1
|
Athale U, Hijiya N, Patterson BC, Bergsagel J, Andolina JR, Bittencourt H, Schultz KR, Burke MJ, Redell MS, Kolb EA, Johnston DL. Management of chronic myeloid leukemia in children and adolescents: Recommendations from the Children's Oncology Group CML Working Group. Pediatr Blood Cancer 2019; 66:e27827. [PMID: 31330093 PMCID: PMC6944522 DOI: 10.1002/pbc.27827] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukemia (CML) accounts for 2-3% of leukemias in children under 15 and 9% in adolescents aged 15-19. The diagnosis and management of CML in children, adolescents, and young adults have several differences compared to that in adults. This review outlines the diagnosis and management of the underlying disease as well as challenges that can occur when dealing with CML in this patient population.
Collapse
Affiliation(s)
- Uma Athale
- Division of Hematology/Oncology, McMaster Children's Hospital at Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Nobuko Hijiya
- Division of Hematology/Oncology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Briana C Patterson
- Division of Pediatric Endocrinology and Metabolism, Emory University School of Medicine, Atlanta, Georgia
- Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - John Bergsagel
- Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey R Andolina
- Division of Hematology/Oncology, Golisano Children's Hospital, University of Rochester, Rochester, New York
| | - Henrique Bittencourt
- Division of Hematology/Oncology, Ste Justine University Hospital Center, Montreal, Quebec, Canada
| | - Kirk R Schultz
- Division of Hematology/Oncology/BMT, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Michael J Burke
- Division of Hematology/Oncology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michele S Redell
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I DuPont Hospital for Children, Wilmington, Delaware
| | - Donna L Johnston
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Guru V, Radhakrishnan V, Sagar T. Varicella vaccination in children with acute lymphoblastic leukemia: Experience from a pediatric cancer centre in India. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2019. [DOI: 10.1016/j.phoj.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Acquafredda S, Tafuri S. "My son can not attend the school because 5 classmates are unvaccinated". On the question of compulsory vaccinations and the risk for immune-compromised children into the schools: the case of paediatric cancer patients. Hum Vaccin Immunother 2018; 15:643-644. [PMID: 30352002 PMCID: PMC6605721 DOI: 10.1080/21645515.2018.1537757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since 2017, 10 vaccines are compulsory for newborns in Italy and unvaccinated children are not admitted to kindergartens. Recently the Italian Government announced the perspective of reforming the law about the compulsory vaccination. A debated started about the presence, in the same class of the schools, of unvaccinated and immunocompromised children. Cancer is the one of the most important cause of immunodepression among children: after the chemoterapy, there is a period of 13–23 months in which the cancer survivors have to come back at the school and at to the “normal life” (even for psychological exigency) but remain at risk of infectious disease for the immunodepression. The most important chance to protect this subgroup of patients remains the herd immunity.
Collapse
Affiliation(s)
- Silvana Acquafredda
- a Department of Biomedical Sciences and Human Oncology , Aldo Moro University of Bari , Italy
| | - Silvio Tafuri
- a Department of Biomedical Sciences and Human Oncology , Aldo Moro University of Bari , Italy
| |
Collapse
|
4
|
Sauerbrei A. Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur J Clin Microbiol Infect Dis 2016; 35:723-34. [PMID: 26873382 DOI: 10.1007/s10096-016-2605-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/05/2016] [Indexed: 12/26/2022]
Abstract
Varicella-zoster virus (VZV), an important member of the Herpesviridae family, is the etiological agent of varicella as primary infection and zoster as recurrence. An outstanding feature is the lifelong viral latency in dorsal root and cranial nerve ganglia. Both varicella and zoster are worldwide widespread diseases that may be associated with significant complications. However, there is a broad spectrum of laboratory methods to diagnose VZV infections. In contrast to many other viral infections, antiviral treatment of VZV infections and their prevention by vaccination or passive immunoprophylaxis are well established in medical practice. The present manuscript provides an overview about the basic knowledge of VZV infections, their laboratory diagnosis, antiviral therapy, and the prevention procedures, especially in Germany.
Collapse
Affiliation(s)
- A Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Friedrich-Schiller University, Hans-Knoell-Strasse 2, Jena, Germany.
| |
Collapse
|
5
|
Esposito S, Prada E, Lelii M, Castellazzi L. Immunization of children with secondary immunodeficiency. Hum Vaccin Immunother 2015; 11:2564-70. [PMID: 26176360 DOI: 10.1080/21645515.2015.1039208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main causes of secondary immunodeficiency at a pediatric age include infectious diseases (mainly HIV infection), malignancies, haematopoietic stem cell or solid organ transplantation and autoimmune diseases. Children with secondary immunodeficiency have an increased risk of severe infectious diseases that could be prevented by adequate vaccination coverage, but vaccines administration can be associated with reduced immune response and an increased risk of adverse reactions. The immunogenicity of inactivated and recombinant vaccines is comparable to that of healthy children at the moment of vaccination, but it undergoes a progressive decline over time, and in the absence of a booster, the patients remain at risk of developing vaccine-preventable infections. However, the administration of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A specific immunization program should be administered according to the clinical and immunological status of each of these conditions to ensure a sustained immune response without any risks to the patients' health.
Collapse
Affiliation(s)
- Susanna Esposito
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| | - Elisabetta Prada
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| | - Mara Lelii
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| | - Luca Castellazzi
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| |
Collapse
|
6
|
Hijiya N, Millot F, Suttorp M. Chronic myeloid leukemia in children: clinical findings, management, and unanswered questions. Pediatr Clin North Am 2015; 62:107-19. [PMID: 25435115 DOI: 10.1016/j.pcl.2014.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic myelogenous leukemia (CML) is a rare disease in children. There is little evidence of biological differences between CML in children and adults, although host factors are different. Children develop distinct morbidities related to the off-target effects of tyrosine kinase inhibitors. The goal of treatment in children should be cure rather than suppression of disease, which can be the treatment goal for many older adults. This article reviews data from the literature on the treatment of CML, discusses the issues that are unique to CML in children, and recommends management that takes these issues into consideration.
Collapse
Affiliation(s)
- Nobuko Hijiya
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box #30, Chicago, IL 60611, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Frederic Millot
- Centre d'Investigation Clinique 1402, Institut National de la Santé et de la Recherche Médicale (INSERM), University Hospital of Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France
| | - Meinolf Suttorp
- Department of Pediatrics, University Hospital "Carl Gustav Carus", Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
7
|
Cesaro S, Giacchino M, Fioredda F, Barone A, Battisti L, Bezzio S, Frenos S, De Santis R, Livadiotti S, Marinello S, Zanazzo AG, Caselli D. Guidelines on vaccinations in paediatric haematology and oncology patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:707691. [PMID: 24868544 PMCID: PMC4020520 DOI: 10.1155/2014/707691] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/07/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Vaccinations are the most important tool to prevent infectious diseases. Chemotherapy-induced immune depression may impact the efficacy of vaccinations in children. PATIENTS AND METHODS A panel of experts of the supportive care working group of the Italian Association Paediatric Haematology Oncology (AIEOP) addressed this issue by guidelines on vaccinations in paediatric cancer patients. The literature published between 1980 and 2013 was reviewed. RESULTS AND CONCLUSION During intensive chemotherapy, vaccination turned out to be effective for hepatitis A and B, whilst vaccinations with toxoid, protein subunits, or bacterial antigens should be postponed to the less intensive phases, to achieve an adequate immune response. Apart from varicella, the administration of live-attenuated-virus vaccines is not recommended during this phase. Family members should remain on recommended vaccination schedules, including toxoid, inactivated vaccine (also poliomyelitis), and live-attenuated vaccines (varicella, measles, mumps, and rubella). By the time of completion of chemotherapy, insufficient serum antibody levels for vaccine-preventable diseases have been reported, while immunological memory appears to be preserved. Once immunological recovery is completed, usually after 6 months, response to booster or vaccination is generally good and allows patients to be protected and also to contribute to herd immunity.
Collapse
Affiliation(s)
- Simone Cesaro
- Paediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata Ospedale Borgo Roma, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Mareva Giacchino
- Paediatric Hematology Oncology, Regina Margherita Hospital, P.zza Polonia 94, 10126 Torino, Italy
| | - Francesca Fioredda
- Paediatric Hematology, G. Gaslini Institute, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Angelica Barone
- Paediatric Hematology Oncology, Azienda Ospedaliera, Via Gramsci 14, 43100 Parma, Italy
| | - Laura Battisti
- Paediatrics, Azienda Ospedaliera, Via Lorenz Böhler 5, 39100 Bolzano, Italy
| | - Stefania Bezzio
- Paediatric Hematology Oncology, Regina Margherita Hospital, P.zza Polonia 94, 10126 Torino, Italy
| | - Stefano Frenos
- Paediatric Hematology Oncology, Azienda Ospedaliera Universitaria Meyer, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Raffaella De Santis
- Paediatric Hematology Oncology, Casa Sollievo della Sofferenza Hospital, Viale Cappuccini 2, 71013 San Giovanni Rotondo, Italy
| | - Susanna Livadiotti
- Paediatric Immunology and Infectious Diseases, Ospedale Bambin Gesù, Piazza di Sant'Onofrio, 4, 00165 Roma, Italy
| | - Serena Marinello
- Infectious Diseases, Azienda Ospedaliera, Via Giustiniani, 35128 Padova, Italy
| | - Andrea Giulio Zanazzo
- Paediatric Hematology Oncology, Burlo Garofalo Institute, Via dell'Istria 65, 34137 Trieste, Italy
| | - Désirée Caselli
- Paediatric Hematology Oncology, Azienda Ospedaliera Universitaria Meyer, Viale Pieraccini 24, 50139 Firenze, Italy
- Medical Direction, A.O.U. Meyer, Children Hospital, Viale Pieraccini, 24, 50139 Firenze, Italy
| |
Collapse
|
8
|
Protective immunity to Listeria monocytogenes infection mediated by recombinant Listeria innocua harboring the VGC locus. PLoS One 2012; 7:e35503. [PMID: 22536395 PMCID: PMC3334901 DOI: 10.1371/journal.pone.0035503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 03/19/2012] [Indexed: 01/21/2023] Open
Abstract
In this study we propose a novel bacterial vaccine strategy where non-pathogenic bacteria are complemented with traits desirable for the induction of protective immunity. To illustrate the proof of principle of this novel vaccination strategy, we use the model organism of intracellular immunity Listeria. We introduced a, low copy number BAC-plasmid harbouring the virulence gene cluster (vgc) of L. monocytogenes (Lm) into the non-pathogenic L. innocua (L.inn) strain and examined for its ability to induce protective cellular immunity. The resulting strain (L.inn::vgc) was attenuated for virulence in vivo and showed a strongly reduced host detrimental inflammatory response compared to Lm. Like Lm, L.inn::vgc induced the production of Type I Interferon's and protection was mediated by Listeria-specific CD8+ T cells. Rational vaccine design whereby avirulent strains are equipped with the capabilities to induce protection but lack detrimental inflammatory effects offer great promise towards future studies using non-pathogenic bacteria as vectors for vaccination.
Collapse
|
9
|
Abstract
In summary, immunizations in special populations require understanding the underlying disease and how it might affect the immune system's ability to mount an antibody response to vaccines or predispose certain patient populations to developing certain serious infections. There is still a great need for research on the optimal timing of vaccines after transplants, how to assess protection and development of a protective antibody response after immunization, and whether certain groups (eg, HIV) need to be revaccinated after a certain amount of time if their antibody levels decline. In addition, there are limited data on efficacy of the newer vaccines in these special patient populations, which also requires further investigation.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Pediatric Infectious Diseases and Immunology, University of Florida, Jacksonville, 32209, USA
| | | |
Collapse
|
10
|
Vaccinations in children with cancer. Vaccine 2010; 28:3278-84. [PMID: 20226246 DOI: 10.1016/j.vaccine.2010.02.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/20/2022]
Abstract
Children with cancer may be immunocompromised as a result of their primary underlying disease and/or the use of prolonged and intensive chemotherapy administered with or without irradiation. The damage to the immune system varies with the age of the patient, the type of cancer, and the intensity of the chemotherapy used to treat it. This review analyses the data regarding the immunogenicity, efficacy, safety and tolerability of the vaccines usually recommended in the first years of life in order to help pediatricians choose the best immunisation programme against vaccine-preventable disease in children with cancer receiving standard-dose chemotherapy. Areas for future research are highlighted because new data are required to be able to draw up evidence-based recommendations that will ensure adequate protection against infectious diseases in such high-risk children.
Collapse
|
11
|
Machado CM, Martins TC, Colturato I, Leite MS, Simione AJ, Souza MPD, Mauad MA, Colturato VR. Epidemiology of neglected tropical diseases in transplant recipients: review of the literature and experience of a Brazilian HSCT center. Rev Inst Med Trop Sao Paulo 2009; 51:309-24. [DOI: 10.1590/s0036-46652009000600002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/27/2009] [Indexed: 02/06/2023] Open
Abstract
The rising success rate of solid organ (SOT) and haematopoietic stem cell transplantation (HSCT) and modern immunosuppression make transplants the first therapeutic option for many diseases affecting a considerable number of people worldwide. Consequently, developing countries have also grown their transplant programs and have started to face the impact of neglected tropical diseases (NTDs) in transplant recipients. We reviewed the literature data on the epidemiology of NTDs with greatest disease burden, which have affected transplant recipients in developing countries or may represent a threat to transplant recipients living in other regions. Tuberculosis, Leprosy, Chagas disease, Malaria, Leishmaniasis, Dengue, Yellow fever and Measles are the topics included in this review. In addition, we retrospectively revised the experience concerning the management of NTDs at the HSCT program of Amaral Carvalho Foundation, a public transplant program of the state of São Paulo, Brazil.
Collapse
|
12
|
Abstract
The 2009 Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guideline on the monitoring, management, and treatment of kidney transplant recipients is intended to assist the practitioner caring for adults and children after kidney transplantation. The guideline development process followed an evidence-based approach, and management recommendations are based on systematic reviews of relevant treatment trials. Critical appraisal of the quality of the evidence and the strength of recommendations followed the Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach. The guideline makes recommendations for immunosuppression, graft monitoring, as well as prevention and treatment of infection, cardiovascular disease, malignancy, and other complications that are common in kidney transplant recipients, including hematological and bone disorders. Limitations of the evidence, especially on the lack of definitive clinical outcome trials, are discussed and suggestions are provided for future research.
Collapse
|
13
|
Titball RW. Vaccines against intracellular bacterial pathogens. Drug Discov Today 2008; 13:596-600. [PMID: 18598915 DOI: 10.1016/j.drudis.2008.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 01/27/2023]
Abstract
There is a long history of remarkable success in developing vaccines against bacteria that are extracellular pathogens. In general, the development of vaccines against intracellular bacterial pathogens has proven to be more challenging. Typically, such vaccines need to induce a range of immune responses, including antibody, CD4(+) and CD8(+) T cell responses. These responses can be induced by live attenuated vaccines, but eliciting these responses with non-living vaccines has proven to be difficult. The difficulties appear to be related partly to the problems associated with the identification of protective antigens and partly with the difficulties associated with inducing CD8(+) T cell responses.
Collapse
Affiliation(s)
- Richard W Titball
- School of Biosciences, University of Exeter, Exeter, EX4 4QD Devon, UK.
| |
Collapse
|