. Both metal contents were strongly reduced (∼90%) during metamorphosis. Furthermore, the chironomid FA profile was significantly altered during metamorphosis with the factors sex and metal exposure being relevant predictors. Consequently, fluxes of physiologically important PUFAs by emergent adults were reduced by up to ∼80%. Our results suggest that considering fluxes of physiologically important compounds, such as PUFAs, by emergent aquatic insects is important to understand the implications of aquatic micropollutants on aquatic-terrestrial meta-ecosystems.
Collapse
Affiliation(s)
- Sebastian Pietz
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, D-76829 Landau, Germany
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, A-3293 Lunz am See, Austria
| | - Henning Schröder
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Alessandro Manfrin
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, D-76829 Landau, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, D-76829 Landau, Germany
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, D-76829 Landau, Germany
- Zubrod Environmental Data Science, Friesenstraße 20, D-76829 Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, D-76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| |
Collapse
|
9
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Parmar TP, Kindinger AL, Mathieu-Resuge M, Twining CW, Shipley JR, Kainz MJ, Martin-Creuzburg D. Fatty acid composition differs between emergent aquatic and terrestrial insects—A detailed single system approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.952292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Emergent insects represent a key vector through which aquatic nutrients are transferred to adjacent terrestrial food webs. Aquatic fluxes of polyunsaturated fatty acids (PUFA) from emergent insects are particularly important subsidies for terrestrial ecosystems due to high PUFA contents in several aquatic insect taxa and their physiological importance for riparian predators. While recent meta-analyses have shown the general dichotomy in fatty acid profiles between aquatic and terrestrial ecosystems, differences in fatty acid profiles between aquatic and terrestrial insects have been insufficiently explored. We examined the differences in fatty acid profiles between aquatic and terrestrial insects at a single aquatic-terrestrial interface over an entire growing season to assess the strength and temporal consistency of the dichotomy in fatty acid profiles. Non-metric multidimensional scaling clearly separated aquatic and terrestrial insects based on their fatty acid profiles regardless of season. Aquatic insects were characterized by high proportions of long-chain PUFA, such as eicosapentaenoic acid (20:5n-3), arachidonic acid (20:4n-6), and α-linolenic acid (18:3n-3); whereas terrestrial insects were characterized by high proportions of linoleic acid (18:2n-6). Our results provide detailed information on fatty acid profiles of a diversity of aquatic and terrestrial insect taxa and demonstrate that the fundamental differences in fatty acid content between aquatic and terrestrial insects persist throughout the growing season. However, the higher fatty acid dissimilarity between aquatic and terrestrial insects in spring and early summer emphasizes the importance of aquatic emergence as essential subsidies for riparian predators especially during the breading season.
Collapse
|
11
|
Chotiwan N, Brito-Sierra CA, Ramirez G, Lian E, Grabowski JM, Graham B, Hill CA, Perera R. Expression of fatty acid synthase genes and their role in development and arboviral infection of Aedes aegypti. Parasit Vectors 2022; 15:233. [PMID: 35761349 PMCID: PMC9235097 DOI: 10.1186/s13071-022-05336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fatty acids are the building blocks of complex lipids essential for living organisms. In mosquitoes, fatty acids are involved in cell membrane production, energy conservation and expenditure, innate immunity, development and reproduction. Fatty acids are synthesized by a multifunctional enzyme complex called fatty acid synthase (FAS). Several paralogues of FAS were found in the Aedes aegypti mosquito. However, the molecular characteristics and expression of some of these paralogues have not been investigated. METHODS Genome assemblies of Ae. aegypti were analyzed, and orthologues of human FAS was identified. Phylogenetic analysis and in silico molecular characterization were performed to identify the functional domains of the Ae. aegypti FAS (AaFAS). Quantitative analysis and loss-of-function experiments were performed to determine the significance of different AaFAS transcripts in various stages of development, expression following different diets and the impact of AaFAS on dengue virus, serotype 2 (DENV2) infection and transmission. RESULTS We identified seven putative FAS genes in the Ae. aegypti genome assembly, based on nucleotide similarity to the FAS proteins (tBLASTn) of humans, other mosquitoes and invertebrates. Bioinformatics and molecular analyses suggested that only five of the AaFAS genes produce mRNA and therefore represent complete gene models. Expression levels of AaFAS varied among developmental stages and between male and female Ae. aegypti. Quantitative analyses revealed that expression of AaFAS1, the putative orthologue of the human FAS, was highest in adult females. Transient knockdown (KD) of AaFAS1 did not induce a complete compensation by other AaFAS genes but limited DENV2 infection of Aag2 cells in culture and the midgut of the mosquito. CONCLUSION AaFAS1 is the predominant AaFAS in adult mosquitoes. It has the highest amino acid similarity to human FAS and contains all enzymatic domains typical of human FAS. AaFAS1 also facilitated DENV2 replication in both cell culture and in mosquito midguts. Our data suggest that AaFAS1 may play a role in transmission of dengue viruses and could represent a target for intervention strategies.
Collapse
Affiliation(s)
- Nunya Chotiwan
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA ,grid.10223.320000 0004 1937 0490Present Address: Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Carlos A. Brito-Sierra
- grid.169077.e0000 0004 1937 2197Department of Entomology, Purdue University, West Lafayette, IL USA ,grid.169077.e0000 0004 1937 2197Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN USA ,grid.417540.30000 0000 2220 2544Present Address: Lilly Research Laboratories, Eli Lilly and Company, IN Indianapolis, USA
| | - Gabriella Ramirez
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - Elena Lian
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - Jeffrey M. Grabowski
- grid.169077.e0000 0004 1937 2197Department of Entomology, Purdue University, West Lafayette, IL USA ,grid.417439.c0000 0004 4665 2602Present Address: Foundation for Advanced Education in the Sciences at the NIH, Bethesda, MD USA
| | - Babara Graham
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - Catherine A. Hill
- grid.169077.e0000 0004 1937 2197Department of Entomology, Purdue University, West Lafayette, IL USA ,grid.169077.e0000 0004 1937 2197Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN USA
| | - Rushika Perera
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
12
|
Dal'Olio Gomes A, Gomes FR, Gücker B, Tolussi CE, Figueredo CC, Boëchat IG, Maruyama LS, Oliveira LC, Muñoz-Peñuela M, Pompêo MLM, de Lima Cardoso R, Marques VH, Moreira RG. Eutrophication effects on fatty acid profiles of seston and omnivorous fish in tropical reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146649. [PMID: 33794454 DOI: 10.1016/j.scitotenv.2021.146649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
It has been postulated that eutrophication causes replacement of n3 highly unsaturated fatty acids (n3 HUFA) rich taxa, such as Bacillariophyta, Cryptophyta and Dinophyta, with taxa poor in these fatty acids (FA), such as Chlorophyta and Cyanobacteria. Such a change in community composition at the basis of the food web may alter the FA composition of consumer tissues. Here, we investigated the effects of eutrophication on phytoplankton composition and FA profiles of seston and muscle of two omnivorous fish species (Astyanax fasciatus and Astyanax altiparanae) from reservoirs of different trophic status in Southeast Brazil. The phytoplankton composition and seston FA profiles reflected the degree of eutrophication at most of the studied sites. Three of the five most eutrophic sites were dominated by cyanobacteria and had the highest saturated fatty acid (SFA) and lowest polyunsaturated fatty acid (PUFA) relative contents among all sites. In contrast, the remaining two sites presented a higher phytoplankton diversity and higher relative contribution of sestonic PUFAs with 18 carbons (C18) and HUFAs than less eutrophic systems. However, there were no clear effects of sestonic FA profiles on the FA profiles of muscle of both fish species. A higher percentage of n3 HUFAs was found in the fish samples from a hypereutrophic and cyanobacteria dominated reservoir than in those from sites with a more diverse phytoplankton community in which fish mainly showed higher percentages of C18 PUFA. These results suggest a lack of a direct relationship between the degree of eutrophication and the percentage of n3 HUFAs in both fish species, which can be caused by specific characteristics of the reservoirs that may modulate eutrophication effects. Therefore, consumer FA biochemistry seemed to be dictated by their ability to select, accumulate, and modify dietary FAs, rather than by the eutrophication degree of the studied tropical reservoirs.
Collapse
Affiliation(s)
- Aline Dal'Olio Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, SP 05508-090, Brazil.
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, SP 05508-090, Brazil
| | - Björn Gücker
- Departamento de Geociências, Universidade Federal São João del-Rei, São João del-Rei, MG, Brazil
| | | | - Cleber Cunha Figueredo
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Iola Gonçalves Boëchat
- Departamento de Geociências, Universidade Federal São João del-Rei, São João del-Rei, MG, Brazil
| | | | - Lucas Chagas Oliveira
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela Muñoz-Peñuela
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, SP 05508-090, Brazil
| | | | - Rayssa de Lima Cardoso
- Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Sorocaba, Brazil
| | - Victor Hugo Marques
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, SP 05508-090, Brazil
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, SP 05508-090, Brazil
| |
Collapse
|
13
|
Pilecky M, Závorka L, Arts MT, Kainz MJ. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol Rev Camb Philos Soc 2021; 96:2127-2145. [PMID: 34018324 DOI: 10.1111/brv.12747] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| | - Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| |
Collapse
|
14
|
Kaczmarek A, Wrońska AK, Boguś MI, Kazek M, Gliniewicz A, Mikulak E, Matławska M. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. PLoS One 2021; 16:e0251100. [PMID: 33930098 PMCID: PMC8087090 DOI: 10.1371/journal.pone.0251100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti, the primary vector of various arthropod-borne viral (arboviral) diseases such as dengue and Zika, is a popular laboratory model in vector biology. However, its maintenance in laboratory conditions is difficult, mostly because the females require blood meals to complete oogenesis, which is often provided as sheep blood. The outermost layer of the mosquito cuticle is consists of lipids which protects against numerous entomopathogens, prevents desiccation and plays an essential role in signalling processes. The aim of this work was to determine how the replacement of human blood with sheep blood affects the cuticular and internal FFA profiles of mosquitoes reared in laboratory culture. The individual FFAs present in cuticular and internal extracts from mosquito were identified and quantified by GC-MS method. The normality of their distribution was checked using the Kolmogorov-Smirnov test and the Student's t-test was used to compare them. GC-MS analysis revealed similar numbers of internal and cuticular FFAs in the female mosquitoes fed sheep blood by membrane (MFSB) and naturally fed human blood (NFHB), however MFSB group demonstrated 3.1 times greater FFA concentrations in the cuticular fraction and 1.4 times the internal fraction than the NFHB group. In the MFSB group, FFA concentration was 1.6 times higher in the cuticular than the internal fraction, while for NFHB, FFA concentration was 1.3 times lower in the cuticular than the internal fraction. The concentration of C18:3 acid was 223 times higher in the internal fraction than the cuticle in the MHSB group but was absent in the NFHB group. MFSB mosquito demonstrate different FFA profiles to wild mosquitoes, which might influence their fertility and the results of vital processes studied under laboratory conditions. The membrane method of feeding mosquitoes is popular, but our research indicates significant differences in the FFA profiles of MFSB and NFHB. Such changes in FFA profile might influence female fertility, as well as other vital processes studied in laboratory conditions, such as the response to pesticides. Our work indicates that sheep blood has potential shortcomings as a substitute feed for human blood, as its use in laboratory studies may yield different results to those demonstrated by free-living mosquitoes.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Mikulak
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Marta Matławska
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
15
|
DeSiervo MH, Ayres MP, Virginia RA, Culler LE. Consumer–resource dynamics in Arctic ponds. Ecology 2020; 101:e03135. [DOI: 10.1002/ecy.3135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Melissa H. DeSiervo
- Department of Biological Sciences Dartmouth College Hanover New Hampshire03755USA
| | - Matthew P. Ayres
- Department of Biological Sciences Dartmouth College Hanover New Hampshire03755USA
- Institute of Arctic Studies The Dickey Center for International Understanding Dartmouth College Hanover New Hampshire03755USA
| | - Ross A. Virginia
- Institute of Arctic Studies The Dickey Center for International Understanding Dartmouth College Hanover New Hampshire03755USA
- Environmental Sciences Program Dartmouth College Hanover New Hampshire03755USA
| | - Lauren E. Culler
- Institute of Arctic Studies The Dickey Center for International Understanding Dartmouth College Hanover New Hampshire03755USA
- Environmental Sciences Program Dartmouth College Hanover New Hampshire03755USA
| |
Collapse
|
16
|
Moyo S. Preliminary Estimations of Insect Mediated Transfers of Mercury and Physiologically Important Fatty Acids from Water to Land. Biomolecules 2020; 10:biom10010129. [PMID: 31940985 PMCID: PMC7023014 DOI: 10.3390/biom10010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Aquatic insects provide an energy subsidy to riparian food webs. However, most empirical studies have considered the role of subsidies only in terms of magnitude (using biomass measurements) and quality (using physiologically important fatty acids), negating an aspect of subsidies that may affect their impact on recipient food webs: the potential of insects to transport contaminants (e.g., mercury) to terrestrial ecosystems. To this end, I used empirical data to estimate the magnitude of nutrients (using physiologically important fatty acids as a proxy) and contaminants (total mercury (Hg) and methylmercury (MeHg)) exported by insects from rivers and lacustrine systems in each continent. The results reveal that North American rivers may export more physiologically important fatty acids per unit area (93.0 ± 32.6 Kg Km-2 year-1) than other continents. Owing to the amount of variation in Hg and MeHg, there were no significant differences in MeHg and Hg among continents in lakes (Hg: 1.5 × 10-4 to 1.0 × 10-3 Kg Km-2 year-1; MeHg: 7.7 × 10-5 to 1.0 × 10-4 Kg Km-2 year-1) and rivers (Hg: 3.2 × 10-4 to 1.1 × 10-3 Kg Km-2 year-1; MeHg: 3.3 × 10-4 to 8.9 × 10-4 Kg Km-2 year-1), with rivers exporting significantly larger quantities of mercury across all continents than lakes. Globally, insect export of physiologically important fatty acids by insect was estimated to be ~43.9 × 106 Kg year-1 while MeHg was ~649.6 Kg year-1. The calculated estimates add to the growing body of literature, which suggests that emerging aquatic insects are important in supplying essential nutrients to terrestrial consumers; however, with the increase of pollutants in freshwater systems, emergent aquatic insect may also be sentinels of organic contaminants to terrestrial consumers.
Collapse
Affiliation(s)
- Sydney Moyo
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Gladyshev MI, Sushchik NN. Long-chain Omega-3 Polyunsaturated Fatty Acids in Natural Ecosystems and the Human Diet: Assumptions and Challenges. Biomolecules 2019; 9:biom9090485. [PMID: 31547473 PMCID: PMC6770104 DOI: 10.3390/biom9090485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 01/05/2023] Open
Abstract
Over the past three decades, studies of essential biomolecules, long-chain polyunsaturated fatty acids of the omega-3 family (LC-PUFAs), namely eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have made considerable progress, resulting in several important assumptions. However, new data, which continue to appear, challenge these assumptions. Based on the current literature, an attempt is made to reconsider the following assumptions: 1. There are algal classes of high and low nutritive quality. 2. EPA and DHA decrease with increasing eutrophication in aquatic ecosystems. 3. Animals need EPA and DHA. 4. Fish are the main food source of EPA and DHA for humans. 5. Culinary treatment decreases EPA and DHA in products. As demonstrated, some of the above assumptions need to be substantially specified and changed.
Collapse
Affiliation(s)
- Michail I Gladyshev
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, 50/50, Krasnoyarsk 660036, Russia.
- Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia.
| | - Nadezhda N Sushchik
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, 50/50, Krasnoyarsk 660036, Russia.
- Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia.
| |
Collapse
|
18
|
Bimbilé Somda NS, Maïga H, Mamai W, Yamada H, Ali A, Konczal A, Gnankiné O, Diabaté A, Sanon A, Dabiré KR, Gilles JRL, Bouyer J. Insects to feed insects - feeding Aedes mosquitoes with flies for laboratory rearing. Sci Rep 2019; 9:11403. [PMID: 31388041 PMCID: PMC6684809 DOI: 10.1038/s41598-019-47817-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 11/14/2022] Open
Abstract
The black soldier fly, yellow mealworm and house fly are known for their wide distribution, ease of breeding, and environmental and nutritional attributes. Diets based on these fly proteins for the rearing of mosquito larvae are more accessible and affordable when compared to the reference IAEA diet which consists largely of costly livestock products such as bovine liver powder. Following a step-by-step assessment, we developed diet mixtures based on insect meal for the optimal mass production of Aedes albopictus and Ae. aegypti. Based on the assessed parameters including mosquito egg hatch, body size, flight ability, longevity and diet cost reduction, two mixtures are recommended: 1/2 tuna meal (TM) + 7/20 black soldier fly (BSF) + 3/20 brewer’s yeast and 1/2 TM + 1/2 BSF. These findings, which could be adapted to other mosquito species, provide alternative protein sources for mass rearing insects for genetic control strategies.
Collapse
Affiliation(s)
- Nanwintoum Séverin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.,Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso.,Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Hamidou Maïga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.,Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.,Institut de Recherche Agricole pour le Développement (IRAD), BP 2123, Yaoundé-Messa, Cameroon
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Adel Ali
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Anna Konczal
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Olivier Gnankiné
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Antoine Sanon
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Jérémie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.
| |
Collapse
|
19
|
Preliminary estimation of the export of omega-3 polyunsaturated fatty acids from aquatic to terrestrial ecosystems in biomes via emergent insects. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Lipid and amino acid profiles support the potential of Rhynchophorus phoenicis larvae for human nutrition. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Makhutova ON, Borisova EV, Shulepina SP, Kolmakova AA, Sushchik NN. Fatty acid composition and content in chironomid species at various life stages dominating in a saline Siberian lake. CONTEMP PROBL ECOL+ 2017. [DOI: 10.1134/s1995425517030064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Popova ON, Haritonov AY, Sushchik NN, Makhutova ON, Kalachova GS, Kolmakova AA, Gladyshev MI. Export of aquatic productivity, including highly unsaturated fatty acids, to terrestrial ecosystems via Odonata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:40-48. [PMID: 28086131 DOI: 10.1016/j.scitotenv.2017.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Based on 31-year field study of the abundance and biomass of 18 species of odonates in the Barabinsk Forest-Steppe (Western Siberia, Russia), we quantified the contribution of odonates to the export of aquatic productivity to surrounding terrestrial landscape. Emergence varied from 0.8 to 4.9g of wet biomass per m2 of land area per year. Average export of organic carbon was estimated to be 0.30g·m-2·year-1, which is comparable with the average production of herbivorous terrestrial insects in temperate grasslands. Moreover, in contrast to terrestrial insects, emerging odonates contained high quantities of highly unsaturated fatty acids (HUFA), namely eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA), which are known to be essential for many terrestrial animals, especially for birds. The export of EPA+DHA by odonates was found to be 1.92-11.76mg·m-2·year-1, which is equal to an average general estimation of the export of HUFA by emerging aquatic insects. Therefore, odonates appeared to be a quantitatively and qualitatively important conduit of aquatic productivity to forest-steppe ecosystem.
Collapse
Affiliation(s)
- Olga N Popova
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Frunze str. 11, Novosibirsk 630091, Russia
| | - Anatoly Y Haritonov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Frunze str. 11, Novosibirsk 630091, Russia
| | - Nadezhda N Sushchik
- Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia
| | - Olesia N Makhutova
- Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia
| | - Galina S Kalachova
- Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia
| | - Anzhelika A Kolmakova
- Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia
| | - Michail I Gladyshev
- Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia.
| |
Collapse
|
23
|
Borisova EV, Makhutova ON, Gladyshev MI, Sushchik NN. Fluxes of biomass and essential polyunsaturated fatty acids from water to land via chironomid emergence from a mountain lake. CONTEMP PROBL ECOL+ 2016. [DOI: 10.1134/s199542551604003x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Gladyshev MI, Popova ON, Makhutova ON, Zinchenko TD, Golovatyuk LV, Yurchenko YA, Kalachova GS, Krylov AV, Sushchik NN. Comparison of fatty acid compositions in birds feeding in aquatic and terrestrial ecosystems. CONTEMP PROBL ECOL+ 2016. [DOI: 10.1134/s1995425516040065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Beasley DA, Walton WE. Suitability of monotypic and mixed diets for Anopheles hermsi larval development. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:80-89. [PMID: 27232128 DOI: 10.1111/jvec.12197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
The developmental time and survival to eclosion of Anopheles hermsi Barr & Guptavanij fed monotypic and mixed diets of ten food types were examined in laboratory studies. Larvae fed monotypic diets containing animal detritus (freeze-dried rotifers, freeze-dried Daphnia pulicaria, and TetraMin® fish food flakes) and the mixotrophic protistan Cryptomonas ovata developed faster and survived better than larvae that were fed other monotypic diets. Survival to adulthood of larvae fed several concentrations of the diatom Planothidium (=Achnanthes) lanceolatum was poor (<13%) and larval development time was approximately twice that of larvae fed TetraMin® fish food flakes, the standard laboratory diet. Larvae fed monotypic diets containing prokaryotes (bacteria [Bacillus cereus] and cyanobacteria [Oscillatoria prolifera]) and brewer's yeast (Saccharomyces cerevisiae) failed to survive beyond the 1(st) and 2(nd) instar, respectively. Larvae fed only chlorophytes, single-celled Chlamydomonas reinhardtii and filamentous Spirogyra communis, failed to complete larval development, regardless of the concentration tested. Cohorts fed a combination of food types (mixed diets) usually developed better than cohorts fed monotypic diets. Food types that failed to support complete development when fed alone often facilitated development to adulthood when fed in combination with food types containing >1% C20 polyunsaturated fatty acids as total fat, but regardless of essential fatty acid content, algae that produced mucilage and filaments that sank out of the feeding zone were poor quality diets.
Collapse
Affiliation(s)
- Donald A Beasley
- Department of Entomology, University of California, Riverside, CA 92521, U.S.A
| | - William E Walton
- Department of Entomology, University of California, Riverside, CA 92521, U.S.A..
| |
Collapse
|
26
|
Mustonen AM, Käkelä R, Paakkonen T, Nieminen P. Life stage-related differences in fatty acid composition of an obligate ectoparasite, the deer ked (Lipoptena cervi)-influence of blood meals and gender. Comp Biochem Physiol A Mol Integr Physiol 2014; 179:62-70. [PMID: 25223709 DOI: 10.1016/j.cbpa.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Metamorphosis and diet often influence fatty acid (FA) signatures (FAS) of insects. We investigated FAS in a hematophagous ectoparasite, the deer ked (Lipoptena cervi). Deer keds shed their wings upon attachment on the host and, thus, the FAS of an individual blood-fed imago/pupa in the fur of its host can be traced back to the blood FA profile of a single moose (Alces alces). Host blood and different life stages of deer keds were investigated for FA by gas chromatography. The FAS of life stages resembled each other more closely than the diet. Blood meals modified the FAS of both sexes but the FAS of the blood-fed females were closer to those of the prepupae/pupae. The parasitizing males had higher proportions of major saturated FA (SFA) and polyunsaturated FA (PUFA) than the females, which contained more monounsaturated FA (MUFA) with higher ratios of n-3/n-6 PUFA and unsaturated FA (UFA)/SFA. The proportions of 16:1n-7 were <1% in the blood but 18% (males) and 29% (females) in the blood-fed keds. Allocation of lipids to offspring by the females and possible accumulation of PUFA in male reproductive organs may have induced these sex-related differences. MUFA percentages and UFA/SFA ratios increased while SFA and many PUFA decreased from the reproducing females to the pupae. The diapausing pupae displayed lowered n-3/n-6 PUFA ratios and could have mobilized 16:0 and 18:3n-3 for the most fundamental metabolic processes. In conclusion, FAS are modified through the life stages of the deer ked possibly due to their different FA requirements.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Biomedicine/Anatomy, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Reijo Käkelä
- University of Helsinki, Faculty of Biological and Environmental Sciences, Department of Biosciences, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Tommi Paakkonen
- University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Biomedicine/Anatomy, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Petteri Nieminen
- University of Eastern Finland, Faculty of Science and Forestry, Department of Biology, P.O. Box 111, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Biomedicine/Anatomy, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
27
|
González M, López S, Rosell G, Goldarazena A, Guerrero A. Cuticular and Internal Chemical Composition of Biting Midges Culicoidesspp. (Diptera: Ceratopogonidae), Potential Vectors of Viral Diseases. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The chemical profile of the cuticle and internal tissues of four species of Culicoides have been studied for the first time by gas chromatography-mass spectrometry. The chemical composition of females of C. obsoletus s.l. and C. lupicaris, vectors of diverse viral diseases, have been compared with that of other biting midges, such as C. kibunensis and C. fascipennis, and the non-biting midge Forcipomyia bipunctata. A total of 61 compounds belonging to 8 major chemical classes were identified in cuticular and internal tissues in n-hexane extracts. The compounds include carboxylic acids (CAs) (C6-C20), with C16:0, C16:1 and C18:1 being dominant, branched hydrocarbons (C29 to C38 mono/di/trimethylalkanes), linear hydrocarbons (C15 to C33, mainly odd chain carbons), terpenes (geranylacetone, geranylgeraniol acetate, squalene, terpenic alcohol), steroids (cholesterol), aldehydes (C9-C10 and even chain C20 to C30), and esters. The chemical profile depends on the species and whether the extracts are external (cuticle) or internal. The contents of linear and branched hydrocarbons and aldehydes was high in cuticular extracts but practically absent in internal tissues, which were, in contrast, rich in CAs, terpenes and steroids. The results are discussed and compared with other Culicoides midges and mosquito-related species.
Collapse
Affiliation(s)
- Mikel González
- NEIKER-TECNALIA, Department of Plant Production and Protection, Basque Institute of Agricultural Research and Development, Arkaute 46, E01080. Vitoria, Spain
| | - Sergio López
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18–26, E08034. Barcelona, Spain
| | - Gloria Rosell
- Department of Pharmacology and Therapeutic Chemistry, Unity Associated to CSIC, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, E08028. Barcelona, Spain
| | - Arturo Goldarazena
- NEIKER-TECNALIA, Department of Plant Production and Protection, Basque Institute of Agricultural Research and Development, Arkaute 46, E01080. Vitoria, Spain
| | - Angel Guerrero
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18–26, E08034. Barcelona, Spain
| |
Collapse
|