1
|
Liu X, Zhang L, Lai B, Li J, Zang J, Ma L. Harnessing Protein Hydrolysates and Peptides for Hyperuricemia Management: Insights into Sources, Mechanisms, Techniques, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18758-18773. [PMID: 39161084 DOI: 10.1021/acs.jafc.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by an imbalance in uric acid production and excretion, frequently leading to gout and various chronic conditions. Novel bioactive compounds offer effective alternatives for managing HUA, reducing side effects of traditional medications. Recent studies have highlighted the therapeutic potential of protein hydrolysates and peptides in managing HUA. This review focuses on preparing and applying protein hydrolysates to treat HUA and explores peptides for xanthine oxidase inhibition. Particularly, we discuss their origins, enzymatic approaches, and mechanisms of action in detail. The review provides an updated understanding of HUA pathogenesis, current pharmacological interventions, and methodologies for the preparation, purification, identification, and assessment of these compounds. Furthermore, to explore the application of protein hydrolysates and peptides in the food industry, we also address challenges and propose solutions related to the safety, bitterness, oral delivery, and the integration of artificial intelligence in peptide discovery. Bridging traditional pharmacological approaches and innovative dietary interventions, this study paves the way for future research and development in HUA management, contributing to the utilization of proteins from different food sources. In conclusion, protein hydrolysates and peptides show significant promise as safe agents and dietary interventions for preventing and treating HUA.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boyin Lai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Hou M, Xiang H, Hu X, Chen S, Wu Y, Xu J, Yang X. Novel potential XOD inhibitory peptides derived from Trachinotus ovatus: Isolation, identification and structure-function analysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Purification and Identification of Novel Xanthine Oxidase Inhibitory Peptides Derived from Round Scad ( Decapterus maruadsi) Protein Hydrolysates. Mar Drugs 2021; 19:md19100538. [PMID: 34677437 PMCID: PMC8538066 DOI: 10.3390/md19100538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to investigate the xanthine oxidase (XO) inhibitory effects of peptides purified and identified from round scad (Decapterus maruadsi) hydrolysates (RSHs). In this study, RSHs were obtained by using three proteases (neutrase, protamex and alcalase). Among them, the RSHs of 6-h hydrolysis by neutrase displayed the strongest XO inhibitory activity and had an abundance of small peptides (<500 Da). Four novel peptides were purified by immobilized metal affinity chromatography and identified by nano-high-performance liquid chromatography mass/mass spectrometry. Their amino acid sequences were KGFP (447.53 Da), FPSV (448.51 Da), FPFP (506.59 Da) and WPDGR (629.66 Da), respectively. Then the peptides were synthesized to evaluate their XO inhibitory activity. The results indicated that the peptides of both FPSV (5 mM) and FPFP (5 mM) exhibited higher XO inhibitory activity (22.61 ± 1.81% and 20.09 ± 2.41% respectively). Fluorescence spectra assay demonstrated that the fluorescence quenching mechanism of XO by these inhibitors (FPSV and FPFP) was a static quenching procedure. The study of inhibition kinetics suggested that the inhibition of both FPSV and FPFP was reversible, and the type of their inhibition was a mixed one. Molecular docking revealed the importance of π-π stacking between Phe residue (contained in peptides) and Phe914 (contained in the XO) in the XO inhibitory activity of the peptides.
Collapse
|
5
|
He W, Su G, Sun-Waterhouse D, Waterhouse GI, Zhao M, Liu Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem 2019; 272:453-461. [DOI: 10.1016/j.foodchem.2018.08.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
|
6
|
Su G, He W, Zhao M, Waterhouse GI, Sun-Waterhouse D. Effect of different buffer systems on the xanthine oxidase inhibitory activity of tuna ( Katsuwonus pelamis ) protein hydrolysate. Food Res Int 2018; 105:556-562. [DOI: 10.1016/j.foodres.2017.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023]
|
7
|
Chiu HF, Cheng Y, Lu YY, Han YC, Shen YC, Venkatakrishnan K, Wang CK. Anti-mutagenicity, hypouricemic and antioxidant activities of alkaloids from vinegar and mei vinegar. J Food Biochem 2017. [DOI: 10.1111/jfbc.12373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine; Taichung Hospital, Ministry of Health and Well-being; Taichung Taiwan, Republic of China
| | - Yachih Cheng
- School of Nutrition; Chung Shan Medical University; Taichung City Taiwan, Republic of China
| | - Yan-Ying Lu
- Department of Neurology; Chung Shan Medical University; Taichung City Taiwan, Republic of China
| | - Yi-Chun Han
- School of Nutrition; Chung Shan Medical University; Taichung City Taiwan, Republic of China
| | - You-Cheng Shen
- School of Health Diet and Industry Management; Chung Shan Medical University; Taichung City Taiwan, Republic of China
| | - Kamesh Venkatakrishnan
- School of Nutrition; Chung Shan Medical University; Taichung City Taiwan, Republic of China
| | - Chin-Kun Wang
- School of Nutrition; Chung Shan Medical University; Taichung City Taiwan, Republic of China
| |
Collapse
|
8
|
Murota I, Taguchi S, Sato N, Park EY, Nakamura Y, Sato K. Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2392-2397. [PMID: 24588444 DOI: 10.1021/jf405504u] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A peptide that exerts antihyperuricemic activity after oral administration was identified from a microbial protease (alcalase) digest of the water extract of shark cartilage by in vivo activity-guided fractionation, using oxonate-induced hyperuricemic rats. Water extract of shark cartilage was first fractionated by preparative ampholine-free isoelectric focusing, followed by preparative reversed-phase liquid chromatography. The antihyperuricemic activity of the alcalse digests of the obtained fractions was evaluated using an animal model. Alcalase digests of the basic and hydrophobic fractions exerted antihyperuricemic activity. A total of 18 peptides were identified in the alcalase digest of the final active fraction. These peptides were chemically synthesized and evaluated for antihyperuricemic activity. Tyr-Leu-Asp-Asn-Tyr and Ser-Pro-Pro-Tyr-Trp-Pro-Tyr lowered the serum uric acid level via intravenous injection at 5 mg/kg of body weight. Furthermore, orally administered Tyr-Leu-Asp-Asn-Tyr showed antihyperuricemic activity. Therefore, these peptides are at least partially responsible for the antihyperuricemic activity of the alcalase digest of shark cartilage.
Collapse
Affiliation(s)
- Itsuki Murota
- Central Research Institute, Maruha Nichiro Holdings, Incorporated 16-2 Wadai, Tsukuba, Ibaraki 300-4295, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Murota I, Tamai T, Baba T, Sato N, Park EY, Nakamura Y, Sato K. Moderation of oxonate-induced hyperuricemia in rats via the ingestion of an ethanol-soluble fraction of a shark cartilage proteolytic digest. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
10
|
The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev 2010; 29:511-28. [PMID: 20714786 DOI: 10.1007/s10555-010-9241-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The process of carcinogenesis is complex and not easy to eliminate. It includes the initial occurrence of genetic alterations which can lead to the inactivation of tumor-suppressor genes and further accumulation of genetic alterations during tumor progression. Looking for food and food components with biological properties, collectively called nutraceuticals, that can hinder such alterations and prevent the inactivation of tumor-suppressor genes is a very promising area for cancer prevention. Proteins and peptides are one group of nutraceuticals that show potential results in preventing the different stages of cancer including initiation, promotion, and progression. In this review, we summarized current knowledge on the use of nutraceutical proteins and peptides in cancer prevention and treatment. We focused on the role of plant protease inhibitors, lactoferrin and lactoferricin, shark cartilage, plant lectins, and lunasin in the apoptosis, angiogenesis, and metastasis of cancer cells. Also included are studies on bioavailability and clinical trials conducted on these promising proteins and peptides.
Collapse
|