1
|
Chen J, Jin J, Liu Y, Zhao M, Qi Z, Shi W, Li Y, Lu S, Dong J, Wang Q. Assessing the structural and foaming property changes in egg yolk proteins due to malondialdehyde: Experimental and molecular docking studies. Food Chem 2024; 452:139529. [PMID: 38703740 DOI: 10.1016/j.foodchem.2024.139529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This study evaluated the effects of varying levels of malondialdehyde (MDA) on the structural and foaming properties of the egg yolk proteins (EYPs), and the interaction between them was explored by molecular docking. The results showed that oxidative modification due to MDA increased the carbonyl content of EYPs by 4.49 times. Simultaneously, the total sulfhydryl content was reduced by 21.47%, and the solubility of EYPs was significantly decreased (p < 0.05). Continuous oxidation disorders the previously ordered structure of EYPs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that some proteins underwent crosslinking and aggregation with increased MDA oxidation, aligning with changes in particle size and zeta-potential. Moderate oxidation (<1 mmol/L) enhanced the foaming capacity and foam stability of EYPs. Additionally, molecular docking results uncovered favorable interactions between MDA and specific EYPs, primarily through hydrogen bonding. This research offers valuable insights into managing the functional and quality changes of yolk products during processing.
Collapse
Affiliation(s)
- Jingya Chen
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jiaxin Jin
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yu Liu
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Mengbin Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zeliang Qi
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenjing Shi
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yangyang Li
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Ben-Fadhel Y, Perreault V, Marciniak A, Gaillard R, Pouliot Y, Brisson G, Doyen A. Effect of high-hydrostatic pressure on the digestibility of egg yolk and granule. J Food Sci 2024; 89:2803-2813. [PMID: 38551196 DOI: 10.1111/1750-3841.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
The impact of high hydrostatic pressure (HHP) on protein digestibility of egg yolk and egg yolk granule was evaluated by static in vitro digestion using the standardized INFOGEST 2.0 method. The degree of hydrolysis (DH) and the phospholipid content were determined during digestion, and the protein and peptide profiles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse phase-high pressure liquid chromatography (RP-HPLC). The results showed that HHP induced protein aggregation in egg yolk and granule, mainly by disulfide bridges, which were not disrupted in the oral phase. Proteolysis during the gastric phase improved egg yolk and granule protein solubility, regardless of whether HHP was applied. However, the extent of the samples' digestibility was not affected, with DH values ranging from 15% to 20%. During the intestinal phase, the DH of egg yolk protein (∼40%) was higher than that of the granule (∼25%), probably due to the denser structure of the granule reducing the accessibility of intestinal enzymes. The DH, peptide, and protein profiles of control and HHP-treated egg yolk showed similar protein digestion behaviors for both gastric and intestinal phases. Among the different proteins, only the digestibility of β-phosvitin in HHP-treated granule was enhanced. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin with the potential to generate bioactive phosvitin-derived phosphopeptides. PRACTICAL APPLICATION: High hydrostatic pressure, mainly used as a preservation process, did not impair the nutritional quality of the egg yolk and granule proteins but improved the susceptibility of phosvitin (protein contained in egg yolk) proteolysis to produce bioactive phosphopeptides. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin.
Collapse
Affiliation(s)
- Yosra Ben-Fadhel
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Véronique Perreault
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Alice Marciniak
- Department of Food Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Romuald Gaillard
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Yves Pouliot
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Guillaume Brisson
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Alain Doyen
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Liu XY, Chen W, Wang CT. Effect of Lipase and Phospholipase A1 on Foaming and Batter Properties of Yolk Contaminated Egg White. Foods 2023; 12:foods12061289. [PMID: 36981214 PMCID: PMC10048306 DOI: 10.3390/foods12061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Egg white (EW) is frequently used in bakery products because of its excellent foaming capabilities. However, egg yolk (EY) contamination often degrades the foaming characteristics of EW. The purpose of this study was to investigate the effect of different concentrations of phospholipase A1 (PLPA1) and lipase (LP) on EW. The changes in particle size distribution and potential before and after enzymatic digestion of EW with contaminated 0.5 wt% and 1.0%wt EY were tested. The foaming rate and foam stability were measured after the dispersions were digested with different concentrations of PLPA1 and LP. Additionally, the dispersion samples were used to prepare batter and angel cake, and the modulus, density, and microstructure of the batter were analyzed. Results showed that the potential absolute value increased when the EY was hydrolyzed by PLPA1. The distribution of yolk particle size showed a new aggregation and the average particle size decreased after LP hydrolysis. The dispersion samples hydrolyzed by PLPA1 and LP recovered all the properties of the samples at enzymatic concentrations of 500 U/g and 2500 U/g. This may be attributed to the changes in yolk particles resulting from the enzymatic digestion of EY and the production of amphiphilic lysophospholipids, fatty acids, and glycerol.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Cheng-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
4
|
|
5
|
Lonchamp J, Clegg P, Euston S. Functional enhancement of whey protein concentrate and egg by partial denaturation and co-processing. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Marcet I, Sáez-Orviz S, Rendueles M, Díaz M. Egg yolk granules and phosvitin. Recent advances in food technology and applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Li X, Wang YM, Sun CF, Lv JH, Yang YJ. Comparative Study on Foaming Properties of Egg White with Yolk Fractions and Their Hydrolysates. Foods 2021; 10:2238. [PMID: 34574348 PMCID: PMC8468132 DOI: 10.3390/foods10092238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
As an excellent foaming agent, egg white protein (EWP) is always contaminated by egg yolk in the industrial processing, therefore, decreasing its foaming properties. The aim of this study was to simulate the industrial EWP (egg white protein with 0.5% w/w of egg yolk) and characterize their foaming and structural properties when hydrolyzed by two types of esterase (lipase and phospholipase A2). Results showed that egg yolk plasma might have been the main fraction, which led to the poor foaming properties of the contaminated egg white protein compared with egg yolk granules. After hydrolyzation, both foamability and foam stability of investigated systems thereof (egg white protein with egg yolk, egg white protein with egg yolk plasma, and egg white protein with egg yolk granules) increased significantly compared with unhydrolyzed ones. However, phospholipids A2 (PLP) seemed to be more effective on increasing their foaming properties as compared to those systems hydrolyzed by lipase (LP). The schematic diagrams of yolk fractions were proposed to explain the aggregation and dispersed behavior exposed in their changes of structures after hydrolysis, suggesting the aggregated effects of LP on yolk plasma and destructive effects of PLP on yolk granules, which may directly influence their foaming properties.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yue-Meng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China;
| | - Cheng-Feng Sun
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Jian-Hao Lv
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yan-Jun Yang
- School of Food Science, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
8
|
Puertas G, Vázquez M. Evaluation of the composition and functional properties of whole egg plasma obtained by centrifugation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gema Puertas
- Department of Analytical Chemistry Faculty of Veterinary University of Santiago de Compostela Lugo 27002 Spain
| | - Manuel Vázquez
- Department of Analytical Chemistry Faculty of Veterinary University of Santiago de Compostela Lugo 27002 Spain
| |
Collapse
|
9
|
Gonzalez Toledo SY, Wu J. Effect of Phospholipase A 1 and High-Pressure Homogenization on the Stability, Toxicity, and Permeability of Egg Yolk/Fish Oil Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9081-9089. [PMID: 32806113 DOI: 10.1021/acs.jafc.0c02478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enzymatic treatment of egg yolk with phospholipases can enhance its emulsifying properties and thermal stability. Additionally, a two-step process (primary and secondary homogenization) could form emulsions with better stability. Thus, in this study we used a split-split-plot in time design to assess the effect of enzymatic treatment, processing, and storage conditions on the encapsulation efficiency, stability, toxicity, and permeability of egg yolk/fish oil emulsions stored up to 10 days at 45 °C. Egg yolk solutions before and after treatment with phospholipase A1 were used as carriers of fish oil containing ≥82% eicosapentaenoic and docosahexaenoic acids. Emulsions were formed by primary (24,000 rpm, 4 min) and secondary (200 MPa) homogenization. The combined effect of treatment with phospholipase A1 and secondary homogenization resulted in emulsions with improved stability, increased the encapsulation efficiency of the carriers, and reduced the release of oil to the particle surface, resulting in lower formation of oxidation products. At the end of storage time, none of the emulsions were toxic to Caco-2 cells at a concentration of 75 μg/mL medium, while nonencapsulated fish oil reduced cell viability to 81%. Only eicosapentaenoic acid was detected in the basolateral side of Caco-2:HT29 monolayers, and its apparent permeability from nonencapsulated fish oil was significantly lower than that from emulsions.
Collapse
Affiliation(s)
- Selene Yadira Gonzalez Toledo
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
10
|
Fu X, Huang X, Jin Y, Zhang S, Ma M. Characterization of enzymatically modified liquid egg yolk: Structural, interfacial and emulsifying properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Addition of cationic guar-gum and oleic acid improved the stability of plasma emulsions prepared with enzymatically hydrolyzed egg yolk. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
12
|
Li Q, Tang S, Mourad FK, Zou W, Lu L, Cai Z. Emulsifying stability of enzymatically hydrolyzed egg yolk granules and structural analysis. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105521] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Physicochemical and functional properties of leftover egg yolk granules after phosvitin extraction. Food Chem 2018; 268:369-377. [DOI: 10.1016/j.foodchem.2018.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 11/23/2022]
|
14
|
Puertas G, Vázquez M. Advances in techniques for reducing cholesterol in egg yolk: A review. Crit Rev Food Sci Nutr 2018. [DOI: 10.1080/10408398.2018.1448357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Gema Puertas
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002-Lugo, Spain
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002-Lugo, Spain
| |
Collapse
|
15
|
Bao ZJ, Zhao Y, Wang XY, Chi YJ. Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:669-678. [PMID: 28298680 PMCID: PMC5334225 DOI: 10.1007/s13197-017-2504-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/02/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Effects of enzymatic hydrolysis on the physicochemical and functional properties of egg yolk were investigated in this study. Alcalase, neutrase and flavourzyme were used to hydrolyze egg yolk. Solubility, foaming properties, emulsifying and microstructure properties of egg yolk were determined after enzymatic hydrolysis. Results showed that alcalase had better efficiency of hydrolysis than neutrase and flavourzyme. Enzymatic hydrolysis caused a marked changes in protein solubility, surface hydrophobicity, molecular weight distributions, microstructure and other functional properties. It was observed that egg yolk and its hydrolysates exhibited a relatively smooth curve over the entire pH range; egg yolk hydrolysates with high DH had higher solubility than those having lower DH. Foam capacity and stability generally increased with increasing DH although foam stability showed a decrease at 15% DH. Hydrolysates of egg yolk showed scattered and fewer aggregated particles. This study demonstrated that egg yolk hydrolysates could be an excellent emulsifying agent for food and other applications.
Collapse
Affiliation(s)
- Zhi-jie Bao
- Department of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Ying Zhao
- Department of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Xiao-ying Wang
- Department of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Yu-Jie Chi
- Department of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| |
Collapse
|
16
|
Artime A, Laca A, Laca A, Díaz M. Alcoholic beverage from the egg yolk aqueous fraction. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ainhoa Artime
- Department of Chemical and Environmental Engineering University of Oviedo C/Julián Clavería s/n 33071 Oviedo Spain
| | - Amanda Laca
- Scientist‐Technical Services (Food Technology Laboratory) University of Oviedo C/Fernando Bonguera s/n 33071 Oviedo Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering University of Oviedo C/Julián Clavería s/n 33071 Oviedo Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering University of Oviedo C/Julián Clavería s/n 33071 Oviedo Spain
| |
Collapse
|
17
|
Laca A, Paredes B, Rendueles M, Díaz M. Egg yolk plasma: Separation, characteristics and future prospects. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Laca A, Paredes B, Rendueles M, Díaz M. Egg yolk granules: Separation, characteristics and applications in food industry. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.05.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Gerits LR, Pareyt B, Decamps K, Delcour JA. Lipases and Their Functionality in the Production of Wheat-Based Food Systems. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12085] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lien R. Gerits
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| | - Bram Pareyt
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| | - Karolien Decamps
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe); KU Leuven, Kasteelpark Arenberg 20 - box 2463 B-3001 Heverlee Belgium
| |
Collapse
|