1
|
Ding Y, Chen ZQ, Pan WF, Chen HJ, Wu M, Lyu YQ, Xie H, Huang YC, Chen ZZ, Chen F. The association and underlying mechanism of the digit ratio (2D:4D) in hypospadias. Asian J Androl 2024; 26:356-365. [PMID: 38563741 PMCID: PMC11280205 DOI: 10.4103/aja202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
The second-to-fourth digit (2D:4D) ratio is thought to be associated with prenatal androgen exposure. However, the relationship between the 2D:4D ratio and hypospadias is poorly understood, and its molecular mechanism is not clear. In this study, by analyzing the hand digit length of 142 boys with hypospadias (23 distal, 68 middle, and 51 proximal) and 196 controls enrolled in Shanghai Children's Hospital (Shanghai, China) from December 2020 to December 2021, we found that the 2D:4D ratio was significantly increased in boys with hypospadias ( P < 0.001) and it was positively correlated with the severity of the hypospadias. This was further verified by the comparison of control mice and prenatal low testosterone mice model obtained by knocking out the risk gene (dynein axonemal heavy chain 8 [ DNAH8 ]) associated with hypospadias. Furthermore, the discrepancy was mainly caused by a shift in 4D. Proteomic characterization of a mouse model validated that low testosterone levels during pregnancy can impair the growth and development of 4D. Comprehensive mechanistic explorations revealed that during the androgen-sensitive window, the downregulation of the androgen receptor (AR) caused by low testosterone levels, as well as the suppressed expression of chondrocyte proliferation-related genes such as Wnt family member 5a ( Wnt5a ), Wnt5b , Smad family member 2 ( Smad2 ), and Smad3 ; mitochondrial function-related genes in cartilage such as AMP-activated protein kinase ( AMPK ) and nuclear respiratory factor 1 ( Nrf-1 ); and vascular development-related genes such as myosin light chain ( MLC ), notch receptor 3 ( Notch3 ), and sphingosine kinase 1 ( Sphk1 ), are responsible for the limitation of 4D growth, which results in a higher 2D:4D ratio in boys with hypospadias via decreased endochondral ossification. This study indicates that the ratio of 2D:4D is a risk marker of hypospadias and provides a potential molecular mechanism.
Collapse
Affiliation(s)
- Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zu-Quan Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wen-Feng Pan
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hao-Jie Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Min Wu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Qing Lyu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Chen Huang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhong-Zhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center for Hypospadias, Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
2
|
Guo F, Mao S, Long Y, Zhou B, Gao L, Huang H. The Influences of Perinatal Androgenic Exposure on Cardiovascular and Metabolic Disease of Offspring of PCOS. Reprod Sci 2023; 30:3179-3189. [PMID: 37380913 DOI: 10.1007/s43032-023-01286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Hyperandrogenism is an endocrine disorder affecting a large population of reproductive-aged women, thus proportionally high number of fetuses are subjected to prenatal androgenic exposure (PNA). The short-term stimulations at critical ontogenetic stages can wield lasting influences on the health. The most commonly diagnosed conditions in reproductive age women is polycystic ovary syndrome (PCOS). PNA may affect the growth and development of many systems in the whole body and disrupts the normal metabolic trajectory in the offspring of PCOS, contributing to the prevalence of cardiovascular and metabolic diseases (CVMD), including myocardial hypertrophy, hypertension, hyperinsulinemia, insulin resistance, hyperglycemia, obesity, and dyslipidemia, which are the leading causes of hospitalizations in young PCOS offspring. In this review, we focus on the effects of prenatal androgenic exposure on the cardiovascular and metabolic diseases in offspring, discuss the possible pathogenesis respectively, and summarize potential management strategies to improve metabolic health of PCOS offspring. It is expected that the incidence of CVMD and the medical burden will be reduced in the future.
Collapse
Affiliation(s)
- Fei Guo
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Suqing Mao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yuhang Long
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Bokang Zhou
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ling Gao
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hefeng Huang
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
3
|
Mossa F, Latham KE, Ireland JJ, Veiga-Lopez A. Undernutrition and hyperandrogenism during pregnancy: Role in programming of cardiovascular disease and infertility. Mol Reprod Dev 2019; 86:1255-1264. [PMID: 31347224 DOI: 10.1002/mrd.23239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Maternal nutritional status programs the development of several systems in female offspring, with effects that depend on the severity, duration, and window of development when the nutritional perturbation is imposed. On the basis of the developmental origins of health and disease concept, we hypothesize that gestational low caloric intake may induce maternal subclinical hyperandrogenism during early pregnancy and compromise cardiovascular health and fertility in the female offspring. To examine this possibility, a literature search for human and animal studies was conducted using two electronic databases, PubMed and Cochrane until April 2019 to address the following questions: (a) Do androgens have a developmental role in cardiovascular and ovarian development? (b) Is excess maternal testosterone linked to cardiovascular disease and infertility? and (c) Could early pregnancy undernutrition enhance maternal androgen production and compromise health and fertility in female offspring? The observations reviewed, establish a potential causative link between maternal undernutrition and subclinical hyperandrogenism with hypertension and reduced ovarian reserve in the progeny. Further studies in appropriate models are needed to better understand whether low energy intake and subclinical maternal hyperandrogenism during early pregnancy can negatively affect the health of the female offspring.
Collapse
Affiliation(s)
- Francesca Mossa
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Keith E Latham
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - James J Ireland
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Almudena Veiga-Lopez
- Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
4
|
Gholami K, Loh SY, Salleh N, Lam SK, Hoe SZ. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS One 2017; 12:e0176368. [PMID: 28591185 PMCID: PMC5462341 DOI: 10.1371/journal.pone.0176368] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies.
Collapse
Affiliation(s)
- Khadijeh Gholami
- Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- * E-mail:
| | - Su Yi Loh
- Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sau Kuen Lam
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Haase M, Laube M, Thome UH. Sex-specific effects of sex steroids on alveolar epithelial Na + transport. Am J Physiol Lung Cell Mol Physiol 2017; 312:L405-L414. [PMID: 28062481 DOI: 10.1152/ajplung.00275.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 01/10/2023] Open
Abstract
Alveolar fluid clearance mediates perinatal lung transition to air breathing in newborn infants, which is accomplished by epithelial Na+ channels (ENaC) and Na-K-ATPase. Male sex represents a major risk factor for developing respiratory distress, especially in preterm infants. We previously showed that male sex is associated with reduced epithelial Na+ transport, possibly contributing to the sexual dimorphism in newborn respiratory distress. This study aimed to determine sex-specific effects of sex steroids on epithelial Na+ transport. The effects of testosterone, 5α-dihydrotestosterone (DHT), estradiol, and progesterone on Na+ transport and Na+ channel expression were determined in fetal distal lung epithelial (FDLE) cells of male and female rat fetuses by Ussing chamber and mRNA expression analyses. DHT showed a minor effect only in male FDLE cells by decreasing epithelial Na+ transport. However, flutamide, an androgen receptor antagonist, did not abolish the gender imbalance, and testosterone lacked any effect on Na+ transport in male and female FDLE cells. In contrast, estradiol and progesterone increased Na+ transport and Na+ channel expression especially in females, and prevented the inhibiting effect of DHT in males. Estrogen receptor inhibition decreased Na+ channel expression and eliminated the sex differences. In conclusion, female sex steroids stimulate Na+ transport especially in females and prevent the inhibitory effect of DHT in males. The ineffectiveness of testosterone suggests that Na+ transport is largely unaffected by androgens. Thus, the higher responsiveness of female cells to female sex steroids explains the higher Na+ transport activity, possibly leading to a functional advantage in females.
Collapse
Affiliation(s)
- Melanie Haase
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Schuppe ER, Solomon-Lane TK, Pradhan DS, Thonkulpitak K, Grober MS. Ancestral androgenic differentiation pathways are repurposed during the evolution of adult sexual plasticity. Evol Dev 2016; 18:285-296. [PMID: 27870212 DOI: 10.1111/ede.12207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although early exposure to androgens is necessary to permanently organize male phenotype in many vertebrates, animals that exhibit adult sexual plasticity require mechanisms that prevent early fixation of genital morphology and allow for genital morphogenesis during adult transformation. In Lythrypnus dalli, a teleost fish that exhibits bi-directional sex change, adults display dimorphic genitalia morphology despite the absence of sex differences in the potent fish androgen 11-ketotestosterone. Based on conserved patterns of vertebrate development, two steroid-based mechanisms may regulate the early development and adult maintenance of dimorphic genitalia; local androgen receptor (AR) and steroidogenic enzyme expression. Consistent with the ancestral pattern of AR expression during the multipotential phase of differentiation, juvenile differentiation into either sex involved high mesenchymal AR expression. In adults, AR expression was high throughout the male genitalia, but low or absent in females. Consistent with the hypothesis that adult sexual plasticity repurposes pathways from primary differentiation, we show that adults with transitioning genitalia also exhibited higher AR expression relative to females. Local androgen biosynthesis may also participate in genitalia transformation, as transitioning adults had greater 11β-HSD-like immunoreactivity in the epithelial layer of the dorsal lumen compared to both sexes. By administering an AR antagonist to adult males, we show AR is necessary to maintain male-typical morphology. In a species that is resistant to early sexual canalization, early androgenic differentiation mechanisms are consistent with other vertebrates and the tissue-specific regulation of AR expression appears to be repurposed in adulthood to allow for transitions between sexual phenotypes.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Biology, Georgia State University, Atlanta, GA
| | | | | | | | - Matthew S Grober
- Department of Biology, Georgia State University, Atlanta, GA.,Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
7
|
Gur FM, Timurkaan S. Immunohistochemical localization of androgen receptors in female mole rat (Spalax leucodon) tissues. Biotech Histochem 2016; 91:472-479. [PMID: 27676207 DOI: 10.1080/10520295.2016.1230784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Androgens exert their effects through androgen receptors (AR) in tissues. We investigated the distribution of AR in female mole rat tissues. Tissues were excised, fixed with 10% formalin and embedded in paraffin. Sections were stained after microwave antigen retrieval for immunohistochemistry. Immunostaining of AR immunostaining was detected in the nucleus or cytoplasm of the cells in the cerebral cortex, cerebellum, anterior pituitary, lung, liver, uterus and skin. Granulosa and some thecal cells in the ovary, cardiac muscle cells and adipose cells exhibited a nuclear reaction for AR. In the kidney, labeling of AR was restricted to the cytoplasm of tubule cells. We found that AR could be detected using immunohistochemistry in the nucleus or cytoplasm or both in the presence of androgens.
Collapse
Affiliation(s)
- F M Gur
- a Sabiha Gokcen Airport Veterinary Border Inspection Post, Ministry of Food, Agriculture and Livestock , Pendik/Istanbul , Turkey
| | - S Timurkaan
- b Department of Histology-Embryology , Faculty of Veterinary Medicine, University of Firat , Elazığ , Turkey
| |
Collapse
|
8
|
Zarazúa A, González-Arenas A, Ramírez-Vélez G, Bazán-Perkins B, Guerra-Araiza C, Campos-Lara MG. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells. Int J Endocrinol 2016; 2016:8423192. [PMID: 27110242 PMCID: PMC4823480 DOI: 10.1155/2016/8423192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 01/16/2023] Open
Abstract
The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats.
Collapse
Affiliation(s)
- Abraham Zarazúa
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06725 Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Gabriela Ramírez-Vélez
- Facultad de Ciencias Químicas de la Universidad La Salle, 06140 Ciudad de México, Mexico
| | - Blanca Bazán-Perkins
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Ciudad de México, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06725 Ciudad de México, Mexico
| | - María G. Campos-Lara
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06725 Ciudad de México, Mexico
- Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico
- *María G. Campos-Lara:
| |
Collapse
|
9
|
Hashimoto H, Yuasa S. Testosterone induces cardiomyocyte differentiation from embryonic stem cells. J Mol Cell Cardiol 2013; 62:69-71. [PMID: 23711440 DOI: 10.1016/j.yjmcc.2013.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 02/04/2023]
|
10
|
Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. J Mol Cell Cardiol 2013; 60:164-71. [PMID: 23598283 DOI: 10.1016/j.yjmcc.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Since a previous study (Goldman-Johnson et al., 2008 [4]) has shown that androgens can stimulate increased differentiation of mouse embryonic stem (mES) cells into cardiomyocytes using a genomic pathway, the aim of our study is to elucidate the molecular mechanisms regulating testosterone-enhanced cardiomyogenesis. Testosterone upregulated cardiomyogenic transcription factors, including GATA4, MEF2C, and Nkx2.5, muscle structural proteins, and the pacemaker ion channel HCN4 in a dose-dependent manner, in mES cells and P19 embryonal carcinoma cells. Knock-down of the androgen receptor (AR) or treatment with anti-androgenic compounds inhibited cardiomyogenesis, supporting the requirement of the genomic pathway. Chromatin immunoprecipitation (ChIP) studies showed that testosterone enhanced recruitment of AR to the regulatory regions of MEF2C and HCN4 genes, which was associated with increased histone acetylation. In summary, testosterone upregulated cardiomyogenic transcription factor and HCN4 expression in stem cells. Further, testosterone induced cardiomyogenesis, at least in part, by recruiting the AR receptor to the regulatory regions of the MEF2C and HCN4 genes. These results provide a detailed molecular analysis of the function of testosterone in stem cells and may offer molecular insight into the role of steroids in the heart.
Collapse
|
11
|
Lai KP, Lai JJ, Chang P, Altuwaijri S, Hsu JW, Chuang KH, Shyr CR, Yeh S, Chang C. Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol Endocrinol 2012; 27:25-37. [PMID: 23250486 DOI: 10.1210/me.2012-1244] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although thymic involution has been linked to the increased testosterone in males after puberty, its detailed mechanism and clinical application related to T-cell reconstitution in bone marrow transplantation (BMT) remain unclear. By performing studies with reciprocal BMT and cell-specific androgen receptor (AR) knockout mice, we found that AR in thymic epithelial cells, but not thymocytes or fibroblasts, played a more critical role to determine thymic cellularity. Further dissecting the mechanism using cell-specific thymic epithelial cell-AR knockout mice bearing T-cell receptor transgene revealed that elevating thymocyte survival was due to the enhancement of positive selection resulting in increased positively selected T-cells in both male and female mice. Targeting AR, instead of androgens, either via genetic knockout of thymic epithelial AR or using an AR-degradation enhancer (ASC-J9®), led to increased BMT grafting efficacy, which may provide a new therapeutic approach to boost T-cell reconstitution in the future.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- George H Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Karjalainen MK, Huusko JM, Ulvila J, Sotkasiira J, Luukkonen A, Teramo K, Plunkett J, Anttila V, Palotie A, Haataja R, Muglia LJ, Hallman M. A potential novel spontaneous preterm birth gene, AR, identified by linkage and association analysis of X chromosomal markers. PLoS One 2012; 7:e51378. [PMID: 23227263 PMCID: PMC3515491 DOI: 10.1371/journal.pone.0051378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
Preterm birth is the major cause of neonatal mortality and morbidity. In many cases, it has severe life-long consequences for the health and neurological development of the newborn child. More than 50% of all preterm births are spontaneous, and currently there is no effective prevention. Several studies suggest that genetic factors play a role in spontaneous preterm birth (SPTB). However, its genetic background is insufficiently characterized. The aim of the present study was to perform a linkage analysis of X chromosomal markers in SPTB in large northern Finnish families with recurrent SPTBs. We found a significant linkage signal (HLOD = 3.72) on chromosome locus Xq13.1 when the studied phenotype was being born preterm. There were no significant linkage signals when the studied phenotype was giving preterm deliveries. Two functional candidate genes, those encoding the androgen receptor (AR) and the interleukin-2 receptor gamma subunit (IL2RG), located near this locus were analyzed as candidates for SPTB in subsequent case-control association analyses. Nine single-nucleotide polymorphisms (SNPs) within these genes and an AR exon-1 CAG repeat, which was previously demonstrated to be functionally significant, were analyzed in mothers with preterm delivery (n = 272) and their offspring (n = 269), and in mothers with exclusively term deliveries (n = 201) and their offspring (n = 199), all originating from northern Finland. A replication study population consisting of individuals born preterm (n = 111) and term (n = 197) from southern Finland was also analyzed. Long AR CAG repeats (≥26) were overrepresented and short repeats (≤19) underrepresented in individuals born preterm compared to those born at term. Thus, our linkage and association results emphasize the role of the fetal genome in genetic predisposition to SPTB and implicate AR as a potential novel fetal susceptibility gene for SPTB.
Collapse
Affiliation(s)
- Minna K Karjalainen
- Department of Pediatrics, Institute of Clinical Medicine, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sajjad Y. Development of the genital ducts and external genitalia in the early human embryo. J Obstet Gynaecol Res 2010; 36:929-37. [DOI: 10.1111/j.1447-0756.2010.01272.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Van Hemelrijck M, Adolfsson J, Garmo H, Bill-Axelson A, Bratt O, Ingelsson E, Lambe M, Stattin P, Holmberg L. Risk of thromboembolic diseases in men with prostate cancer: results from the population-based PCBaSe Sweden. Lancet Oncol 2010; 11:450-8. [PMID: 20395174 PMCID: PMC2861771 DOI: 10.1016/s1470-2045(10)70038-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Cancer is associated with an increased risk of thromboembolic diseases, but data on the association between prostate cancer and thromboembolic diseases are scarce. We investigated the risk of thromboembolic disease in men with prostate cancer who were receiving endocrine treatment, curative treatment, or surveillance. Methods We analysed data from PCBaSe Sweden, a database based on the National Prostate Cancer Register, which covers over 96% of prostate cancer cases in Sweden. Standardised incidence ratios (SIR) of deep-venous thrombosis (DVT), pulmonary embolism, and arterial embolism were calculated by comparing observed and expected (using the total Swedish male population) occurrences of thromboembolic disease, taking into account age, calendar-time, number of thromboembolic diseases, and time since previous thromboembolic disease. Findings Between Jan 1, 1997, and Dec 31, 2007, 30 642 men received primary endocrine therapy, 26 432 curative treatment, and 19 526 surveillance. 1881 developed a thromboembolic disease. For men on endocrine therapy, risks for DVT (SIR 2·48, 95% CI 2·25–2·73) and pulmonary embolism (1·95, 1·81–2·15) were increased, although this was not the case for arterial embolism (1·00, 0·82–1·20). Similar patterns were seen for men who received curative treatment (DVT: 1·73, 1·47–2·01; pulmonary embolism: 2·03, 1·79–2·30; arterial embolism: 0·95, 0·69–1·27) and men who were on surveillance (DVT: 1·27, 1·08–1·47; pulmonary embolism: 1·57, 1·38–1·78; arterial embolism: 1·08, 0·87–1·33). Increased risks for thromboembolic disease were maintained when patients were stratified by age and tumour stage. Interpretation All men with prostate cancer were at higher risk of thromboembolic diseases, with the highest risk for those on endocrine therapy. Our results indicate that prostate cancer itself, prostate cancer treatments, and selection mechanisms all contribute to increased risk of thromboembolic disease. Thromboembolic disease should be a concern when managing patients with prostate cancer. Funding Swedish Research Council, Stockholm Cancer Society, and Cancer Research UK.
Collapse
Affiliation(s)
- Mieke Van Hemelrijck
- King's College London, School of Medicine, Division of Cancer Studies, Cancer Epidemiology Group, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Androgen receptor function in motor neuron survival and degeneration. Phys Med Rehabil Clin N Am 2008; 19:479-94, viii. [PMID: 18625411 DOI: 10.1016/j.pmr.2008.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamine repeat expansion in the androgen receptor is responsible for the motor neuron degeneration in X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease). This mutation, like the other polyglutamine repeat expansions, has proven to be toxic itself by a gain-of-function effect; however, a growing body of evidence indicates that loss of androgen receptor normal function simultaneously contributes to SBMA disease pathology, and, conversely, that normal androgen receptor signaling mediates important trophic effects upon motor neurons. This review considers the trophic requirements of motor neurons, focusing upon the role of known neurotrophic factors in motor neuron disease natural history, and the interactions of androgen receptor signaling pathways with motor neuron disease pathogenesis and progression. A thorough understanding of androgen receptor signaling in motor neurons should provide important inroads toward the development of effective treatments for a variety of devastating motor neuron diseases.
Collapse
|