1
|
Sangkhawasi M, Kerdpol K, Ismail A, Nutho B, Hanpiboon C, Wolschann P, Krusong K, Rungrotmongkol T, Hannongbua S. In Vitro and In Silico Study on the Molecular Encapsulation of α-Tocopherol in a Large-Ring Cyclodextrin. Int J Mol Sci 2023; 24:ijms24054425. [PMID: 36901859 PMCID: PMC10002136 DOI: 10.3390/ijms24054425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
α-tocopherol is the physiologically most active form of vitamin E, with numerous biological activities, such as significant antioxidant activity, anticancer capabilities, and anti-aging properties. However, its low water solubility has limited its potential use in the food, cosmetic, and pharmaceutical industries. One possible strategy for addressing this issue is the use of a supramolecular complex with large-ring cyclodextrins (LR-CDs). In this study, the phase solubility of the CD26/α-tocopherol complex was investigated to assess the possible ratios between host and guest in the solution phase. Next, the host-guest association of the CD26/α-tocopherol complex at different ratios of 1:2, 1:4, 1:6, 2:1, 4:1, and 6:1 was studied by all-atom molecular dynamics (MD) simulations. At 1:2 ratio, two α-tocopherol units interact spontaneously with CD26, forming an inclusion complex, as supported by the experimental data. In the 2:1 ratio, a single α-tocopherol unit was encapsulated by two CD26 molecules. In comparison, increasing the number of α-tocopherol or CD26 molecules above two led to self-aggregation and consequently limited the solubility of α-tocopherol. The computational and experimental results indicate that a 1:2 ratio could be the most suitable stoichiometry to use in the CD26/α-tocopherol complex to improve α-tocopherol solubility and stability in inclusion complex formation.
Collapse
Affiliation(s)
- Mattanun Sangkhawasi
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khanittha Kerdpol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chonnikan Hanpiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66-2218-5426 (T.R.); +66-8163-61957 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66-2218-5426 (T.R.); +66-8163-61957 (S.H.)
| |
Collapse
|
2
|
Muldakhmetov Z, Fazylov S, Nurkenov O, Burkeev M, Sarsenbekova A, Gazaliev A, Muratbekova A, Davrenbekov S. Comparative analysis of the thermal decomposition kinetics of β-cyclodextrin inclusion complexes with anabasine at different heating rates. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Zingg JM, Stamatiou C, Montalto G, Daunert S. Modulation of CD36-mediated lipid accumulation and senescence by vitamin E analogs in monocytes and macrophages. Biofactors 2022; 48:665-682. [PMID: 35084073 DOI: 10.1002/biof.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023]
Abstract
The CD36/FAT scavenger receptor/fatty acids transporter regulates cellular lipid accumulation important for inflammation, atherosclerosis, lipotoxicity, and initiation of cellular senescence. Here we compared the regulatory effects of the vitamin E analogs alpha-tocopherol (αT), alpha-tocopheryl phosphate (αTP), and αTP/βCD (a nanocarrier complex between αTP and β-cyclodextrin [βCD]) and investigated their regulatory effects on lipid accumulation, phagocytosis, and senescence in THP-1 monocytes and macrophages. Both, αTP and αTP/βCD inhibited CD36 surface exposition stronger than αT leading to more pronounced CD36-mediated events such as inhibition of DiI-labeled oxLDL uptake, phagocytosis of fluorescent Staphylococcus aureus bioparticles, and cell proliferation. When compared to βCD, the complex of αTP/βCD extracted cholesterol from cellular membranes with higher efficiency and was associated with the delivery of αTP to the cells. Interestingly, both, αTP and more so αTP/βCD inhibited lysosomal senescence-associated beta-galactosidase (SA-β-gal) activity and increased lysosomal pH, suggesting CD36-mediated uptake into the endo-lysosomal phagocytic compartment. Accordingly, the observed pH increase was more pronounced with αTP/βCD in macrophages whereas no significant increase occurred with αT, alpha-tocopheryl acetate (αTA) or βCD. In contrast to αT and αTA, the αTP molecule is di-anionic at neutral pH, but upon moving into the acidic endo-lysosomal compartment becomes protonated and thus is acting as a base. Moreover, it is expected to be retained in lysosomes since it still carries one negative charge, similar to lysosomotropic drugs. Thus, treatment with αTP or αTP/βCD and/or inhibition of conversion of αTP to αT as it occurs in aged cells may counteract CD36-mediated overlapping inflammatory, senescent, and atherosclerotic events.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Christina Stamatiou
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Giulia Montalto
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Kerdpol K, Nutho B, Krusong K, Poo-arporn RP, Rungrotmongkol T, Hannongbua S. Encapsulation of α-tocopherol in large-ring cyclodextrin containing 26 α-D-glucopyranose units: A molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Bakirova R, Nukhuly A, Iskineyeva A, Fazylov S, Burkeyev M, Mustafayeva A, Minayeva Y, Sarsenbekova A. Obtaining and Investigation of the β-Cyclodextrin Inclusion Complex with Vitamin D 3 Oil Solution. SCIENTIFICA 2020; 2020:6148939. [PMID: 32908782 PMCID: PMC7450341 DOI: 10.1155/2020/6148939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Background. The research results of fat-soluble vitamin D 3 (cholecalciferol) encapsulation with β-cyclodextrin have been presented in this work. The vitamin D 3 inclusion complex with β-cyclodextrin was obtained under microwave radiation. The surface morphology of obtained clathrate inclusion complexes was described with the help of a scanning electron microscope. The thermographic measurement results on a differential scanning calorimeter have been presented. The activation energy of the β-cyclodextrin : vitamin D 3 clathrate complex thermal oxidative destruction reaction was calculated. The clathrate thermal destruction kinetic parameters were determined. The inclusion complex spectral properties were characterized by IR-Fourier and 1H and 13C NMR spectroscopy. The existence of β-cyclodextrin inclusion complex with vitamin D 3 in a 2 : 1 ratio was confirmed by the experimental results. The activation energy of thermal destruction of the inclusion complex of β-cyclodextrin with vitamin D 3 was calculated using four different methods.
Collapse
Affiliation(s)
- Ryszhan Bakirova
- Karaganda Medical University, Non-Commercial Joint-Stock Company, Karaganda, Kazakhstan
| | | | - Ainara Iskineyeva
- Saken Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | | | | | | | | | | |
Collapse
|
6
|
Cao C, Xu L, Xie P, Hu J, Qi J, Zhou Y, Cao L. The characterization and evaluation of the synthesis of large-ring cyclodextrins (CD 9-CD 22) and α-tocopherol with enhanced thermal stability. RSC Adv 2020; 10:6584-6591. [PMID: 35495982 PMCID: PMC9049713 DOI: 10.1039/c9ra10748g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
Large-ring cyclodextrins LR-CDs (CD9–CD22) were obtained from rice starch using cyclodextrin glycosyltransferase (CGTase), and were used as a wall material for embedding α-tocopherol. Complexes of α-tocopherol and LR-CDs were prepared by co-precipitation. A molar ratio of α-tocopherol/LR-CD of 1 : 2 showed the highest encapsulation efficiency. The surface morphology of the complex particles was observed to vary from irregular flakes to the formation of smaller clusters of particles using scanning electron microscopy (SEM). Based on 1H NMR and FT-IR observations, the inclusion complexes exhibited significant chemical shifts of 0.3 ppm and decreased peak signals. In addition, thermal analysis showed that the microcapsules improved the thermostability of the α-tocopherols. Antioxidant activity analysis proved the stability of α-tocopherol during storage. This study could serve as a reference for the more effective use of LR-CDs as wall materials. Large-ring cyclodextrins LR-CDs (CD9–CD22) were obtained from rice starch using cyclodextrin glycosyltransferase (CGTase), and were used as a wall material for embedding α-tocopherol.![]()
Collapse
Affiliation(s)
- Chuan Cao
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China .,Anhui Vocational College of Grain Engineering Hefei 230011 China
| | - Li Xu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Peng Xie
- Nanjing University of Finance and Economics China
| | - Jinwei Hu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University Hefei 230036 China
| | - Lei Cao
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences China
| |
Collapse
|
7
|
Kuttiyawong K, Saehu S, Ito K, Pongsawasdi P. Synthesis of large-ring cyclodextrin from tapioca starch by amylomaltase and complex formation with vitamin E acetate for solubility enhancement. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|