1
|
Duan L, Quan L, Zheng B, Li Z, Zhang G, Zhang M, Zhou H. Inflation using hydrogen improves donor lung quality by regulating mitochondrial function during cold ischemia phase. BMC Pulm Med 2023; 23:213. [PMID: 37330482 DOI: 10.1186/s12890-023-02504-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction results in poor organ quality, negatively affecting the outcomes of lung transplantation. Whether hydrogen benefits mitochondrial function in cold-preserved donors remain unclear. The present study assessed the effect of hydrogen on mitochondrial dysfunction in donor lung injury during cold ischemia phase (CIP) and explored the underlying regulatory mechanism. METHODS Left donor lungs were inflated using 40% oxygen + 60% nitrogen (O group), or 3% hydrogen + 40% oxygen + 57% nitrogen (H group). Donor lungs were deflated in the control group and were harvested immediately after perfusion in the sham group (n = 10). Inflammation, oxidative stress, apoptosis, histological changes, mitochondrial energy metabolism, and mitochondrial structure and function were assessed. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were also analyzed. RESULTS Compared with the sham group, inflammatory response, oxidative stress, histopathological changes, and mitochondrial damage were severe in the other three groups. However, these injury indexes were remarkably decreased in O and H groups, with increased Nrf2 and HO-1 levels, elevated mitochondrial biosynthesis, inhibition of anaerobic glycolysis and restored mitochondrial structure and function compared with the control group. Moreover, inflation using hydrogen contributed to stronger protection against mitochondrial dysfunction and higher levels of Nrf2 and HO-1 when comparing with O group. CONCLUSIONS Lung inflation using hydrogen during CIP may improve donor lung quality by mitigating mitochondrial structural anomalies, enhancing mitochondrial function, and alleviating oxidative stress, inflammation, and apoptosis, which may be achieved through activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Le Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pain Medicine, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China
| | - Lini Quan
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pain Medicine, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China
| | - Bin Zheng
- Department of Anesthesiology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhe Li
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangchao Zhang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengdi Zhang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China.
| | - Huacheng Zhou
- Department of Pain Medicine, the Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, 150001, Harbin, China.
| |
Collapse
|
2
|
Comparison of Inflation and Ventilation with Hydrogen Sulfide during the Warm Ischemia Phase on Ischemia-Reperfusion Injury in a Rat Model of Non-Heart-Beating Donor Lung Transplantation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3645304. [PMID: 36778057 PMCID: PMC9911243 DOI: 10.1155/2023/3645304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023]
Abstract
Donor lung ventilation and inflation during the warm ischemia could attenuate ischemia-reperfusion injury (IRI) after lung transplantation. Hydrogen sulfide (H2S), as a kind of protective gas, has demonstrated the antilung IRI effect. This study is aimed at observing the different methods of administering H2S in the setting of warm ischemia, ventilation, and inflation on the lung graft from a rat non-heart-beating donor. After 1 h of cardiac arrest, donor lungs in situ were inflated with 80 ppm H2S (FS group), ventilated with 80 ppm H2S (VS group), or deflated (control group) for 2 h. Then, the lung transplantation was performed after 3 h cold ischemia. The rats without ischemia and reperfusion were in the sham group. Pulmonary surfactant in the bronchoalveolar lavage fluid was measured in donor lung. The inflammatory response, cell apoptosis, and lung graft function were assessed at 3 h after reperfusion. The lung injury was exacerbated in the control group, which was attenuated significantly after the H2S treatment. Compared with the FS group, the pulmonary surfactant in the donor was deteriorated, the lung oxygenation function was decreased, and the inflammatory response and cell apoptosis were increased in the graft in the VS group (P < 0.05). In conclusion, H2S inflation during the warm ischemia phase improved the function of lung graft via regulating pulmonary surfactant stability and decreased the lung graft IRI via decreasing the inflammatory response and cell apoptosis.
Collapse
|
3
|
Kosutova P, Nemcova N, Kolomaznik M, Mokra D, Calkovska A, Mikolka P. Time-Dependent Oxidative Alterations in Plasma and Lung Tissue after Meconium Aspiration in a Rabbit Model. Antioxidants (Basel) 2022; 12:antiox12010037. [PMID: 36670899 PMCID: PMC9854924 DOI: 10.3390/antiox12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Aspirated meconium into a newborn's airways induces the transcription of pro-oxidative mediators that cooperate in the pathogenesis of inflammatory changes and may negatively affect the commonly used exogenous surfactant therapy. However, inflammation is not treated at present, nor is the time dependence of oxidative damage known. The aim of our study was to describe the time course of oxidative stress marker production during meconium aspiration syndrome (MAS) and its relationship to leukocyte infiltration. New Zealand rabbits were instilled with saline or meconium suspension and ventilated for 5.5 h. Respiratory parameters were recorded and blood samples were taken before meconium application and in time intervals of 15 and 30 min, 1.0, 1.5, 3.5 and 5.5 h after application to evaluate oxidative markers and differential leukocytes count. Meconium aspiration led to a worsening of respiratory parameters and a decrease in leukocytes in the first 15 min. Changes in leukocytes were correlated both with nitrotyrosine (3NT) levels and thiobarbituric acid reactive substance (TBARS) levels, with the latter also related to changes in neutrophil count. The production of 3NT and TBARS increased in 1.5 and 3.5 h, respectively, in different ways, suggesting more than one source of oxidative agents and a potential risk of exogenous surfactant inactivation in a short time. We observed that MAS triggered neutrophil migration to the alveolar space and activation, as shown by the increased expression of pro-inflammatory cytokines and generation of indicators of oxidative damage to proteins and lipids during the time period when iNOS and NO metabolites were released.
Collapse
Affiliation(s)
- Petra Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nikolett Nemcova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Maros Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Mikolka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Correspondence:
| |
Collapse
|
4
|
Dexmedetomidine Alleviates Lung Oxidative Stress Injury Induced by Ischemia-Reperfusion in Diabetic Rats via the Nrf2-Sulfiredoxin1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5584733. [PMID: 35252452 PMCID: PMC8894003 DOI: 10.1155/2022/5584733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Oxidative stress injury (OSI) is an important pathological process in lung ischemia-reperfusion injury (LIRI), and diabetes mellitus (DM) can exacerbate this injury. Dexmedetomidine protects against LIRI by reducing OSI. However, the effect of dexmedetomidine on LIRI under diabetic conditions remains unclear. Therefore, this study is aimed at exploring the effects and mechanisms of dexmedetomidine on OSI induced by LIRI in diabetic rats. Rats were randomly divided into control+sham (CS), DM+sham (DS), control+ischemia-reperfusion (CIR), DM+ischemia-reperfusion (DIR), and DM+ischemia-reperfusion+dexmedetomidine (DIRD) groups (
). In the CS and DS groups, the nondiabetic and diabetic rats underwent thoracotomy only without LIRI. In the CIR, DIR, and DIRD groups, LIRI was induced through left hilum occlusion for 60 min, followed by reperfusion for 120 min in nondiabetic and diabetic rats, and rats in the DIRD group were administered dexmedetomidine (3, 5, and 10 μg/kg). Compared with those in the CS group, the OSI, lung compliance, apoptosis, and oxygenation indices deteriorated in the DS group (
), and these indices were further aggravated in the CIR and DIR groups (
), being the worst in the DIR group (
). Compared to those of the DIR group, the OSI, lung compliance (
vs.
), apoptosis (
vs.
), oxygenation (
vs.
), and caspase-3 and caspase-9 protein expression indices were attenuated, and Nrf2 and sulfiredoxin1 protein expression was increased in the DIRD group (
). And the lung injury, oxygenation, OSI, and Nrf2 and sulfiredoxin1 protein expression changed in a concentration-dependent manner. In conclusion, dexmedetomidine alleviated lung OSI and improved lung function in a diabetic rat LIRI model through the Nrf2-sulfiredoxin1 pathway.
Collapse
|
5
|
Kosutova P, Mikolka P, Balentova S, Adamkov M, Mokra D. Effects of nitric oxide donor on the lung functions in a saline lavage-induced model of ARDS. Physiol Res 2020; 68:S265-S273. [PMID: 31928044 DOI: 10.33549/physiolres.934365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia, neutrophil-mediated inflammation, and lung edema formation. Whereas lung damage might be alleviated by nitric oxide (NO), goal of this study was to evaluate if intratracheal NO donor S-nitroso-N-acetylpenicillamine (SNAP) can positively influence the lung functions in experimental model of ARDS. New Zealand rabbits with respiratory failure induced by saline lavage (30 ml/kg, 9+/-3 times) were divided into: ARDS group without therapy, ARDS group treated with SNAP (7 mg/kg i.t.), and healthy Control group. During 5 h of ventilation, respiratory parameters (blood gases, ventilatory pressures) were estimated. After anesthetics overdosing, left lung was saline-lavaged and cell count, cell viability and protein content in bronchoalveolar lavage fluid (BALF) were measured. Right lung tissue was used for estimation of wet/dry weight ratio, concentration of NO metabolites, and histomorphological investigation. Repetitive lung lavage induced lung injury, worsened gas exchange, and damaged alveolar-capillary membrane. Administration of SNAP reduced cell count in BALF, lung edema formation, NO metabolites, and histopathological signs of injury, and improved respiratory parameters. Treatment with intratracheal SNAP alleviated lung injury and edema and improved lung functions in a saline-lavaged model of ARDS suggesting a potential of NO donors also for patients with ARDS.
Collapse
Affiliation(s)
- P Kosutova
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | |
Collapse
|
6
|
Protective effects of hydrogen inhalation during the warm ischemia phase against lung ischemia-reperfusion injury in rat donors after cardiac death. Microvasc Res 2019; 125:103885. [PMID: 31175855 DOI: 10.1016/j.mvr.2019.103885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Successful amelioration of long-term warm ischemia lung injury in donors after cardiac death (DCDs) can remarkably improve outcomes. Hydrogen gas provides potent anti-inflammatory and antioxidant effects against ischemia-reperfusion injury (IRI). This study observed the effects of hydrogen inhalation on lung grafts during the warm ischemia phase in cardiac death donors. METHODS After cardiac death, rat donor lungs (n = 8) underwent mechanical ventilation with 40% oxygen plus 60% nitrogen (control group) or 3% hydrogen and 40% oxygen plus 57% nitrogen (hydrogen group) for 2 h during the warm ischemia phase in situ. Then, lung transplantation was performed after 2 h of cold storage and 3 h of recipient reperfusion prior to lung graft assessment. Rats that underwent left thoracotomy without transplantation served as the sham group (n = 8). The results of static compliance and arterial blood gas analysis were assessed in the recipients. The wet-to-dry weight ratio (W/D), inflammation, oxidative stress, cell apoptosis and histologic changes were evaluated after 3 h of reperfusion. Nuclear factor kappa B (NF-κB) protein expression in the graft was analyzed by Western blotting. RESULTS Compared with the sham group, lung function, W/D, inflammatory reaction, oxidative stress and histological changes were decreased in both transplant groups (control and hydrogen groups). However, compared with the control group, exposure to 3% hydrogen significantly improved lung graft static compliance and oxygenation and remarkably decreased the wet-to-dry weight ratio, inflammatory reactions, and lipid peroxidation. Furthermore, hydrogen improved the lung graft histological changes, decreased the lung injury score and apoptotic index and reduced NF-κB nuclear accumulation in the lung grafts. CONCLUSION Lung inhalation with 3% hydrogen during the warm ischemia phase attenuated lung graft IRI via NF-κB-dependent anti-inflammatory and antioxidative effects in rat donors after cardiac death.
Collapse
|
7
|
Effects of S-Nitroso-N-Acetyl-Penicillamine (SNAP) on Inflammation, Lung Tissue Apoptosis and iNOS Activity in a Rabbit Model of Acute Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 935:13-23. [PMID: 27334732 DOI: 10.1007/5584_2016_34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lung injury is characterized by lung edema, surfactant dysfunction, and inflammation. The main goal of our study was to evaluate effects of S-nitroso-N-acetyl-penicillamine (SNAP) on migration of cells into the lung and their activation, inducible NO synthase (iNOS) activity, and apoptosis in experimental acute lung injury (ALI) in rabbits. ALI was induced by repetitive lung lavage with saline. The animals were divided into the following groups: (1) ALI without therapy, (2) lung injury treated with SNAP (ALI + SNAP), and (3) healthy animals (Control). After 5 h of ventilation, total and differential counts of cells in the bronchoalveolar lavage fluid (BALF) were assessed. Concentrations of interleukins (IL)-1ß, IL-6, and IL-8, endogenous secretory receptor for advanced glycation endproducts (esRAGE), sphingosine-1-phosphate receptor (S1PR)3, caspase-3, and mRNA expression of inducible NO synthase (iNOS) in lung tissue and nitrite/nitrate in plasma were analyzed. In the right lung, apoptotic cells were evaluated by TUNEL assay. In the animals with ALI, higher counts of cells, mainly neutrophils, in BALF and increased production of pro-inflammatory substances were observed compared with controls. SNAP therapy reduced a leak of cells into the lung and decreased concentrations of pro-inflammatory and apoptotic markers, reduced mRNA expression of iNOS, and decreased apoptotic index in the lung.
Collapse
|
8
|
Meng C, Ma L, Niu L, Cui X, Liu J, Kang J, Liu R, Xing J, Jiang C, Zhou H. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats. Life Sci 2016; 151:199-206. [PMID: 26969763 DOI: 10.1016/j.lfs.2016.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022]
Abstract
AIMS Lung ischemia-reperfusion injury (IRI) may be attenuated through carbon monoxide (CO)'s anti-inflammatory effect or hydrogen (H2)'s anti-oxidant effect. In this study, the effects of lung inflation with CO, H2, or both during the cold ischemia phase on graft function were observed. MATERIALS AND METHODS Rat donor lungs, inflated with 40% oxygen (control group), 500ppm CO (CO group), 3% H2 (H2 group) or 500ppm CO+3% H2 (COH group), were kept at 4°C for 180min. After transplantation, the recipients' artery blood gas and pressure-volume (P-V) curves were analyzed. The inflammatory response, oxidative stress and apoptosis in the recipients were assessed at 180min after reperfusion. KEY FINDINGS Oxygenation in the CO and H2 groups were improved compared with the control group. The CO and H2 groups also exhibited significantly improved P-V curves, reduced lung injury, and decreased inflammatory response, malonaldehyde content, and cell apoptosis in the grafts. Furthermore, the COH group experienced enhanced improvements in oxygenation, P-V curves, inflammatory response, lipid peroxidation, and graft apoptosis compared to the CO and H2 groups. SIGNIFICANCE Lung inflation with CO or H2 protected against IRI via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in a model of lung transplantation in rats, which was enhanced by combined treatment with CO and H2.
Collapse
Affiliation(s)
- Chao Meng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Liangjuan Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China
| | - Li Niu
- Department of Anesthesiology, The 211 Hospital of the Chinese People's Liberation Army, Harbin, Hei Longjiang Province 150001, China
| | - Xiaoguang Cui
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Jinfeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Jiyu Kang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China
| | - Rongfang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Jingchun Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Changlin Jiang
- Department of Anesthesiology, The General Hospital of Daqing Oilfield, Daqing, Hei Longjiang Province 163000, China
| | - Huacheng Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China.
| |
Collapse
|
9
|
Meng C, Ma L, Liu J, Cui X, Liu R, Xing J, Zhou H. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury. Exp Biol Med (Maywood) 2015; 241:246-54. [PMID: 26290141 DOI: 10.1177/1535370215600550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen.
Collapse
Affiliation(s)
- Chao Meng
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Liangjuan Ma
- Department of Dermatology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jinfeng Liu
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Xiaoguang Cui
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Rongfang Liu
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Jingchun Xing
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Huacheng Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
10
|
Liu R, Fang X, Meng C, Xing J, Liu J, Yang W, Li W, Zhou H. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats. Exp Biol Med (Maywood) 2015; 240:1214-22. [PMID: 25662956 DOI: 10.1177/1535370214563895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/22/2014] [Indexed: 11/17/2022] Open
Abstract
Hydrogen has antioxidant and anti-inflammatory effects on lung ischemia-reperfusion injury when it is inhaled by donor or/and recipient. This study examined the effects of lung inflation with 3% hydrogen during the cold ischemia phase on lung graft function in rats. The donor lung was inflated with 3% hydrogen, 40% oxygen, and 57% nitrogen at 5 mL/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. In the control group, the donor lung was inflated with 40% oxygen and 60% nitrogen at 5 mL/kg. The recipient was euthanized 2 h after orthotropic lung transplantation. The hydrogen concentration in the donor lung during the cold ischemia phase was 1.99-3%. The oxygenation indices in the arterial blood and pulmonary vein blood were improved in the hydrogen group. The inflammation response indices, including lung W/D ratio, the myeloperoxidase activity in the grafts, and the levels of IL-8 and TNF-α in serum, were significantly lower in the hydrogen group (5.2 ± 0.8, 0.76 ± 0.32 U/g, 340 ± 84 pg/mL, and 405 ± 115 pg/mL, respectively) than those in the control group (6.5 ± 0.7, 1.1 ± 0.5 U/g, 443 ± 94 pg/mL, and 657 ± 96 pg/mL, respectively (P < 0.05), and the oxidative stress indices, including the superoxide dismutase activity and the level of malonaldehyde in lung grafts were improved after hydrogen application. Furthermore, the lung injury score determined by histopathology, the cell apoptotic index, and the caspase-3 protein expression in lung grafts were decreased after hydrogen treatment, and the static pressure-volume curve of lung graft was improved by hydrogen inflation. In conclusion, lung inflation with 3% hydrogen during the cold ischemia phase alleviated lung graft injury and improved graft function.
Collapse
Affiliation(s)
- Rongfang Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Xianhai Fang
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Chao Meng
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Jingchun Xing
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Jinfeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Wanchao Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Wenzhi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China
| | - Huacheng Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
11
|
Lv X, Tan J, Liu D, Wu P, Cui X. Intratracheal administration of p38α short-hairpin RNA plasmid ameliorates lung ischemia-reperfusion injury in rats. J Heart Lung Transplant 2012; 31:655-62. [PMID: 22503847 DOI: 10.1016/j.healun.2012.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/09/2012] [Accepted: 03/13/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) remains a significant problem after lung transplantation. A crucial signaling enzyme involved in inflammation and apoptosis during LIRI is p38 mitogen-activated protein kinase (MAPK). Gene silencing of p38α by short hairpin RNA (shRNA) can downregulate p38α expression. The lungs have an extremely large surface area, which makes the absorption of shRNA highly effective. Therefore, we evaluated the therapeutic efficacy of p38α shRNA plasmids in a rat model of lung transplantation. METHODS The delivery of p38α shRNA plasmid was performed by intratracheal administration 48 hours before transplantation into donor rats. Control animals received scrambled shRNA plasmids. Reverse-transcription polymerase chain reaction and Western blots were used to assess gene silencing efficacy. The therapeutic effects of shRNA plasmids were evaluated by lung function tests. We determined the levels of inflammatory cytokines, the level of intercellular adhesion molecule 1 (ICAM-1), c-Myc mRNA expression, and ICAM-1 protein expression, and the presence of cell apoptosis. RESULTS Rats administered p38α shRNA plasmids showed a significant downregulation in lung expression of p38α transcripts and protein levels. Compared with the control group, the p38α shRNA group showed a higher pulmonary vein oxygen level, lower wet weight-to-dry weight ratio, lower lung injury score, and lower serum levels of tumor necrosis factor-α, interleukin-6, and interleukin-8. Messenger RNA levels of ICAM-1 and c-Myc in the p38α shRNA group were dramatically lower than in the control group. Levels of ICAM-1 protein expression exhibited a similar trend. Cell apoptosis decreased in the p38α shRNA group vs the control group. CONCLUSION Intratracheal administration of p38α shRNA plasmids provided therapeutic effects in a rat model of lung transplantation.
Collapse
Affiliation(s)
- Xiangqi Lv
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, and Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
12
|
Zhou H, Liu J, Pan P, Jin D, Ding W, Li W. Carbon monoxide inhalation decreased lung injury via anti-inflammatory and anti-apoptotic effects in brain death rats. Exp Biol Med (Maywood) 2010; 235:1236-43. [PMID: 20810760 DOI: 10.1258/ebm.2010.010147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brain death (BD) induces acute lung injury and makes donor lungs unfit for transplantation. Carbon monoxide (CO) inhalation at 50–500 ppm exerts anti-inflammatory and anti-apoptosis effects in several lung injury models. We examined whether CO inhalation would show favorable effects on lung injury in BD rats. BD rats inhaled 250 ppm CO for two hours. Inhalation decreased the severity of lung injury, as checked by histological examination. CO treatment reversed aggravation in PaO2/FiO2, base excess and pH of BD rats. CO inhalation downregulated the pro-inflammatory cytokines (tumor necrosis factor- α, interleukin-6), and inhibited activity of myeloperoxidase in lung tissue. Inhalation significantly decreased cell apoptosis of lungs, and inhibited mRNA expression of intercellular adhesion molecule-1 and caspase-3 in the lungs. Further, the inhalation activated phosphorylation of p38 expression and inhibited phosphorylation of extracellular signal-regulated kinase expression in the lungs. In conclusion, CO exerts potent protective effects on lungs from BD rats, exhibiting anti-inflammatory and anti-apoptosis functions by modulating the mitogen-activated protein kinase signal transduction.
Collapse
Affiliation(s)
- Huacheng Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University
- Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Jinfeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University
- Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Peng Pan
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University
- Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Di Jin
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University
- Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Wengang Ding
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University
- Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Wenzhi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University
- Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| |
Collapse
|
13
|
Inhaled nitric oxide prevents 3-nitrotyrosine formation in the lungs of neonatal mice exposed to >95% oxygen. Lung 2010; 188:217-27. [PMID: 20237791 DOI: 10.1007/s00408-010-9235-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Inhaled nitric oxide is being evaluated as a preventative therapy for patients at risk for bronchopulmonary dysplasia (BPD). Nitric oxide (NO), in the presence of superoxide, forms peroxynitrite, which reacts with tyrosine residues on proteins to form 3-nitrotyrosine (3-NT). However, NO can also act as an antioxidant and was recently found to improve the oxidative balance in preterm infants. Thus, we tested the hypothesis that the addition of a therapeutically relevant concentration (10 ppm) of NO to a hyperoxic exposure would lead to decreased 3-NT formation in the lung. FVB mouse pups were exposed to either room air (21% O(2)) or >95% O(2) with or without 10 ppm NO within 24 h of birth. In the first set of studies, body weights and survival were monitored for 7 days, and exposure to >95% O(2) resulted in impaired weight gain and near 100% mortality by 7 days. However, the mortality occurred earlier in pups exposed to >95% O(2) + NO than in pups exposed to >95% O(2) alone. In a second set of studies, lungs were harvested at 72 h. Immunohistochemistry of the lungs at 72 h revealed that the addition of NO decreased alveolar, bronchial, and vascular 3-NT staining in pups exposed to both room air and hyperoxia. The lung nitrite levels were higher in animals exposed to >95% oxygen + NO than in animals exposed to >95% oxygen alone. The protein levels of myeloperoxidase, monocyte chemotactic protein-1, and intracellular adhesion molecule-1 were assessed after 72 h of exposure and found to be greatest in the lungs of pups exposed to >95% O(2). This hyperoxia-induced protein expression was significantly attenuated by the addition of 10 ppm NO. We propose that in the presence of >95% O(2), peroxynitrite formation results in protein nitration; however, adding excess NO to the >95% O(2) exposure prevents 3-NT formation by NO reacting with peroxynitrite to produce nitrite and NO(2). We speculate that the decreased protein nitration observed with the addition of NO may be a potential mechanism limiting hyperoxic lung injury.
Collapse
|
14
|
Abstract
Meconium aspiration injures a number of cell types in the lung, most notably airway and alveolar epithelial lining cells. Recent data show that at least some of the cell death induced by meconium occurs by apoptosis, and therefore has the potential for pharmacologic inhibition through the use of apoptosis blockers or other strategies. Related work in adult animal models of lung injury has shown that apoptosis of lung epithelial cells induces a local (that is, entirely lung tissue specific) renin-angiotensin system (RAS(L)). Furthermore, this inducible RAS(L) is required for the apoptotic response and affects other adjacent cell types through the release of angiotensin II and related peptides. This manuscript reviews the published data supporting this viewpoint as well as more recent works that suggest the involvement of a RAS(L) in the perinatal lung damage associated with meconium aspiration syndrome (MAS). The implications of these findings regarding their potential for the clinical management of MAS are also discussed.
Collapse
|
15
|
Hobson L, Everard ML. Persistent of respiratory syncytial virus in human dendritic cells and influence of nitric oxide. Clin Exp Immunol 2007; 151:359-66. [PMID: 18062796 DOI: 10.1111/j.1365-2249.2007.03560.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The annual epidemics of respiratory syncytial virus (RSV) infection are probably explained by poor herd immunity and the existence of a dormant reservoir of virus that is activated by an unknown trigger. The virus causes particular problems in infants, the elderly and patients with chronic obstructive airways disease (COPD). During two consecutive winters, human monocyte-derived dendritic cells (DCs) were exposed on a single occasion to one of two forms of RSV labelled with a fluorescent expresser genes (rgRSV or rrRSV) during the epidemic season. The cultures were maintained for many months, with fresh DCs being added at monthly intervals. The cultures were variously exposed to 600 parts per billion (ppb) nitric oxide for 15 min, nitric oxide (NO) donors and NO inhibitors outside the RSV epidemic season. The pattern of productive infection of DCs in vitro appeared to parallel the natural epidemics, in that DCs exhibited evidence of viral replication and productive infection only as manifested by intracellular fluorescence and infection of HeLa cells during the RSV epidemic season. When the long-term cultures were exposed to the above agents outside the RSV epidemic season there was again evidence of vigorous replication and productive infection, as shown by the reappearance of fluorescence and productive infection of HeLa cells. The results indicate that RSV may remain dormant in dendritic cells for prolonged periods and that replication appears to be activated by suppression of endogenous NO production. These observations may be key to our understanding of the mechanisms contributing to the annual epidemics of RSV infection.
Collapse
Affiliation(s)
- L Hobson
- Department of Respiratory Medicine, Sheffield Children's Hospital, Academic Department of Child Health, Sheffield University, Sheffield, UK
| | | |
Collapse
|