1
|
Lu K, Fan Q, Zou X. Antisense oligonucleotide is a promising intervention for liver diseases. Front Pharmacol 2022; 13:1061842. [PMID: 36569303 PMCID: PMC9780395 DOI: 10.3389/fphar.2022.1061842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
As the body's critical metabolic organ, the liver plays an essential role in maintaining proper body homeostasis. However, as people's living standards have improved and the number of unhealthy lifestyles has increased, the liver has become overburdened. These have made liver disease one of the leading causes of death worldwide. Under the influence of adverse factors, liver disease progresses from simple steatosis to hepatitis, to liver fibrosis, and finally to cirrhosis and cancer, followed by increased mortality. Until now, there has been a lack of accepted effective treatments for liver disease. Based on current research, antisense oligonucleotide (ASO), as an alternative intervention for liver diseases, is expected to be an effective treatment due to its high efficiency, low toxicity, low dosage, strong specificity, and additional positive characteristics. In this review, we will first introduce the design, modification, delivery, and the mechanisms of ASO, and then summarize the application of ASO in liver disease treatment, including in non-alcoholic fatty liver disease (NAFLD), hepatitis, liver fibrosis, and liver cancer. Finally, we discuss challenges and perspectives on the transfer of ASO drugs into clinical use. This review provides a current and comprehensive understanding of the integrative and systematic functions of ASO for its use in liver disease.
Collapse
Affiliation(s)
- Kailing Lu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qijing Fan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China,*Correspondence: Xiaoju Zou,
| |
Collapse
|
2
|
Tsai SL, Baselga-Garriga C, Melton DA. Midkine is a dual regulator of wound epidermis development and inflammation during the initiation of limb regeneration. eLife 2020; 9:50765. [PMID: 31934849 PMCID: PMC6959999 DOI: 10.7554/elife.50765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Formation of a specialized wound epidermis is required to initiate salamander limb regeneration. Yet little is known about the roles of the early wound epidermis during the initiation of regeneration and the mechanisms governing its development into the apical epithelial cap (AEC), a signaling structure necessary for outgrowth and patterning of the regenerate. Here, we elucidate the functions of the early wound epidermis, and further reveal midkine (mk) as a dual regulator of both AEC development and inflammation during the initiation of axolotl limb regeneration. Through loss- and gain-of-function experiments, we demonstrate that mk acts as both a critical survival signal to control the expansion and function of the early wound epidermis and an anti-inflammatory cytokine to resolve early injury-induced inflammation. Altogether, these findings unveil one of the first identified regulators of AEC development and provide fundamental insights into early wound epidermis function, development, and the initiation of limb regeneration.
Collapse
Affiliation(s)
- Stephanie L Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Clara Baselga-Garriga
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
3
|
Sun B, Hu C, Yang Z, Zhang X, Zhao L, Xiong J, Ma J, Chen L, Qian H, Luo X, Shi L, Li J, Cheng X, Yin Z. Midkine promotes hepatocellular carcinoma metastasis by elevating anoikis resistance of circulating tumor cells. Oncotarget 2018; 8:32523-32535. [PMID: 28430645 PMCID: PMC5464806 DOI: 10.18632/oncotarget.15808] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
Midkine is overexpressed in hepatocellular carcinoma (HCC) and plays a role in tumor progression, but less is known about its role in resistance of circulating tumor cells (CTCs) to anoikis which leading to recurrence and metastasis. The aim of the present study was to analyze whether midkine was associated with HCC progression with anoikis resistance. We found that cultured HCC cells were more resistant to anoikis, which paralleled midkine expression, and midkine treatment significantly inhibited anoikis in a dose-dependent manner. Furthermore, in in vitro and in vivo assays, knockdown of midkine resulted in significant sensitivity to anoikis, decreased cell survival and significantly decreased tumor occurrence rate. Patients with midkine-elevated HCC had higher CTC counts and less apoptotic CTCs, as well as significantly higher recurrence rate and shorter recurrence-free interval. To understand the molecular mechanism underlying the midkine with HCC progression, we performed in vitro and in vivo studies. We found that midkine plays an important role in enhancement of HCC cell resistance to anoikis, thereby promoting subsequent metastasis. Activation of PI3K/Akt/NF-κB/TrkB signaling by midkine-activated anaplastic lymphomakinase (ALK) is responsible for anoikis resistance.
Collapse
Affiliation(s)
- Bin Sun
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Congli Hu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhibin Yang
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofeng Zhang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Linlin Zhao
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Junye Xiong
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Junyong Ma
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haihua Qian
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiangji Luo
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lehua Shi
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianshuo Cheng
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhengfeng Yin
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Witort E, Lulli M, Carloni V, Capaccioli S. Anticancer activity of an antisense oligonucleotide targeting TRADD combined with proteasome inhibitors in chemoresistant hepatocellular carcinoma cells. J Chemother 2014; 25:292-7. [PMID: 24070137 DOI: 10.1179/1973947813y.0000000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemoresistance is a major cause of mortality of patients with advanced and metastatic hepatocellular carcinoma (HCC), the fifth most common cancer in the world. We employed a molecular approach to inhibit cell proliferation and induce apoptosis in HepG2 cells, originated from human hepatocarcinoma. TRADD gene expression was knocked down by an antisense oligonucleotide (ASO TRADD), resulting in TRADD protein decrease by 60%, coinciding with increase of apoptotic cell death of up to 30%. Combination of the ASO TRADD with the cytotoxic drugs 5-fluorouracil or paclitaxel did not improve chemosensitivity of HepG2 cells, while the combined administration of the ASO TRADD with proteasome inhibitors MG132 or ALLN inhibited cell proliferation by 80% and 93%, respectively. Taken together, these findings reveal the importance to combine proteasome inhibitors with silencing of anti-apoptotic signalling components to target HCC cells effectively and provide useful data for developing potential treatments of HCC.
Collapse
|
5
|
Zhong J, Yao X, Li DL, Li LQ, Zhou LF, Huang HL, Min LS, Li J, Fu FF, Dai LC. Large scale preparation of midkine antisense oligonucleotides nanoliposomes by a cross-flow injection technique combined with ultrafiltration and high-pressure extrusion procedures. Int J Pharm 2012; 441:712-20. [PMID: 23142083 DOI: 10.1016/j.ijpharm.2012.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/04/2012] [Accepted: 10/10/2012] [Indexed: 12/16/2022]
Abstract
The midkine antisense oligonucleotide (MK-ASODN, 5'-CCC CGG GCC GCC CTT CTT CA-3') nanoliposomes have been identified to suppress hepatocellular carcinoma (HCC) growth effectively, and have a great potential to be an effective target drug for HCC. In this study, a facile and reproducible method for large-scale preparation of MK-ASODN nanoliposomes followed by lyophilization has been developed successfully. Meanwhile, the MK-ASODN nanoliposomes characteristics, storage stability and their antitumor efficiency were studied. The mean particle size of MK-ASODN nanoliposomes were 229.43±15.11 nm, and the zeta potential were 29.7±1.1 mV. High entrapment efficiency values were achieved around 90%. Transmission electron microscopy images revealed spherical shaped nanoliposomes. Nanoliposomes allowed sustained MK-ASODN release for as long as 14 days. During 180 days of storage, freeze-dried nanoliposomes showed no significant change in the mean size, zeta potential, entrapment efficiency and drug release ratio. Regarding their antitumor efficiency, the in vitro proliferation of human liver cancer cells were significantly inhibited by the MK-ASODN nanoliposomes. Furthermore, the MK-ASOND nanoliposomes also significantly inhibited the growth of HCC in the mouse model. In summary, the results confirmed that this large-scale preparation of MK-ASOND nanoliposomes was facile and reproducible, and potentially, could speed up the application process of our MK-ASOND nanoliposomes for HCC therapy.
Collapse
Affiliation(s)
- Jing Zhong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cohen S, Shoshana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M, Hazan-Halevy I, Herishanu Y, Shvidel L, Haran M, Leng L, Bucala R, Harroch S, Shachar I. The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:259-69. [PMID: 22140262 PMCID: PMC3244541 DOI: 10.4049/jimmunol.1101468] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lasting B cell persistence depends on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase ζ (RPTPζ). We demonstrate that MK initiates a signaling cascade leading to B cell survival by binding to RPTPζ. In mice lacking PTPRZ, the proportion and number of the mature B cell population are reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74-induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and chronic lymphocytic leukemia cells. Our results indicate that MK and RPTPζ are important regulators of the B cell repertoire. These findings could pave the way toward understanding the mechanisms shaping B cell survival and suggest novel therapeutic strategies based on the blockade of the MK/RPTPζ-dependent survival pathway.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Midkine
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/immunology
- Proto-Oncogene Proteins c-met/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/immunology
- Receptors, Growth Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hatori K, Takeichi O, Ogiso B, Maeno M, Komiyama K. Midkine expression in human periapical granulomas. J Endod 2011; 37:781-5. [PMID: 21787488 DOI: 10.1016/j.joen.2011.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The expression of midkine (MK), a heparin-binding growth factor, is increased in various human tumors, making it a promising tumor marker and target for tumor therapy. MK is also related to the regulation of the development and etiology of chronic or autoimmune diseases; however, the involvement of MK in apical periodontitis has never been examined. This study compared the localization of MK-expressing cells and MK messenger RNA expression in periapical granulomas with healthy gingival tissues. METHODS Periapical lesions were removed surgically from chronic apical periodontitis patients, and serial tissue sections were stained with hematoxylin-eosin. The lesions diagnosed as periapical granulomas pathologically were examined by immunohistochemistry using human MK monoclonal antibodies. MK messenger RNA expression was also detected using real-time polymerase chain reaction analysis. Healthy gingival tissues were analyzed in the same manner. RESULTS MK was expressed by inflammatory cells, such as macrophages, lymphocytes, and neutrophils, as well as by endothelial cells in periapical granulomas but not in healthy gingival tissues. The MK-expressing inflammatory cells were seen adjacent to blood vessels, which contained MK-expressing endothelial cells, suggesting the interaction of MK among these cells during the process of inflammatory cell infiltration. Quantitative analysis of MK messenger RNA expression revealed that periapical granulomas expressed significantly more MK than healthy gingival tissues. CONCLUSIONS These findings suggest that MK is involved in the pathogenesis of periapical granulomas.
Collapse
Affiliation(s)
- Keisuke Hatori
- Nihon University Graduate School of Dentistry, Nihon, Japan
| | | | | | | | | |
Collapse
|
8
|
Tai CJ, Chin-Sheng H, Kuo LJ, Wei PL, Lu HH, Chen HA, Liu TZ, Liu JJ, Liu DZ, Ho YS, Wu CH, Chang YJ. Survivin-mediated cancer cell migration through GRP78 and epithelial-mesenchymal transition (EMT) marker expression in Mahlavu cells. Ann Surg Oncol 2011; 19:336-43. [PMID: 21516372 DOI: 10.1245/s10434-011-1692-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Survivin has multiple functions during the progression of cancer. However, the role of survivin in the progression and metastasis of hepatocellular carcinoma (HCC) remains unknown. MATERIALS AND METHODS Survivin expression in HCC cells (Mahlavu and Hep3B) was assessed using reverse transcription real-time PCR and Western blot analyses. In addition, survivin expression in HCC cells was manipulated using small interfering RNA (siRNA) or overexpression and proliferation and transwell migration assays were performed to monitor the effect of manipulated survivin expression on the growth rate and migratory ability of the transfected cells. RESULTS Among the HCC cell lines tested, we found high endogenous expression of survivin mRNA and protein in Mahlavu cells. After silencing survivin expression in Mahlavu cells, there was a dramatic decrease in the cell growth rate and an increase in the metastatic potential of the cells. Overexpression of survivin in Hep3B cells suppressed the ability of the cell to migrate. The mechanism of enhanced cell migration caused by decreased survivin expression is mediated through the downregulation of glucose-regulated protein 78 (GRP78) and the upregulation of the epithelial-mesenchymal transition (EMT) marker, vimentin. CONCLUSIONS Survivin may mediate metastasis in HCC. The knockdown of survivin expression may enhance cancer metastasis through the downregulation of GRP78 and upregulation of vimentin expression.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
AIM To characterize the expression and function of midkine (MK) in an in vitro embryonic stem cell (ESC) culture system. METHODS To investigate the potential roles of MK, the expression of MK in ESCs was evaluated by RT-PCR and immunocytochemistry. The effects of MK on the self-renewal of ESCs were measured using alkaline phosphatase assays, immunocytochemistry, RT-PCR and colony-forming assays. The mechanism of the growth-promoting effect of MK in mESCs was assessed by cell cycle analysis and Western blot analysis. RESULTS MK is expressed in mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs) and mouse embryonic fibroblasts (MEFs). MK promotes proliferation and self-renewal of mESCs both in feeder and feeder free culture systems. It also promotes self-renewal and proliferation of hESCs. Further study showed that MK promotes the growth of mESCs by inhibiting apoptosis while accelerating the progression toward the S phase, and enhances mESC self-renewal through PI3K/Akt signaling pathway. CONCLUSION MK plays profound roles in ESCs. MK/PTPzeta signaling pathway is a novel pathway in the signal network maintaining pluripotency of ESCs. The results extend our knowledge on pluripotency control of ESCs and the relationship between ESCs and cancers.
Collapse
|
10
|
Dai LC, Yao X, Wang X, Niu SQ, Zhou LF, Fu FF, Yang SX, Ping JL. In vitro and in vivo suppression of hepatocellular carcinoma growth by midkine-antisense oligonucleotide-loaded nanoparticles. World J Gastroenterol 2009; 15:1966-72. [PMID: 19399928 PMCID: PMC2675086 DOI: 10.3748/wjg.15.1966] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To synthesize antisense oligonucleotides (ASODNs) of midkine (MK), package the ASODNs with nanoparticles, and to inhibit hepatocellular carcinoma (HCC) growth using these nanoparticles.
METHODS: HepG2 cell proliferation was analyzed in vitro using the 3-(4,5-dimethythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium, inner salt assay. The in vivo activity of nanoparticles delivering the MK-ASODNs was analyzed by histopathological and immunohistochemical staining and quantitative real time polymerase chain reaction (PCR).
RESULTS: The in vitro proliferation of HepG2 cells was significantly inhibited by the nanoparticles packaged with MK-ASODNs (NANO-ASODNs). Furthermore, the NANO-ASODNs significantly inhibited the growth of HCC in the mouse model.
CONCLUSION: NANO-ASODNs can significantly suppress the growth of HCC in vitro and in vivo.
Collapse
|
11
|
Dai LC, Wang X, Yao X, Min LS, Ping JL, He JF. Antisense oligonucleotides targeting midkine inhibit tumor growth in an in situ human hepatocellular carcinoma model. Acta Pharmacol Sin 2007; 28:453-8. [PMID: 17303011 DOI: 10.1111/j.1745-7254.2007.00532.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM To evaluate the in vivo antitumor effects of antisense oligonucleotides targeting midkine (MK-AS). METHODS An in situ human hepatocellular carcinoma (HCC) model was established in mice livers orthotopically. The MK-AS and 5- fluorouracil (5-Fu) were administered intravenously. The tumor sizes and plasma alpha-fetoprotein (AFP) were measured by calipers and radiation immunoassay respectively. The morphology of tumors was evaluated by hematoxylin-eosin staining of histological sections. Human MK, p53, Bax, Bcl-2, and caspase-3 protein content were detected by Western blotting. RESULTS MK-AS significantly inhibited in situ human HCC growth in mice compared with the saline group in a dose-dependent manner. After the treatment with MK-AS or with 5-Fu, the plasma AFP concentration decreased in a dose-dependent manner. Interestingly, MK-AS also clearly downregulated the protein level of Bcl-2, and upregulated p53, Bax, and caspase-3 in the hepatocellular carcinoma tissue. CONCLUSION These results demonstrated that MK-AS was an effective antitumor antisense oligonucleotide in vivo in mice; its antitumor effect is associated with the increase of pro-apoptotic proteins, such as p53, Bax, and caspase-3, and the decrease of the anti-apoptotic protein, Bcl-2.
Collapse
Affiliation(s)
- Li-Cheng Dai
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou 313000, China.
| | | | | | | | | | | |
Collapse
|
12
|
Dai LC, Wang X, Yao X, Lu YL, Ping JL, He JF. Antisense oligonucleotide targeting midkine suppresses in vivo angiogenesis. World J Gastroenterol 2007; 13:1208-13. [PMID: 17451201 PMCID: PMC4146995 DOI: 10.3748/wjg.v13.i8.1208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of antisense oligonucleotide targeting midkine (MK-AS) on angiogenesis in chick chorioallantoic membrane (CAM) and in situ human hepatocellular carcinoma (HCC).
METHODS: An in situ human hepatocellular carcinoma (HCC) model and CAM assay were used in this experiment. The effect of MK-AS on angiogenesis was evaluated by cell proliferation assay and hematoxylin-eosin (HE) staining.
RESULTS: MK-AS significantly inhibited human umbilical vein endothelial cells (HUVEC) and in situ human HCC growth. At the same time, MK-AS suppressed the angiogenesis both in human hepatocellular carcinoma cell line (HEPG2)-induced CAM and in situ human HCC tissues.
CONCLUSION: MK-AS is an effective antiangiogenesis agent in vivo.
Collapse
Affiliation(s)
- Li-Cheng Dai
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China.
| | | | | | | | | | | |
Collapse
|