1
|
Gilbert J, Valldeperas M, Dhayal SK, Barauskas J, Dicko C, Nylander T. Immobilisation of β-galactosidase within a lipid sponge phase: structure, stability and kinetics characterisation. NANOSCALE 2019; 11:21291-21301. [PMID: 31667477 DOI: 10.1039/c9nr06675f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the formulation of an active enzyme enclosed in a matrix for controlled delivery, it is a challenge to achieve a high protein load and to ensure high activity of the protein. For the first time to our knowledge, we report the use of a highly swollen lipid sponge (L3) phase for encapsulation of the large active enzyme, β-galactosidase (β-gal, 238 kDa). This enzyme has large relevance for applications in, e.g. the production of lactose free milk products. The formulation consisted of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) stabilised by polysorbate 80 (P80). The advantage of this type of matrix is that it can be produced on a large scale with a fairly simple and mild process as the system is in practice self-dispersing, yet it has a well-defined internal nano-structure. Minor effects on the sponge phase structure due to the inclusion of the enzyme were observed using small angle X-ray scattering (SAXS). The effect of encapsulation on the enzymatic activity and kinetic characteristics of β-galactosidase activity was also investigated and can be related to the enzyme stability and confinement within the lipid matrix. The encapsulated β-galactosidase maintained its activity for a significantly longer time when compared to the free solution at the same temperature. Differences in the particle size and charge of sponge-like nanoparticles (L3-NPs) with and without the enzyme were analysed by dynamic light scattering (DLS) and zeta-potential measurements. Moreover, all the initial β-galactosidase was encapsulated within L3-NPs as revealed by size exclusion chromatography.
Collapse
Affiliation(s)
- Jennifer Gilbert
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and Department of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | | | - Justas Barauskas
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
| | - Cedric Dicko
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden and LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen, 1922370 Lund, Sweden
| |
Collapse
|
2
|
Santibáñez L, Fernández-Arrojo L, Guerrero C, Plou FJ, Illanes A. Removal of lactose in crude galacto-oligosaccharides by β-galactosidase from Kluyveromyces lactis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Vieira DC, Lima LN, Mendes AA, Adriano WS, Giordano RC, Giordano RL, Tardioli PW. Hydrolysis of lactose in whole milk catalyzed by β-galactosidase from Kluyveromyces fragilis immobilized on chitosan-based matrix. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Naidu MM, Kumar PVS, Shyamala BN, Sulochanamma G, Prakash M, Thakur MS. Enzyme-Assisted Process for Production of Superior Quality Vanilla Extracts from Green Vanilla Pods Using Tea Leaf Enzymes. FOOD BIOPROCESS TECH 2009. [DOI: 10.1007/s11947-009-0291-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Olafadehan OA, Aribike DS, Adeyemo AM. Mathematical modeling and simulation of steady state plug flow for lactose-lactase hydrolysis in fixed bed. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2009. [DOI: 10.1134/s0040579509010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
O'Connell S, Walsh G. Purification and properties of a β-galactosidase with potential application as a digestive supplement. Appl Biochem Biotechnol 2007; 141:1-14. [PMID: 17625262 DOI: 10.1007/s12010-007-9206-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 11/30/1999] [Accepted: 05/14/2006] [Indexed: 10/23/2022]
Abstract
Functional-based screening of crude beta-galactosidase activities from 42 yeast strains resulted in the selection of a single enzyme of potential interest as a digestive supplement. beta-Galactosidase produced by Kluyveromyces marxianus DSM5418 was purified to homogeneity by a combination of gel filtration, ion-exchange, and hydroxylapatite chromatographies. The denatured (123 kDa) and native molecular masses (251 kDa) suggest that the enzyme is a homodimer. The optimum pH and temperature of the purified enzyme were 6.8 and 37 degrees C, respectively. The unpurified beta-galactosidase in particular displayed a high level of stability when exposed to simulated intestinal conditions in vitro for 4 h. Matrix-assisted laser desorption ionization mass sectrometry analysis revealed that the enzyme's trypsin-generated peptide mass fingerprint shares several peptide fragment hits with beta-galactosidases from Kluyveromyces lactis. This confirms the enzyme's identity and indicates that significant sequence homology exists between these enzymes.
Collapse
Affiliation(s)
- S O'Connell
- Department of Chemical and Environmental Sciences and MSSI, University of Limerick, Limerick City, Ireland
| | | |
Collapse
|
7
|
Samoshina NM, Samoshin VV. The Michaelis constants ratio for two substrates with a series of fungal (mould and yeast) β-galactosidases. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme Microb Technol 2000; 26:271-281. [PMID: 10689088 DOI: 10.1016/s0141-0229(99)00167-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this research is to quantify the effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Quantification of these effects is important because temperature and enzyme origin are important process parameters. A kinetic model was used to describe the concentrations in time. The kinetic parameters were determined by using data obtained in batch experiments at various temperatures (20, 30, 40, and 50 degrees C) and by using beta-galactosidases from Bacillus circulans, Aspergillus oryzae, Kluyveromyces lactis, and Kluyveromyces fragilis. The effect of temperature on the kinetic parameters could be described with the Arrhenius equation, except for the inhibition parameter. Slightly higher oligosaccharide yields were found at higher temperatures. However, the influence of the initial lactose concentration was much larger. The higher yield at higher temperatures is an additional advantage when operating at high initial lactose concentrations and consequently elevated temperatures. Clear differences between the beta-galactosidases were found concerning amount, size, and type of oligosaccharides produced. The beta-galactosidase from B. circulans produced the most abundant amount, the most different, and largest-sized oligosaccharides. The beta-galactosidases from Kluyveromyces spp. produced mainly trisaccharides. The kinetic parameters for the different enzymes were determined and differences were discussed.
Collapse
|
9
|
|
10
|
Illanes A, Altamirano C, Aillapán A, Tomasello G, Zuñiga M. Packed-bed reactor performance with immobilized lactase under thermal inactivation. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(98)00027-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kim SH, Lim KP, Kim HS. Differences in the hydrolysis of lactose and other substrates by beta-D-galactosidase from Kluyveromyces lactis. J Dairy Sci 1997; 80:2264-9. [PMID: 9361198 DOI: 10.3168/jds.s0022-0302(97)76175-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hydrolysis of o-nitrophenyl galactopyranoside and lactose by beta-D-galactosidase from Kluyveromyces lactis was enhanced by the addition of Mg2+ and Mn2+, but the rates of activation by each metal on both substrates were not the same. The Co2+, Zn2+, and Ni2+ activated the o-nitrophenyl galactopyranoside-hydrolyzing activity of the enzyme, but these same metals inhibited the lactose-hydrolyzing activity. The addition of Mg2+ and EDTA to the assay buffer increased the hydrolysis of o-nitrophenyl galactopyranoside and lactose at different rates. The responses of o-nitrophenyl galactopyranoside and lactose to the enzyme activity were different as a function of pH. The hydrolyzing activity toward both substrates also was influenced by the concentration of the phosphate in the assay buffer. However, the profile of the enzyme activity toward each substrate was different as a function of concentration. Because the assay of beta-galactosidase using o-nitrophenyl galactopyranoside is fast and convenient, the estimation of lactose-hydrolyzing activity of the enzyme has frequently been made based on the assay of o-nitrophenyl galactopyranoside hydrolysis. As shown in this study, a slight change in the conditions of the assay system and the enzyme application may cause changes in the ability of the enzyme to hydrolyze both lactose and o-nitrophenyl galactopyranoside. The change in o-nitrophenyl galactopyranoside-hydrolyzing activity is not always consistent with that of the lactose-hydrolyzing activity under the given condition, which may cause an inaccurate estimation of the enzyme activity in the enzyme preparation as well as in actual applications of the enzyme.
Collapse
Affiliation(s)
- S H Kim
- Culture Systems, Inc., Mishawaka, IN 46545, USA
| | | | | |
Collapse
|
12
|
|
13
|
Pivarnik LF, Senecal AG, Rand AG. Hydrolytic and transgalactosylic activities of commercial beta-galactosidase (lactase) in food processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 1995; 38:1-102. [PMID: 15918291 DOI: 10.1016/s1043-4526(08)60083-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- L F Pivarnik
- Department of Food Science and Nutrition, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
14
|
|
15
|
|
16
|
Champluvier B, Francart B, Rouxhet PG. Co-immobilization by adhesion of ?-galactosidase in nonviable cells ofKluyveromyces lactis withKlebsiella oxytoca: Conversion of lactose into 2, 3-butanediol. Biotechnol Bioeng 1989; 34:844-53. [DOI: 10.1002/bit.260340614] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Joshi MS, Bachhawat N, Bhat SG. Stabilization of cetyltrimethylammonium bromide permeabilized yeast whole cell lactase. Biotechnol Lett 1989. [DOI: 10.1007/bf01024517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Champluvier B, Kamp B, Rouxhet P. Preparation and properties of β-galactosidase confined in cells of Kluyveromyces sp. Enzyme Microb Technol 1988. [DOI: 10.1016/0141-0229(88)90108-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
SHETH H, JELEN P, SHAH N. Lactose Hydrolysis in Ultrafiltration-Treated Cottage Cheese Whey with Various Whey Protein Concentrations. J Food Sci 1988. [DOI: 10.1111/j.1365-2621.1988.tb08946.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Foda M, Mohammed S, Hussein L. Production of lactase from Kluyveromyces lactis propagated in media with different sodium chloride concentrations. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/s0232-4393(88)80081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
BRODSKY J, GROOTWASSINK J. Development and Evaluation of Whole-Cell Yeast Lactase for Use in Dairy Processing. J Food Sci 1986. [DOI: 10.1111/j.1365-2621.1986.tb11195.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Chen KC, Houng JY, Ling AC. Product inhibition of the enzymatic hydrolysis of lactose. Enzyme Microb Technol 1985. [DOI: 10.1016/0141-0229(85)90153-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Victor B, Pavel J. Lactose Hydrolysis by Kluyveromyces lactis β-D Galactosidase in Skim Milk, Whey, Permeate and Model Systems. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0315-5463(85)71728-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
|
25
|
Levin RE, Mahoney RR. Purification and characterization of beta-galactosidase from a strain of Bacillus coagulans. Antonie Van Leeuwenhoek 1981; 47:53-64. [PMID: 6787981 DOI: 10.1007/bf00399066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
beta-Galactosidase from B. coagulans strain L4 is produced constitutively, has a mol. wt. of 4.3 x 10(5) and an optimal temperature of 55 degrees C. The optimal pH at 30 degrees C is 6.0 whereas at 55 degrees C it is 6.5. The energy of activation of enzyme activity is 41.9 kJ/mol (10 kcal/mol). No cations are required. The Km with ONPG as substrate is 4.2-5.6 mM and with lactose is 50 mM. The Ki for inhibition by galactose is 11.7-13.4 mM and for dextrose is 50 mM. Galactose inhibited competitively while dextrose inhibited noncompetitively. The purified and unprotected enzyme is 70% destroyed in 30 min at 55 degrees C whereas in the presence of 2 mg/ml of BSA 42% of the activity is destroyed in 30 min at 55 degrees C. An overall purification of 75.3-fold was achieved.
Collapse
|
26
|
|
27
|
MAHONEY RR. NUMBER AND NATURE OF THE SULPHYDRYL GROUPS OF ?-GALACTOSIDASE FROM KLUYVEROMYCES FRAGILIS. J Food Biochem 1980. [DOI: 10.1111/j.1745-4514.1980.tb00657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
MAHONEY RR, ADAMCHUK C. EFFECT OF MILK CONSTITUENTS ON THE HYDROLYSIS OF LACTOSE BY LACTASE FROM Kluyveromyces fragilis. J Food Sci 1980. [DOI: 10.1111/j.1365-2621.1980.tb07487.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|