1
|
Sudewi AA, Susilawathi NM, Mahardika BK, Mahendra AN, Pharmawati M, Phuong MA, Mahardika GN. Selecting Potential Neuronal Drug Leads from Conotoxins of Various Venomous Marine Cone Snails in Bali, Indonesia. ACS OMEGA 2019; 4:19483-19490. [PMID: 31763573 PMCID: PMC6868881 DOI: 10.1021/acsomega.9b03122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Many conotoxins, natural peptides of marine cone snails, have been identified to target neurons. Here, we provide data on pharmacological families of the conotoxins of 11 species of cone snails collected in Bali. The identified definitive pharmacological families possibly targeting neuronal tissues were α (alpha), ι (iota), κ (kappa), and ρ (rho). These classes shall target nicotinic acetylcholine receptors, voltage-gated Na channels, voltage-gated K channels, and α1-adrenoceptors, respectively. The VI/VII-O3 conotoxins might be prospected as an inhibitor of N-methyl-d-aspartate. Con-ikot-ikot could be applied as an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor blocker medicine. The definitive pharmacology classes of conotoxins as well as those yet to be elucidated need to be further established and verified.
Collapse
Affiliation(s)
- Anak A.
R. Sudewi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Ni M. Susilawathi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Bayu K. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
| | - Agung N. Mahendra
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Made Pharmawati
- Faculty
of Mathematic and Natural Sciences, Udayana
University of Bali, Kampus
Bukit Jimbaran, Badung 80361, Bali, Indonesia
| | - Mark A. Phuong
- Department
of Ecology and Evolutionary Biology, University
of California, Los Angeles, Los
Angeles 90095, California, United States
| | - Gusti N. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
- The Indonesian
Biodiversity Research Center, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| |
Collapse
|
2
|
Yao G, Peng C, Zhu Y, Fan C, Jiang H, Chen J, Cao Y, Shi Q. High-Throughput Identification and Analysis of Novel Conotoxins from Three Vermivorous Cone Snails by Transcriptome Sequencing. Mar Drugs 2019; 17:md17030193. [PMID: 30917600 PMCID: PMC6471451 DOI: 10.3390/md17030193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
The venom of each Conus species consists of a diverse array of neurophysiologically active peptides, which are mostly unique to the examined species. In this study, we performed high-throughput transcriptome sequencing to extract and analyze putative conotoxin transcripts from the venom ducts of 3 vermivorous cone snails (C. caracteristicus, C. generalis, and C. quercinus), which are resident in offshore waters of the South China Sea. In total, 118, 61, and 48 putative conotoxins (across 22 superfamilies) were identified from the 3 Conus species, respectively; most of them are novel, and some possess new cysteine patterns. Interestingly, a series of 45 unassigned conotoxins presented with a new framework of C-C-C-C-C-C, and their mature regions were sufficiently distinct from any other known conotoxins, most likely representing a new superfamily. O- and M-superfamily conotoxins were the most abundant in transcript number and transcription level, suggesting their critical roles in the venom functions of these vermivorous cone snails. In addition, we identified numerous functional proteins with potential involvement in the biosynthesis, modification, and delivery process of conotoxins, which may shed light on the fundamental mechanisms for the generation of these important conotoxins within the venom duct of cone snails.
Collapse
Affiliation(s)
- Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yabing Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Chongxu Fan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ying Cao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Dutt M, Dutertre S, Jin AH, Lavergne V, Alewood PF, Lewis RJ. Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Mar Drugs 2019; 17:md17010071. [PMID: 30669642 PMCID: PMC6356538 DOI: 10.3390/md17010071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, μ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.
Collapse
Affiliation(s)
- Mriga Dutt
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Sébastien Dutertre
- Institut des Biomolecules Max Mousseron, UMR 5247, Université Montpellier-CNRS, 34093 Montpellier, France.
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | | | - Paul Francis Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| | - Richard James Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4068, Australia.
| |
Collapse
|
4
|
Gao B, Peng C, Zhu Y, Sun Y, Zhao T, Huang Y, Shi Q. High Throughput Identification of Novel Conotoxins from the Vermivorous Oak Cone Snail ( Conus quercinus) by Transcriptome Sequencing. Int J Mol Sci 2018; 19:ijms19123901. [PMID: 30563163 PMCID: PMC6321112 DOI: 10.3390/ijms19123901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The primary objective of this study was to realize the large-scale discovery of conotoxin sequences from different organs (including the venom duct, venom bulb and salivary gland) of the vermivorous Oak cone snail, Conus quercinus. Using high-throughput transcriptome sequencing, we identified 133 putative conotoxins that belong to 34 known superfamilies, of which nine were previously reported while the remaining 124 were novel conotoxins, with 17 in new and unassigned conotoxin groups. A-, O1-, M-, and I2- superfamilies were the most abundant, and the cysteine frameworks XIII and VIII were observed for the first time in the A- and I2-superfamilies. The transcriptome data from the venom duct, venom bulb and salivary gland showed considerable inter-organizational variations. Each organ had many exclusive conotoxins, and only seven of all the inferred mature peptides were common in the three organs. As expected, most of the identified conotoxins were synthesized in the venom duct at relatively high levels; however, a number of conotoxins were also identified in the venom bulb and the salivary gland with very low transcription levels. Therefore, various organs have different conotoxins with high diversity, suggesting greater contributions from several organs to the high-throughput discovery of new conotoxins for future drug development.
Collapse
Affiliation(s)
- Bingmiao Gao
- Hainan Provincial Key Laboratory of Research and Development of Herbs, College of Pharmacy, Hainan Medical University, Haikou 571199, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yabing Zhu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Yuhui Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China.
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Tian Zhao
- Chemistry Department, College of Art and Science, Boston University, Boston, MA 02215, USA.
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
5
|
Fu Y, Li C, Dong S, Wu Y, Zhangsun D, Luo S. Discovery Methodology of Novel Conotoxins from Conus Species. Mar Drugs 2018; 16:md16110417. [PMID: 30380764 PMCID: PMC6266589 DOI: 10.3390/md16110417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cone snail venoms provide an ideal resource for neuropharmacological tools and drug candidates discovery, which have become a research hotspot in neuroscience and new drug development. More than 1,000,000 natural peptides are produced by cone snails, but less than 0.1% of the estimated conotoxins has been characterized to date. Hence, the discovery of novel conotoxins from the huge conotoxin resources with high-throughput and sensitive methods becomes a crucial key for the conotoxin-based drug development. In this review, we introduce the discovery methodology of new conotoxins from various Conus species. It focuses on obtaining full N- to C-terminal sequences, regardless of disulfide bond connectivity through crude venom purification, conotoxin precusor gene cloning, venom duct transcriptomics, venom proteomics and multi-omic methods. The protocols, advantages, disadvantages, and developments of different approaches during the last decade are summarized and the promising prospects are discussed as well.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Cheng Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Sousa SR, McArthur JR, Brust A, Bhola RF, Rosengren KJ, Ragnarsson L, Dutertre S, Alewood PF, Christie MJ, Adams DJ, Vetter I, Lewis RJ. Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Sci Rep 2018; 8:13397. [PMID: 30194442 PMCID: PMC6128854 DOI: 10.1038/s41598-018-31245-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Cone snails are a diverse group of predatory marine invertebrates that deploy remarkably complex venoms to rapidly paralyse worm, mollusc or fish prey. ω-Conotoxins are neurotoxic peptides from cone snail venoms that inhibit Cav2.2 voltage-gated calcium channel, demonstrating potential for pain management via intrathecal (IT) administration. Here, we isolated and characterized two novel ω-conotoxins, MoVIA and MoVIB from Conus moncuri, the first to be identified in vermivorous (worm-hunting) cone snails. MoVIA and MoVIB potently inhibited human Cav2.2 in fluorimetric assays and rat Cav2.2 in patch clamp studies, and both potently displaced radiolabeled ω-conotoxin GVIA (125I-GVIA) from human SH-SY5Y cells and fish brain membranes (IC50 2–9 pM). Intriguingly, an arginine at position 13 in MoVIA and MoVIB replaced the functionally critical tyrosine found in piscivorous ω-conotoxins. To investigate its role, we synthesized MoVIB-[R13Y] and MVIIA-[Y13R]. Interestingly, MVIIA-[Y13R] completely lost Cav2.2 activity and MoVIB-[R13Y] had reduced activity, indicating that Arg at position 13 was preferred in these vermivorous ω-conotoxins whereas tyrosine 13 is preferred in piscivorous ω-conotoxins. MoVIB reversed pain behavior in a rat neuropathic pain model, confirming that vermivorous cone snails are a new source of analgesic ω-conotoxins. Given vermivorous cone snails are ancestral to piscivorous species, our findings support the repurposing of defensive venom peptides in the evolution of piscivorous Conidae.
Collapse
Affiliation(s)
- Silmara R Sousa
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Andreas Brust
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rebecca F Bhola
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lotten Ragnarsson
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sebastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Paul F Alewood
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Irina Vetter
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Richard J Lewis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Espino SS, Dilanyan T, Imperial JS, Aguilar MB, Teichert RW, Bandyopadhyay P, Olivera BM. Glycine-rich conotoxins from the Virgiconus clade. Toxicon 2016; 113:11-7. [PMID: 26851775 DOI: 10.1016/j.toxicon.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/23/2016] [Accepted: 02/02/2016] [Indexed: 01/24/2023]
Abstract
Cone snails in the Virgiconus clade prey on marine worms. Here, we identify six related conotoxins in the O1-superfamily from three species in this clade, Conus virgo, Conus terebra and Conus kintoki. One of these peptides, vi6a, was directly purified from the venom of C. virgo by following its activity using calcium imaging of dissociated mouse dorsal root ganglion (DRG) neurons. The purified peptide was biochemically characterized, synthesized and tested for activity in mice. Hyperactivity was observed upon both intraperitoneal and intracranial injection of the peptide. The effect of the synthetic peptide on DRG neurons was identical to that of the native peptide. Using the vi6a sequence, five other homologs were identified. These peptides define a glycine-rich subgroup of the O1-superfamily from the Virgiconus clade, with biological activity in mice.
Collapse
Affiliation(s)
- Samuel S Espino
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake, UT 84112, USA
| | - Taleen Dilanyan
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake, UT 84112, USA; Department of Chemistry, Smith College, Northampton, MA 01063, USA
| | - Julita S Imperial
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake, UT 84112, USA.
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Russell W Teichert
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake, UT 84112, USA
| | - Pradip Bandyopadhyay
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake, UT 84112, USA
| | - Baldomero M Olivera
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake, UT 84112, USA
| |
Collapse
|
8
|
Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proc Natl Acad Sci U S A 2015; 112:E4026-35. [PMID: 26170295 DOI: 10.1073/pnas.1503617112] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified a previously unidentified conotoxin gene from Conus generalis whose precursor signal sequence has high similarity to the O1-gene conotoxin superfamily. The predicted mature peptide, αO-conotoxin GeXIVA (GeXIVA), has four Cys residues, and its three disulfide isomers were synthesized. Previously pharmacologically characterized O1-superfamily peptides, exemplified by the US Food and Drug Administration-approved pain medication, ziconotide, contain six Cys residues and are calcium, sodium, or potassium channel antagonists. However, GeXIVA did not inhibit calcium channels but antagonized nicotinic AChRs (nAChRs), most potently on the α9α10 nAChR subtype (IC50 = 4.6 nM). Toxin blockade was voltage-dependent, and kinetic analysis of toxin dissociation indicated that the binding site of GeXIVA does not overlap with the binding site of the competitive antagonist α-conotoxin RgIA. Surprisingly, the most active disulfide isomer of GeXIVA is the bead isomer, comprising, according to NMR analysis, two well-resolved but uncoupled disulfide-restrained loops. The ribbon isomer is almost as potent but has a more rigid structure built around a short 310-helix. In contrast to most α-conotoxins, the globular isomer is the least potent and has a flexible, multiconformational nature. GeXIVA reduced mechanical hyperalgesia in the rat chronic constriction injury model of neuropathic pain but had no effect on motor performance, warranting its further investigation as a possible therapeutic agent.
Collapse
|
9
|
Kumar PS, Kumar DS, Umamaheswari S. A perspective on toxicology of Conus venom peptides. ASIAN PAC J TROP MED 2015; 8:337-51. [PMID: 26003592 DOI: 10.1016/s1995-7645(14)60342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily unique and ecologically diverse family Conidae presents fundamental opportunities for marine pharmacology research and drug discovery. The focus of this investigation is to summarize the worldwide distribution of Conus and their species diversity with special reference to the Indian coast. In addition, this study will contribute to understanding the structural properties of conotoxin and therapeutic application of Conus venom peptides. Cone snails can inject a mix of various conotoxins and these venoms are their major weapon for prey capture, and may also have other biological purposes, and some of these conotoxins fatal to humans. Conus venoms contain a remarkable diversity of pharmacologically active small peptides; their targets are an iron channel and receptors in the neuromuscular system. Interspecific divergence is pronounced in venom peptide genes, which is generally attributed to their species specific biotic interactions. There is a notable interspecific divergence observed in venom peptide genes, which can be justified as of biotic interactions that stipulate species peculiar habitat and ecology of cone snails. There are several conopeptides used in clinical trials and one peptide (Ziconotide) has received FDA approval for treatment of pain. This perspective provides a comprehensive overview of the distribution of cone shells and focus on the molecular approach in documenting their taxonomy and diversity with special reference to geographic distribution of Indian cone snails, structure and properties of conopeptide and their pharmacological targets and future directions.
Collapse
Affiliation(s)
| | - Dhanabalan Senthil Kumar
- Department of Zoology, Kandaswami Kandar College, Paramathi Velur-638 182, Namakkal, Tamil Nadu, India
| | - Sundaresan Umamaheswari
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchurapalli, Tamil Nadu 620024, India
| |
Collapse
|
10
|
Conotoxin gene superfamilies. Mar Drugs 2014; 12:6058-101. [PMID: 25522317 PMCID: PMC4278219 DOI: 10.3390/md12126058] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.
Collapse
|
11
|
Thapa P, Espiritu MJ, Cabalteja CC, Bingham JP. Conotoxins and their regulatory considerations. Regul Toxicol Pharmacol 2014; 70:197-202. [PMID: 25013992 DOI: 10.1016/j.yrtph.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023]
Abstract
Venom derived peptides from marine cone snails, conotoxins, have demonstrated unique pharmacological targeting properties that have been pivotal in advancing medical research. The awareness of their true toxic origins and potent pharmacological nature is emphasized by their 'select agent' classification by the US Centers for Disease Control and Prevention. We briefly introduce the biochemical and pharmacological aspects of conotoxins, highlighting current advancements into their biological engineering, and provide details to the present regulations that govern their use in research.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Michael J Espiritu
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Chino C Cabalteja
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i, Honolulu, HI 96822, USA.
| |
Collapse
|
12
|
On the importance of oxidative folding in the evolution of conotoxins: cysteine codon preservation through gene duplication and adaptation. PLoS One 2013; 8:e78456. [PMID: 24244311 PMCID: PMC3823881 DOI: 10.1371/journal.pone.0078456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/11/2013] [Indexed: 11/19/2022] Open
Abstract
Conotoxin genes are among the most rapidly evolving genes currently known; however, despite the well-established hypervariability of the intercysteine loops, the cysteines demonstrate significant conservation, with a site-specific codon bias for each cysteine in a family of conotoxins. Herein we present a novel rationale behind the codon-level conservation of the cysteines that comprise the disulfide scaffold. We analyze cysteine codon conservation using an internal reference and phylogenetic tools; our results suggest that the established codon conservation can be explained as the result of selective pressures linked to the production efficiency and folding of conotoxins, driving the conservation of cysteine at the amino-acid level. The preservation of cysteine has resulted in maintenance of the ancestral codon in most of the daughter lineages, despite the hypervariability of adjacent residues. We propose that the selective pressures acting on the venom components of cone snails involve an interplay of biosynthetic efficiency, activity at the target receptor and the importance of that activity to effective prey immobilization. Functional redundancy in the venom can thus serve as a buffer for the energy expenditure of venom production.
Collapse
|
13
|
Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon 2013; 71:11-7. [PMID: 23688393 DOI: 10.1016/j.toxicon.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 11/21/2022]
Abstract
Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including cone-snails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.
Collapse
|
14
|
A novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily. PLoS One 2013; 8:e54648. [PMID: 23382933 PMCID: PMC3559828 DOI: 10.1371/journal.pone.0054648] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Conotoxins (CTxs) selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ‘‘pro’’ region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ‘‘pro’’ region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR) antagonist with greatest potency against the α9α10 subtype. 1H nuclear magnetic resonance (NMR) spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD) results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE) solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein.
Collapse
|
15
|
Gowd KH, Blais KD, Elmslie KS, Steiner AM, Olivera BM, Bulaj G. Dissecting a role of evolutionary-conserved but noncritical disulfide bridges in cysteine-rich peptides using ω-conotoxin GVIA and its selenocysteine analogs. Biopolymers 2012; 98:212-23. [PMID: 22782563 DOI: 10.1002/bip.22047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conotoxins comprise a large group of peptidic neurotoxins that use diverse disulfide-rich scaffolds. Each scaffold is determined by an evolutionarily conserved pattern of cysteine residues. Although many structure-activity relationship studies confirm the functional and structural importance of disulfide crosslinks, there is growing evidence that not all disulfide bridges are critical in maintaining activities of conotoxins. To answer the fundamental biological question of what the role of noncritical disulfide bridges is, we investigated function and folding of disulfide-depleted analogs of ω-conotoxin GVIA (GVIA) that belongs to an inhibitory cystine knot motif family and blocks N-type calcium channels. Removal of a noncritical Cys1-Cys16 disulfide bridge in GVIA or its selenopeptide analog had, as predicted, rather minimal effects on the inhibitory activity on calcium channels, as well as on in vivo activity following intracranial administration. However, the disulfide-depleted GVIA exhibited significantly lower folding yields for forming the remaining two native disulfide bridges. The disulfide-depleted selenoconotoxin GVIA analog also folded with significantly lower yields, suggesting that the functionally noncritical disulfide pair plays an important cooperative role in forming the native disulfide scaffold. Taken together, our results suggest that distinct disulfide bridges may be evolutionarily preserved by the oxidative folding or/and stabilization of the bioactive conformation of a disulfide-rich scaffold.
Collapse
|
16
|
Molecular phylogeny, classification and evolution of conopeptides. J Mol Evol 2012; 74:297-309. [PMID: 22760645 DOI: 10.1007/s00239-012-9507-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Conopeptides are toxins expressed in the venom duct of cone snails (Conoidea, Conus). These are mostly well-structured peptides and mini-proteins with high potency and selectivity for a broad range of cellular targets. In view of these properties, they are widely used as pharmacological tools and many are candidates for innovative drugs. The conopeptides are primarily classified into superfamilies according to their peptide signal sequence, a classification that is thought to reflect the evolution of the multigenic system. However, this hypothesis has never been thoroughly tested. Here we present a phylogenetic analysis of 1,364 conopeptide signal sequences extracted from GenBank. The results validate the current conopeptide superfamily classification, but also reveal several important new features. The so-called "cysteine-poor" conopeptides are revealed to be closely related to "cysteine-rich" conopeptides; with some of them sharing very similar signal sequences, suggesting that a distinction based on cysteine content and configuration is not phylogenetically relevant and does not reflect the evolutionary history of conopeptides. A given cysteine pattern or pharmacological activity can be found across different superfamilies. Furthermore, a few conopeptides from GenBank do not cluster in any of the known superfamilies, and could represent yet-undefined superfamilies. A clear phylogenetically based classification should help to disentangle the diversity of conopeptides, and could also serve as a rationale to understand the evolution of the toxins in the numerous other species of conoideans and venomous animals at large.
Collapse
|
17
|
Safavi-Hemami H, Siero WA, Kuang Z, Williamson NA, Karas JA, Page LR, MacMillan D, Callaghan B, Kompella SN, Adams DJ, Norton RS, Purcell AW. Embryonic toxin expression in the cone snail Conus victoriae: primed to kill or divergent function? J Biol Chem 2011; 286:22546-57. [PMID: 21504902 DOI: 10.1074/jbc.m110.217703] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Predatory marine cone snails (genus Conus) utilize complex venoms mainly composed of small peptide toxins that target voltage- and ligand-gated ion channels in their prey. Although the venoms of a number of cone snail species have been intensively profiled and functionally characterized, nothing is known about the initiation of venom expression at an early developmental stage. Here, we report on the expression of venom mRNA in embryos of Conus victoriae and the identification of novel α- and O-conotoxin sequences. Embryonic toxin mRNA expression is initiated well before differentiation of the venom gland, the organ of venom biosynthesis. Structural and functional studies revealed that the embryonic α-conotoxins exhibit the same basic three-dimensional structure as the most abundant adult toxin but significantly differ in their neurological targets. Based on these findings, we postulate that the venom repertoire of cone snails undergoes ontogenetic changes most likely reflecting differences in the biotic interactions of these animals with their prey, predators, or competitors. To our knowledge, this is the first study to show toxin mRNA transcripts in embryos, a finding that extends our understanding of the early onset of venom expression in animals and may suggest alternative functions of peptide toxins during development.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, University of Melbourne, 3010 Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaas Q, Westermann JC, Craik DJ. Conopeptide characterization and classifications: an analysis using ConoServer. Toxicon 2010; 55:1491-509. [PMID: 20211197 DOI: 10.1016/j.toxicon.2010.03.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Cone snails are carnivorous marine gastropods that have evolved potent venoms to capture their prey. These venoms comprise a rich and diverse cocktail of peptide toxins, or conopeptides, whose high diversity has arisen from an efficient hypermutation mechanism, combined with a high frequency of post-translational modifications. Conopeptides bind with high specificity to distinct membrane receptors, ion channels, and transporters of the central and muscular nervous system. As well as serving their natural function in prey capture, conopeptides have been utilized as versatile tools in neuroscience and have proven valuable as drug leads that target the nervous system in humans. This paper examines current knowledge on conopeptide sequences based on an analysis of gene and peptide sequences in ConoServer (http://www.conoserver.org), a specialized database of conopeptide sequences and three-dimensional structures. We describe updates to the content and organization of ConoServer and discuss correlations between gene superfamilies, cysteine frameworks, pharmacological families targeted by conopeptides, and the phylogeny, habitat, and diet of cone snails. The study identifies gaps in current knowledge of conopeptides and points to potential directions for future research.
Collapse
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, Brisbane, 4072 QLD, Australia
| | | | | |
Collapse
|
19
|
Luo S, Akondi KB, Zhangsun D, Wu Y, Zhu X, Hu Y, Christensen S, Dowell C, Daly NL, Craik DJ, Wang CIA, Lewis RJ, Alewood PF, Michael McIntosh J. Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor. J Biol Chem 2010; 285:12355-66. [PMID: 20145249 DOI: 10.1074/jbc.m109.079012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different nicotinic acetylcholine receptor (nAChR) subtypes are implicated in learning, pain sensation, and disease states, including Parkinson disease and nicotine addiction. alpha-Conotoxins are among the most selective nAChR ligands. Mechanistic insights into the structure, function, and receptor interaction of alpha-conotoxins may serve as a platform for development of new therapies. Previously characterized alpha-conotoxins have a highly conserved Ser-Xaa-Pro motif that is crucial for potent nAChR interaction. This study characterized the novel alpha-conotoxin LtIA, which lacks this highly conserved motif but potently blocked alpha3beta2 nAChRs with a 9.8 nm IC(50) value. The off-rate of LtIA was rapid relative to Ser-Xaa-Pro-containing alpha-conotoxin MII. Nevertheless, pre-block of alpha3beta2 nAChRs with LtIA prevented the slowly reversible block associated with MII, suggesting overlap in their binding sites. nAChR beta subunit ligand-binding interface mutations were used to examine the >1000-fold selectivity difference of LtIA for alpha3beta2 versus alpha3beta4 nAChRs. Unlike MII, LtIA had a >900-fold increased IC(50) value on alpha3beta2(F119Q) versus wild type nAChRs, whereas T59K and V111I beta2 mutants had little effect. Molecular docking simulations suggested that LtIA had a surprisingly shallow binding site on the alpha3beta2 nAChR that includes beta2 Lys-79. The K79A mutant disrupted LtIA binding but was without effect on an LtIA analog where the Ser-Xaa-Pro motif is present, consistent with distinct binding modes.
Collapse
Affiliation(s)
- Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Ocean College, College of Materials and Chemical Engineering, Center for Experimental Biotechnology, Hainan University, Haikou Hainan 570228, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Venomous marine cone snails harbour a variety of small disulfide-rich peptides called conotoxins, which target a broad range of ion channels, membrane receptors, and transporters. More than 700 species of Conus are thought to exist, each expressing a wide array of different peptides. Within this large repertoire of toxins, individual conotoxins are able to discriminate between different subtypes and isoforms of ion channels, making them valuable pharmacological probes or leads for drug design. This review gives a brief background to the discovery of conotoxins and describes their sequences, biological activities, and applications in drug design.
Collapse
Affiliation(s)
- Reena Halai
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
21
|
Loughnan ML, Nicke A, Lawrence N, Lewis RJ. Novel αD-Conopeptides and Their Precursors Identified by cDNA Cloning Define the D-Conotoxin Superfamily. Biochemistry 2009; 48:3717-29. [DOI: 10.1021/bi9000326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marion L. Loughnan
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia, and Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/Main, Germany
| | - Annette Nicke
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia, and Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/Main, Germany
| | - Nicole Lawrence
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia, and Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/Main, Germany
| | - Richard J. Lewis
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia, and Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt/Main, Germany
| |
Collapse
|