1
|
Al Maqbali AS, Al Rasbi NK, Zoghaib WM, Sivakumar N, Robertson CC, Shongwe MS, Grzegorzek N, Abdel-Jalil RJ. Stereoselective Asymmetric Syntheses of Molecules with a 4,5-Dihydro-1 H-[1,2,4]-Triazoline Core Possessing an Acetylated Carbohydrate Appendage: Crystal Structure, Spectroscopy, and Pharmacology. Molecules 2024; 29:2839. [PMID: 38930904 PMCID: PMC11206253 DOI: 10.3390/molecules29122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
A new series of chiral 4,5-dihydro-1H-[1,2,4]-triazoline molecules, featuring a β-ᴅ-glucopyranoside appendage, were synthesized via a 1,3-dipolar cycloaddition reaction between various hydrazonyl chlorides and carbohydrate Schiff bases. The isolated enantiopure triazolines (8a-j) were identified through high-resolution mass spectrometry (HRMS) and vibrational spectroscopy. Subsequently, their solution structures were elucidated through NMR spectroscopic techniques. Single-crystal X-ray analysis of derivative 8b provided definitive evidence for the 3-D structure of this compound and revealed important intermolecular forces in the crystal lattice. Moreover, it confirmed the (S)-configuration at the newly generated stereo-center. Selected target compounds were investigated for anti-tumor activity in 60 cancer cell lines, with derivative 8c showing the highest potency, particularly against leukemia. Additionally, substituent-dependent anti-fungal and anti-bacterial behavior was observed.
Collapse
Affiliation(s)
- Anwaar S. Al Maqbali
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nawal K. Al Rasbi
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Wajdi M. Zoghaib
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman;
| | | | - Musa S. Shongwe
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| | - Norbert Grzegorzek
- Institute of Organic Chemistry, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, 72076 Tübingen, Germany;
| | - Raid J. Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khod 123, Muscat P.O. Box 36, Oman; (A.S.A.M.); (N.K.A.R.); (W.M.Z.); (M.S.S.)
| |
Collapse
|
2
|
Barmade MA, Agrawal P, Rajput SR, Murumkar PR, Rana B, Sahal D, Yadav MR. Novel quinolinepiperazinyl-aryltetrazoles targeting the blood stage of Plasmodium falciparum. RSC Med Chem 2024; 15:572-594. [PMID: 38389888 PMCID: PMC10880932 DOI: 10.1039/d3md00417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024] Open
Abstract
The emergence of drug resistance against the frontline antimalarials is a major challenge in the treatment of malaria. In view of emerging reports on drug-resistant strains of Plasmodium against artemisinin combination therapy, a dire need is felt for the discovery of novel compounds acting against novel targets in the parasite. In this study, we identified a novel series of quinolinepiperazinyl-aryltetrazoles (QPTs) targeting the blood stage of Plasmodium. In vitro anti-plasmodial activity screening revealed that most of the compounds showed IC50 < 10 μM against chloroquine-resistant PfINDO strain, with the most promising lead compounds 66 and 75 showing IC50 values of 2.25 and 1.79 μM, respectively. Further, compounds 64-66, 68, 75-77 and 84 were found to be selective (selectivity index >50) in their action against Pf over a mammalian cell line, with compounds 66 and 75 offering the highest selectivity indexes of 178 and 223, respectively. Explorations into the action of lead compounds 66 and 75 revealed their selective cidal activity towards trophozoites and schizonts. In a ring-stage survival assay, 75 showed cidal activity against the early rings of artemisinin-resistant PfCam3.1R539T. Further, 66 and 75 in combination with artemisinin and pyrimethamine showed additive to weak synergistic interactions. Of these two in vitro lead molecules, only 66 restricted rise in the percentage of parasitemia to about 10% in P. berghei-infected mice with a median survival time of 28 days as compared to the untreated control, which showed the percentage of parasitemia >30%, and a median survival of 20 days. Promising antimalarial activity, high selectivity, and additive interaction with artemisinin and pyrimethamine indicate the potential of these compounds to be further optimized chemically as future drug candidates against malaria.
Collapse
Affiliation(s)
- Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Sweta R Rajput
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
| | - Bhavika Rana
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, ICGEB Aruna Asaf Ali Marg New Delhi-110067 India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda Vadodara-390001 Gujarat India
- Research and Development Cell, Parul University Waghodia Road, P. O. Limda Vadodara-391760 Gujarat India
| |
Collapse
|
3
|
Preliminary studies of an imidazole-based alcohol derivative for imaging of Heme oxygenase 1. Bioorg Med Chem Lett 2022; 64:128674. [PMID: 35292342 DOI: 10.1016/j.bmcl.2022.128674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022]
Abstract
Heme oxygenase-1 (HO-1) has been involved in the pathogenesis of Alzheimer's disease (AD), thus constituting a promising target for AD drug development. Positron emission tomography (PET) is a fully translational imaging technology, which will help us understand the role of HO-1 in the progression of AD, facilitating to validate promising HO-1 inhibitors in clinical trials. To our knowledge, there is no report on PET imaging probe targeting HO-1 in animals and humans. We report herein the synthesis and characterization of a 11C-labeled imidazole-based alcohol derivative ([11C]QC-33) for imaging of HO-1 in the brain. The desired product [11C]QC-33 was afforded with a radiochemical yield of 16 ± 9% (n = 3, decay corrected). The radiochemical purity was greater than 99%, and the molar radioactivity was greater than 185 GBq/μmol. In vitro autoradiography studies indicated specific binding of [11C]QC-33 in the HO-1 rich regions, showing 75%, 75%, and 69% radioactivity binding reductions in cerebellum, brain stem, and midbrain, respectively. PET/CT scanning in C57BL/6 mice showed low brain uptake and poor blood-brain barrier (BBB) penetration of [11C]QC-33. These results suggested that [11C]QC-33 can serve as a lead compound to advance the development of next generation PET tracer with the potential to monitor HO-1 in AD progression.
Collapse
|
4
|
Khake SM, Chatani N. Rhodium(III)-Catalyzed Oxidative C–H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shrikant M. Khake
- Department of Applied Chemistry, Faculty of Engineering, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Fallica A, Sorrenti V, D’Amico AG, Salerno L, Romeo G, Intagliata S, Consoli V, Floresta G, Rescifina A, D’Agata V, Vanella L, Pittalà V. Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with Potent In Vitro Antiproliferative Activity. J Med Chem 2021; 64:13373-13393. [PMID: 34472337 PMCID: PMC8474116 DOI: 10.1021/acs.jmedchem.1c00633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 12/25/2022]
Abstract
Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.
Collapse
Affiliation(s)
- Antonino
N. Fallica
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Agata G. D’Amico
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | - Valeria Consoli
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department
of Analytics, Environmental & Forensics, King’s College London, Stamford Street, London SE1 9NH, U.K.
| | - Antonio Rescifina
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Velia D’Agata
- Sections
of Human Anatomy and Histology, Department of Biomedical and Biotechnological
Sciences, University of Catania, 95123 Catania, Italy
| | - Luca Vanella
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| |
Collapse
|
6
|
Bibi A, Khan I, Andleeb H, Simpson J, Tahir MN, Hameed S, Frontera A. Synthesis, X-ray characterization, Hirshfeld surface analysis and DFT calculations on tetrazolyl-phenol derivatives: H-bonds vs C–H…π/π…π interactions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Floresta G, Amata E, Gentile D, Romeo G, Marrazzo A, Pittalà V, Salerno L, Rescifina A. Fourfold Filtered Statistical/Computational Approach for the Identification of Imidazole Compounds as HO-1 Inhibitors from Natural Products. Mar Drugs 2019; 17:md17020113. [PMID: 30759842 PMCID: PMC6409521 DOI: 10.3390/md17020113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
8
|
Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 2019; 167:439-453. [PMID: 30784878 DOI: 10.1016/j.ejmech.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Valeria Ciaffaglione
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Fatima Margani
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
9
|
Floresta G, Amata E, Dichiara M, Marrazzo A, Salerno L, Romeo G, Prezzavento O, Pittalà V, Rescifina A. Identification of Potentially Potent Heme Oxygenase 1 Inhibitors through 3D-QSAR Coupled to Scaffold-Hopping Analysis. ChemMedChem 2018; 13:1336-1342. [DOI: 10.1002/cmdc.201800176] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
- Department of Chemical Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Emanuele Amata
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Maria Dichiara
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Agostino Marrazzo
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Loredana Salerno
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Giuseppe Romeo
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Orazio Prezzavento
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Valeria Pittalà
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Antonio Rescifina
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
10
|
Novel Structural Insight into Inhibitors of Heme Oxygenase-1 (HO-1) by New Imidazole-Based Compounds: Biochemical and In Vitro Anticancer Activity Evaluation. Molecules 2018; 23:molecules23051209. [PMID: 29783634 PMCID: PMC6099553 DOI: 10.3390/molecules23051209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper, the design, synthesis, and molecular modeling of a new azole-based HO-1 inhibitors was reported, using compound 1 as a lead compound, in which an imidazole moiety is linked to a hydrophobic group by means of an ethanolic spacer. The tested compounds showed a good inhibitor activity and possessed IC50 values in the micromolar range. These results were obtained by targeting the hydrophobic western region. Molecular modeling studies confirmed a consolidated binding mode in which the nitrogen of the imidazolyl moiety coordinated the heme ferrous iron, meanwhile the hydrophobic groups were located in the western region of HO-1 binding pocket. Moreover, the new compounds were screened for in silico ADME-Tox properties to predict drug-like behavior with convincing results. Finally, the in vitro antitumor activity profile of compound 1 was investigated in different cancer cell lines and nanomicellar formulation was synthesized with the aim of improving compound's 1 water solubility. Finally, compound 1 was tested in melanoma cells in combination with doxorubicin showing interesting synergic activity.
Collapse
|
11
|
Nejat R, Mahjoub MA, Hekmatian Z, Javidi MA, Babashah S. Zeolite-catalyzed synthesis of pyrazolo[1,2-a][1,2,4]triazole-1,3-dione derivatives as anti-breast cancer agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1310-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Salerno L, Amata E, Romeo G, Marrazzo A, Prezzavento O, Floresta G, Sorrenti V, Barbagallo I, Rescifina A, Pittalà V. Potholing of the hydrophobic heme oxygenase-1 western region for the search of potent and selective imidazole-based inhibitors. Eur J Med Chem 2018; 148:54-62. [PMID: 29454190 DOI: 10.1016/j.ejmech.2018.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Here we report the design, synthesis, and molecular modeling of new potent and selective imidazole-based HO-1 inhibitors in which the imidazole nucleus and the hydrophobic groups are linked by a phenylethanolic spacer. Most of the tested compounds showed a good inhibitor activity with IC50 values in the low micromolar range, with two of them (1b and 1j) exhibiting also high selectivity toward HO-2. These results were obtained by the idea of potholing the entire volume of the principal hydrophobic western region with an appropriate ligand volume. Molecular modeling studies showed that these molecules bind to the HO-1 in the consolidated fashion where the imidazolyl moiety coordinates the heme iron while the aromatic groups are stabilized by hydrophobic interaction in the western region of the binding pocket. Finally, the synthesized compounds were analyzed for in silico ADME-Tox properties to establish oral drug-like behavior and showed satisfactory results.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
13
|
Wang Y, Chen Y, Yang Y, Zhou B. A Rh(iii)-catalyzed redox-neutral C–H alkylation reaction with allylic alcohols by using a traceless oxidizing directing group. Org Chem Front 2018. [DOI: 10.1039/c8qo00265g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A Rh(iii)-catalyzed C–H alkylation of N-phenoxyacetamides with allylic alcohols has been developed to provide valuable β-aryl ketones under mild and redox-neutral conditions by using a traceless oxidizing directing group.
Collapse
Affiliation(s)
- Yubo Wang
- College of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- PR China
- State Key Laboratory of Drug Research
| | - Yu Chen
- College of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- PR China
| | - Yaxi Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- PR China
| | - Bing Zhou
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- PR China
| |
Collapse
|
14
|
Dandia A, Khan S, Sharma R, Parihar S, Parewa V. “On Water” Sustainable Synthesis of 1,5-Disubstituted Tetrazoles via Ugi-Azide Reaction through Perturbation of Kosmotropes Using Nacl. ChemistrySelect 2017. [DOI: 10.1002/slct.201702234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry; University of Rajasthan; Jaipur India
| | - Shahnawaz Khan
- Centre of Advanced Studies, Department of Chemistry; University of Rajasthan; Jaipur India
| | - Ruchi Sharma
- Centre of Advanced Studies, Department of Chemistry; University of Rajasthan; Jaipur India
| | - Sonam Parihar
- Centre of Advanced Studies, Department of Chemistry; University of Rajasthan; Jaipur India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry; University of Rajasthan; Jaipur India
| |
Collapse
|
15
|
Hum M, McLaughlin BE, Kong X, Vlahakis JZ, Vukomanovic D, Szarek WA, Nakatsu K. Differential inhibition of rat and mouse microsome heme oxygenase by derivatives of imidazole and benzimidazole. Can J Physiol Pharmacol 2017; 95:1454-1461. [PMID: 28793202 DOI: 10.1139/cjpp-2017-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metalloporphyrin heme oxygenase (HO) inhibitors have made an important contribution to elucidating the role of HO in physiological processes. Nevertheless, their off-target effects have drawn substantial criticism, which prompted us to develop non-porphyrin, azole-based inhibitors of HO. These second-generation HO inhibitors were evaluated using spleen and brain microsomes from rats as native sources of HO-1 and HO-2, respectively. Recently, the use of azole-based inhibitors of HO has been extended to other mammalian species and, as a consequence, it will be important to characterize the inhibitors in these species. The goal of this study was to compare the inhibitory profile of imidazole- and benzimidazole-based inhibitors of HO in a breast-cancer-implanted mouse to that of an untreated rat. For spleen and brain microsomes from both species, HO protein expression was determined by Western blotting and concentration-response curves for imidazole- and benzimidazole-derivative inhibition of HO activity were determined using a headspace gas-chromatographic assay. It was found that the effects on HO activity by imidazole and benzimidazole derivatives were different between the 2 species and were not explained by differences in HO expression. Thus, the HO inhibitory profile should be determined for azole derivatives before they are used in mammalian species other than rats.
Collapse
Affiliation(s)
- Maaike Hum
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brian E McLaughlin
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Xianqi Kong
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jason Z Vlahakis
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Dragic Vukomanovic
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Walter A Szarek
- b Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kanji Nakatsu
- a Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
16
|
Oh H, Park J, Han SH, Mishra NK, Lee SH, Oh Y, Jeon M, Seong GJ, Chung KY, Kim IS. Rh(III)-catalyzed C−H alkylation of indolines with enones through conjugate addition and protonation pathway. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Han SH, Choi M, Jeong T, Sharma S, Mishra NK, Park J, Oh JS, Kim WJ, Lee JS, Kim IS. Rhodium-Catalyzed C–H Alkylation of Indolines with Allylic Alcohols: Direct Access to β-Aryl Carbonyl Compounds. J Org Chem 2015; 80:11092-9. [DOI: 10.1021/acs.joc.5b01696] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sang Hoon Han
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Miji Choi
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Taejoo Jeong
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Satyasheel Sharma
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Neeraj Kumar Mishra
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jihye Park
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Joa Sub Oh
- College
of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
- Biocenter, Gyeonggi Institute of Science & Technology Promotion, Suwon 443-270, Republic of Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggi Institute of Science & Technology Promotion, Suwon 443-270, Republic of Korea
| | - Jong Suk Lee
- Biocenter, Gyeonggi Institute of Science & Technology Promotion, Suwon 443-270, Republic of Korea
| | - In Su Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
19
|
Carletta A, Tilborg A, Moineaux L, de Ruyck J, Basile L, Salerno L, Romeo G, Wouters J, Guccione S. How does binding of imidazole-based inhibitors to heme oxygenase-1 influence their conformation? Insights combining crystal structures and molecular modelling. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2015. [DOI: 10.1107/s2052520615010410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heme oxygenase-1 (HO-1) inhibition is associated with antitumor activity. Imidazole-based analogues show effective and selective inhibitory potency of HO-1. In this work, five single-crystal structures of four imidazole-based compounds are presented, with an in-depth structural analysis. In order to study the influence of the conformation of the ligands on binding to protein, conformational data from crystallography are compared with quantum mechanics analysis and molecular docking studies. Molecular docking of imidazole-based analogues in the active site of HO-1 is in good agreement with the experimental structures. Inhibitors interact with the heme cofactor and a hydrophobic pocket (Met34, Phe37, Val50, Leu147 and Phe214) in the HO-1 binding site. An alternate binding mode can be hypothesized for some inhibitors in the series.
Collapse
|
20
|
Karabanovich G, Roh J, Soukup O, Pávková I, Pasdiorová M, Tambor V, Stolaříková J, Vejsová M, Vávrová K, Klimešová V, Hrabálek A. Tetrazole regioisomers in the development of nitro group-containing antitubercular agents. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00301b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrazole derivatives containing nitro substituents have been identified as promising antitubercular agents.
Collapse
|
21
|
Grigor’ev YV, Voitekhovich SV, Lyakhov AS, Ivashkevich LS, Buglak AF, Ivashkevich OA. Synthesis and structure of new ditopic ligands containing tetrazole and 3-nitro-1,2,4-triazole fragments. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014050200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Belskaya N, Subbotina J, Lesogorova S. Synthesis of 2H-1,2,3-Triazoles. TOPICS IN HETEROCYCLIC CHEMISTRY 2014. [DOI: 10.1007/7081_2014_125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Pandey S, Agarwal P, Srivastava K, Rajakumar S, Puri SK, Verma P, Saxena JK, Sharma A, Lal J, Chauhan PMS. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. Eur J Med Chem 2013; 66:69-81. [PMID: 23792317 DOI: 10.1016/j.ejmech.2013.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/30/2013] [Accepted: 05/19/2013] [Indexed: 11/25/2022]
Abstract
A series of novel tetrazole derivatives of 4-aminoquinoline were synthesized and screened for their antimalarial activities against both chloroquine-senstive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum as well as for cytotoxicity against VERO cell lines. Most of the synthesized compounds exhibited potent antimalarial activity as compared to chloroquine against K1-strain. Compounds with significant in vitro antimalarial activity were then evaluated for their in vivo efficacy in Swiss mice against Plasmodium yoelii following both intraperitoneal (ip) and oral administration, wherein compounds 20 and 23 each showed in vivo suppression of 99.99% parasitaemia on day 4.
Collapse
Affiliation(s)
- Shashi Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rahman MN, Vukomanovic D, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds. J R Soc Interface 2012; 10:20120697. [PMID: 23097500 DOI: 10.1098/rsif.2012.0697] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies.
Collapse
Affiliation(s)
- Mona N Rahman
- 1Department of Biomedical and Molecular Sciences, and 2Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
The design, synthesis, in silico ADME profiling, antiplasmodial and antimycobacterial evaluation of new arylamino quinoline derivatives. Eur J Med Chem 2012; 57:259-67. [DOI: 10.1016/j.ejmech.2012.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
|
26
|
Vlahakis JZ, Lazar C, Roman G, Vukomanovic D, Nakatsu K, Szarek WA. Heme oxygenase inhibition by α-(1H-imidazol-1-yl)-ω-phenylalkanes: effect of introduction of heteroatoms in the alkyl linker. ChemMedChem 2012; 7:897-902. [PMID: 22431362 DOI: 10.1002/cmdc.201100602] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/25/2012] [Indexed: 11/10/2022]
Abstract
Several α-(1H-imidazol-1-yl)-ω-phenylalkanes were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds were found to be potent and selective for the stress-induced isozyme HO-1, showing mostly weak activity toward the constitutive isozyme HO-2. The introduction of an oxygen atom in the alkyl linker produced analogues with decreased potency toward HO-1, whereas the presence of a sulfur atom in the linker gave rise to analogues with greater potency toward HO-1 than the carbon-containing analogues. The most potent compounds studied contained a five-atom linker between the imidazolyl and phenyl moieties, whereas the most HO-1-selective compounds contained a four-atom linker between these groups. The compounds with a five-atom linker containing a heteroatom (O or S) were found to be the most potent inhibitors of HO-2; 1-(N-benzylamino)-3-(1H-imidazol-1-yl)propane dihydrochloride, with a nitrogen atom in the linker, was found to be inactive.
Collapse
Affiliation(s)
- Jason Z Vlahakis
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Rahman MN, Vlahakis JZ, Vukomanovic D, Lee W, Szarek WA, Nakatsu K, Jia Z. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition. PLoS One 2012; 7:e29514. [PMID: 22276118 PMCID: PMC3261875 DOI: 10.1371/journal.pone.0029514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.
Collapse
Affiliation(s)
- Mona N. Rahman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | | | - Dragic Vukomanovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Wallace Lee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | | | - Kanji Nakatsu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- * E-mail:
| |
Collapse
|
28
|
Roman G, Vlahakis JZ, Vukomanovic D, Nakatsu K, Szarek WA. Heme oxygenase inhibition by 1-aryl-2-(1h-imidazol-1-yl/1h-1,2,4-triazol-1-yl)ethanones and their derivatives. ChemMedChem 2011; 5:1541-55. [PMID: 20652928 DOI: 10.1002/cmdc.201000120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO-1 and HO-2). The majority of these were based on a four-carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1-aryl-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1-yl)ethanones and their derivatives. As regards HO-1 inhibition, the aromatic moieties yielding best results were found to be halogen-substituted residues such as 3-bromophenyl, 4-bromophenyl, and 3,4-dichlorophenyl, or hydrocarbon residues such as 2-naphthyl, 4-biphenyl, 4-benzylphenyl, and 4-(2-phenethyl)phenyl. Among the imidazole-ketones, five (36-39, and 44) were found to be very potent (IC(50)<5 muM) toward both isozymes. Relative to the imidazole-ketones, the series of corresponding triazole-ketones showed four compounds (54, 55, 61, and 62) having a selectivity index >50 in favor of HO-1. In the case of the azole-dioxolanes, two of them (80 and 85), each possessing a 2-naphthyl moiety, were found to be particularly potent and selective HO-1 inhibitors. Three non-carbonyl analogues (87, 89, and 91) of 1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethanone were found to be good inhibitors of HO-1. For the first time in our studies, two azole-based inhibitors (37 and 39) were found to exhibit a modest selectivity index in favor of HO-2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Chemistry, Queen's University, Chernoff Hall, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
29
|
Maurelli S, Chiesa M, Giamello E, Di Nardo G, V. Ferrero VE, Gilardi G, Van Doorslaer S. Direct spectroscopic evidence for binding of anastrozole to the iron heme of human aromatase. Peering into the mechanism of aromatase inhibition. Chem Commun (Camb) 2011; 47:10737-9. [DOI: 10.1039/c1cc13872c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Vukomanovic D, McLaughlin B, Rahman MN, Vlahakis JZ, Roman G, Dercho RA, Kinobe RT, Hum M, Brien JF, Jia Z, Szarek WA, Nakatsu K. Recombinant truncated and microsomal heme oxygenase-1 and -2: differential sensitivity to inhibitors. Can J Physiol Pharmacol 2010; 88:480-6. [PMID: 20555417 DOI: 10.1139/y10-004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recombinant truncated forms of heme oxygenase-1 and -2 (HO-1 and HO-2) were compared with their crude microsomal counterparts from brain and spleen tissue of adult male rats with respect to their inhibition by azole-based, nonporphyrin HO inhibitors. The drugs tested were an imidazole-alcohol, an imidazole-dioxolane, and a triazole-ketone. Both the recombinant and crude forms of HO-2 were similarly inhibited by the 3 drugs. The crude microsomal spleen form of HO-1 was more susceptible to inhibition than was the truncated recombinant form. This difference is attributed to the extra amino acids in the full-length enzyme. These observations may be relevant in the design of drugs as inhibitors of HO and other membrane proteins.
Collapse
Affiliation(s)
- Dragic Vukomanovic
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hum M, McLaughlin BE, Roman G, Vlahakis JZ, Szarek WA, Nakatsu K. The effects of azole-based heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2 and human cytochromes P450 3A4 and 2D6. J Pharmacol Exp Ther 2010; 334:981-7. [PMID: 20501634 DOI: 10.1124/jpet.110.168492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenases (HOs) catalyze the degradation of heme to biliverdin, carbon monoxide (CO), and free iron. The two major isoforms, HO-1 (inducible) and HO-2 (constitutive), are involved in a variety of physiological functions, including inflammation, apoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs. However, these tools are limited by their lack of selectivity; they affect other heme-dependent enzymes, such as cytochromes P450 (P450s), soluble guanylyl cyclase (sGC), and nitric-oxide synthase (NOS). Our laboratory has successfully synthesized a number of nonporphyrin azole-based HO inhibitors (QC-xx) that had little or no effect on sGC and NOS activity. However, their effects on various P450 isoforms have yet to be fully elucidated. To determine the effects of the QC-xx inhibitors on P450 enzyme activity, microsomal preparations of two rat P450 isoforms (2E1 and 3A1/3A2) and two human P450 supersome isoforms (3A4 and 2D6) were incubated with varying concentrations of HO inhibitor, and the activity was determined by spectrophotometric or fluorometric analysis. Results indicated that some QC compounds demonstrated little to no inhibition of the P450s, whereas others did inhibit these P450 isoforms. Four structural regions of QC-xx were analyzed, leading to the identification of structures that confer a decreased effect on both rat and human P450 isoforms studied while maintaining an inhibitory effect on the HOs.
Collapse
Affiliation(s)
- Maaike Hum
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|