1
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
2
|
Lovrić M, Wang T, Staffe MR, Šunić I, Časni K, Lasky-Su J, Chawes B, Rasmussen MA. A Chemical Structure and Machine Learning Approach to Assess the Potential Bioactivity of Endogenous Metabolites and Their Association with Early Childhood Systemic Inflammation. Metabolites 2024; 14:278. [PMID: 38786755 PMCID: PMC11122766 DOI: 10.3390/metabo14050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolomics has gained much attention due to its potential to reveal molecular disease mechanisms and present viable biomarkers. This work uses a panel of untargeted serum metabolomes from 602 children from the COPSAC2010 mother-child cohort. The annotated part of the metabolome consists of 517 chemical compounds curated using automated procedures. We created a filtering method for the quantified metabolites using predicted quantitative structure-bioactivity relationships for the Tox21 database on nuclear receptors and stress response in cell lines. The metabolites measured in the children's serums are predicted to affect specific targeted models, known for their significance in inflammation, immune function, and health outcomes. The targets from Tox21 have been used as targets with quantitative structure-activity relationships (QSARs). They were trained for ~7000 structures, saved as models, and then applied to the annotated metabolites to predict their potential bioactivities. The models were selected based on strict accuracy criteria surpassing random effects. After application, 52 metabolites showed potential bioactivity based on structural similarity with known active compounds from the Tox21 set. The filtered compounds were subsequently used and weighted by their bioactive potential to show an association with early childhood hs-CRP levels at six months in a linear model supporting a physiological adverse effect on systemic low-grade inflammation.
Collapse
Affiliation(s)
- Mario Lovrić
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia;
- The Lisbon Council, 1040 Brussels, Belgium
| | - Tingting Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
| | - Mads Rønnow Staffe
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Iva Šunić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia;
| | | | - Jessica Lasky-Su
- Department of Medicine, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
3
|
Williams AH, Zhan CG. Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management. BioDrugs 2023; 37:649-674. [PMID: 37464099 DOI: 10.1007/s40259-023-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 07/20/2023]
Abstract
In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.
Collapse
Affiliation(s)
- Alexander H Williams
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- GSK Upper Providence, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
Shah I, Bundy J, Chambers B, Everett LJ, Haggard D, Harrill J, Judson RS, Nyffeler J, Patlewicz G. Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities. Chem Res Toxicol 2022; 35:1929-1949. [PMID: 36301716 PMCID: PMC10483698 DOI: 10.1021/acs.chemrestox.2c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Screening new compounds for potential bioactivities against cellular targets is vital for drug discovery and chemical safety. Transcriptomics offers an efficient approach for assessing global gene expression changes, but interpreting chemical mechanisms from these data is often challenging. Connectivity mapping is a potential data-driven avenue for linking chemicals to mechanisms based on the observation that many biological processes are associated with unique gene expression signatures (gene signatures). However, mining the effects of a chemical on gene signatures for biological mechanisms is challenging because transcriptomic data contain thousands of noisy genes. New connectivity mapping approaches seeking to distinguish signal from noise continue to be developed, spurred by the promise of discovering chemical mechanisms, new drugs, and disease targets from burgeoning transcriptomic data. Here, we analyze these approaches in terms of diverse transcriptomic technologies, public databases, gene signatures, pattern-matching algorithms, and statistical evaluation criteria. To navigate the complexity of connectivity mapping, we propose a harmonized scheme to coherently organize and compare published workflows. We first standardize concepts underlying transcriptomic profiles and gene signatures based on various transcriptomic technologies such as microarrays, RNA-Seq, and L1000 and discuss the widely used data sources such as Gene Expression Omnibus, ArrayExpress, and MSigDB. Next, we generalize connectivity mapping as a pattern-matching task for finding similarity between a query (e.g., transcriptomic profile for new chemical) and a reference (e.g., gene signature of known target). Published pattern-matching approaches fall into two main categories: vector-based use metrics like correlation, Jaccard index, etc., and aggregation-based use parametric and nonparametric statistics (e.g., gene set enrichment analysis). The statistical methods for evaluating the performance of different approaches are described, along with comparisons reported in the literature on benchmark transcriptomic data sets. Lastly, we review connectivity mapping applications in toxicology and offer guidance on evaluating chemical-induced toxicity with concentration-response transcriptomic data. In addition to serving as a high-level guide and tutorial for understanding and implementing connectivity mapping workflows, we hope this review will stimulate new algorithms for evaluating chemical safety and drug discovery using transcriptomic data.
Collapse
Affiliation(s)
- Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Joseph Bundy
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Derik Haggard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Johanna Nyffeler
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, Tennessee, 37831, US
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, Office of Research and Development, US. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
5
|
Abstract
In this chapter, we give a brief overview of the regulatory requirements for acute systemic toxicity information in the European Union, and we review structure-based computational models that are available and potentially useful in the assessment of acute systemic toxicity. Emphasis is placed on quantitative structure-activity relationship (QSAR) models implemented by means of a range of software tools. The most recently published literature models for acute systemic toxicity are also discussed, and perspectives for future developments in this field are offered.
Collapse
Affiliation(s)
- Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Antonia Diukendjieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
6
|
Bassan A, Alves VM, Amberg A, Anger LT, Beilke L, Bender A, Bernal A, Cronin MT, Hsieh JH, Johnson C, Kemper R, Mumtaz M, Neilson L, Pavan M, Pointon A, Pletz J, Ruiz P, Russo DP, Sabnis Y, Sandhu R, Schaefer M, Stavitskaya L, Szabo DT, Valentin JP, Woolley D, Zwickl C, Myatt GJ. In silico approaches in organ toxicity hazard assessment: Current status and future needs for predicting heart, kidney and lung toxicities. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100188. [PMID: 35721273 PMCID: PMC9205464 DOI: 10.1016/j.comtox.2021.100188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The kidneys, heart and lungs are vital organ systems evaluated as part of acute or chronic toxicity assessments. New methodologies are being developed to predict these adverse effects based on in vitro and in silico approaches. This paper reviews the current state of the art in predicting these organ toxicities. It outlines the biological basis, processes and endpoints for kidney toxicity, pulmonary toxicity, respiratory irritation and sensitization as well as functional and structural cardiac toxicities. The review also covers current experimental approaches, including off-target panels from secondary pharmacology batteries. Current in silico approaches for prediction of these effects and mechanisms are described as well as obstacles to the use of in silico methods. Ultimately, a commonly accepted protocol for performing such assessment would be a valuable resource to expand the use of such approaches across different regulatory and industrial applications. However, a number of factors impede their widespread deployment including a lack of a comprehensive mechanistic understanding, limited in vitro testing approaches and limited in vivo databases suitable for modeling, a limited understanding of how to incorporate absorption, distribution, metabolism, and excretion (ADME) considerations into the overall process, a lack of in silico models designed to predict a safe dose and an accepted framework for organizing the key characteristics of these organ toxicants.
Collapse
Affiliation(s)
- Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Vinicius M. Alves
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | - Lennart T. Anger
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, United States
| | - Andreas Bender
- AI and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United States
| | | | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Jui-Hua Hsieh
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, United States
| | | | - Raymond Kemper
- Nuvalent, One Broadway, 14th floor, Cambridge, MA 02142, United States
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, United States
| | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, West Craven Drive, Earby, Lancashire BB18 6JZ UK
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Julia Pletz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, United States
| | - Daniel P. Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, United States
- Department of Chemistry, Rutgers University, Camden, NJ 08102, United States
| | - Yogesh Sabnis
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
| | - Reena Sandhu
- SafeDose Ltd., 20 Dundas Street West, Suite 921, Toronto, Ontario M5G2H1, Canada
| | - Markus Schaefer
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | - Lidiya Stavitskaya
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | | | | | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN 46229, United States
| | - Glenn J. Myatt
- Instem, 1393 Dublin Road, Columbus, OH 43215, United States
| |
Collapse
|
7
|
Béquignon OJ, Pawar G, van de Water B, Cronin MT, van Westen GJ. Computational Approaches for Drug-Induced Liver Injury (DILI) Prediction: State of the Art and Challenges. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11535-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Slavov S, Beger RD. Quantitative structure–toxicity relationships in translational toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ramm S, Todorov P, Chandrasekaran V, Dohlman A, Monteiro MB, Pavkovic M, Muhlich J, Shankaran H, Chen WW, Mettetal JT, Vaidya VS. A Systems Toxicology Approach for the Prediction of Kidney Toxicity and Its Mechanisms In Vitro. Toxicol Sci 2020; 169:54-69. [PMID: 30649541 DOI: 10.1093/toxsci/kfz021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The failure to predict kidney toxicity of new chemical entities early in the development process before they reach humans remains a critical issue. Here, we used primary human kidney cells and applied a systems biology approach that combines multidimensional datasets and machine learning to identify biomarkers that not only predict nephrotoxic compounds but also provide hints toward their mechanism of toxicity. Gene expression and high-content imaging-derived phenotypical data from 46 diverse kidney toxicants were analyzed using Random Forest machine learning. Imaging features capturing changes in cell morphology and nucleus texture along with mRNA levels of HMOX1 and SQSTM1 were identified as the most powerful predictors of toxicity. These biomarkers were validated by their ability to accurately predict kidney toxicity of four out of six candidate therapeutics that exhibited toxicity only in late stage preclinical/clinical studies. Network analysis of similarities in toxic phenotypes was performed based on live-cell high-content image analysis at seven time points. Using compounds with known mechanism as reference, we could infer potential mechanisms of toxicity of candidate therapeutics. In summary, we report an approach to generate a multidimensional biomarker panel for mechanistic de-risking and prediction of kidney toxicity in in vitro for new therapeutic candidates and chemical entities.
Collapse
Affiliation(s)
- Susanne Ramm
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Petar Todorov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA.,Safety and ADME Modeling, Drug Safety, and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham MA
| | - Vidya Chandrasekaran
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA
| | - Anders Dohlman
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA
| | - Maria B Monteiro
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA
| | - Mira Pavkovic
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA
| | - Harish Shankaran
- Safety and ADME Modeling, Drug Safety, and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham MA
| | - William W Chen
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA
| | - Jerome T Mettetal
- Safety and ADME Modeling, Drug Safety, and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham MA
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical SchoolBoston, MA.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
10
|
Wan YJ, Liao LX, Liu Y, Yang H, Song XM, Wang LC, Zhang XW, Qian Y, Liu D, Shi XM, Han LW, Xia Q, Liu KC, Du ZY, Jiang Y, Zhao MB, Zeng KW, Tu PF. Allosteric regulation of protein 14-3-3ζ scaffold by small-molecule editing modulates histone H3 post-translational modifications. Theranostics 2020; 10:797-815. [PMID: 31903151 PMCID: PMC6929985 DOI: 10.7150/thno.38483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Histone post-translational modifications (PTMs) are involved in various biological processes such as transcriptional activation, chromosome packaging, and DNA repair. Previous studies mainly focused on PTMs by directly targeting histone-modifying enzymes such as HDACs and HATs. Methods and Results: In this study, we discovered a previously unexplored regulation mechanism for histone PTMs by targeting transcription regulation factor 14-3-3ζ. Mechanistic studies revealed 14-3-3ζ dimerization as a key prerequisite, which could be dynamically induced via an allosteric effect. The selective inhibition of 14-3-3ζ dimer interaction with histone H3 modulated histone H3 PTMs by exposing specific modification sites including acetylation, trimethylation, and phosphorylation, and reprogrammed gene transcription profiles for autophagy-lysosome function and endoplasmic reticulum stress. Conclusion: Our findings demonstrate the feasibility of editing histone PTM patterns by targeting transcription regulation factor 14-3-3ζ, and provide a distinctive PTM editing strategy which differs from current histone modification approaches.
Collapse
|
11
|
Bellera CL, Talevi A. Quantitative structure-activity relationship models for compounds with anticonvulsant activity. Expert Opin Drug Discov 2019; 14:653-665. [PMID: 31072145 DOI: 10.1080/17460441.2019.1613368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Third-generation antiepileptic drugs have seemingly failed to improve the global figures of seizure control and can still be regarded as symptomatic treatments. Quantitative structure-activity relationships (QSAR) can be used to guide hit-to-lead and lead optimization projects and applied to the large-scale virtual screening of chemical libraries. Areas covered: In this review, the authors cover reports on QSAR models related to antiepileptic drugs and drug targets in epilepsy, analyzing whether they refer to classic or non-classic QSAR and if they apply QSAR as a descriptive or predictive approach, among other considerations. The article finally focuses on a more detailed discussion of those predictive studies which include some sort of experimental validation, i.e. papers in which the reported models have been used to identify novel active compounds which have been tested in vitro and/or in vivo. Expert opinion: There are significant opportunities to apply the QSAR methodology to assist the discovery of more efficacious antiepileptic drugs. Considering the intrinsic complexity of the disorder, such applications should focus on state-of-the-art approximations (e.g. systemic, multi-target and multi-scale QSAR as well as ensemble and deep learning) and modeling the effects on novel drug targets and modern screening tools.
Collapse
Affiliation(s)
- Carolina L Bellera
- a Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata, Buenos Aires , Argentina.,b CCT La Plata , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Alan Talevi
- a Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata, Buenos Aires , Argentina.,b CCT La Plata , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
12
|
Sun Y, Shi S, Li Y, Wang Q. Development of quantitative structure-activity relationship models to predict potential nephrotoxic ingredients in traditional Chinese medicines. Food Chem Toxicol 2019; 128:163-170. [PMID: 30954639 DOI: 10.1016/j.fct.2019.03.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022]
Abstract
The broad use of traditional Chinese medicines (TCMs) and the accompanied incidences of kidney injury have attracted considerable interest in investigating the responsible toxic ingredients. It is challenging to evaluate toxicity of TCMs since they contain complex mixtures of phytochemicals. Quantitative structure-activity relationship (QSAR) is an efficient tool to predict toxicity and QSAR study on TCMs-induced nephrotoxicity remains lacked. We developed QSAR models using three datasets of 609 compounds: natural products, drugs, and mixed (contained both kinds of data) datasets. Each dataset was used for modelling by utilizing artificial neural networks (ANN) and support vector machines (SVM) algorithms separately. Both internal and external validations were performed on each model. Six QSAR models were developed and yielded reliable performance in the internal validation. For external validation, 30 ingredients in the TCMs were predicted well by the natural product models (accuracy: ANN 96.7%, SVM 93.3%). The mixed models (accuracy: ANN 76.7%, SVM 66.7%) showed a better performance than the drug models (accuracy: ANN 50%, SVM 53.3%). Particularly, natural product models produced the most reliable results. It has the application not only on screening the nephrotoxic ingredients in TCMs, but it is also helpful at prioritizing the subsequent toxicity testing of natural products.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China
| | - Shaoze Shi
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China
| | - Yaqiu Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
13
|
Pletz J, Enoch SJ, Jais DM, Mellor CL, Pawar G, Firman JW, Madden JC, Webb SD, Tagliati CA, Cronin MTD. A critical review of adverse effects to the kidney: mechanisms, data sources, and in silico tools to assist prediction. Expert Opin Drug Metab Toxicol 2018; 14:1225-1253. [PMID: 30345815 DOI: 10.1080/17425255.2018.1539076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The kidney is a major target for toxicity elicited by pharmaceuticals and environmental pollutants. Standard testing which often does not investigate underlying mechanisms has proven not to be an adequate hazard assessment approach. As such, there is an opportunity for the application of computational approaches that utilize multiscale data based on the Adverse Outcome Pathway (AOP) paradigm, coupled with an understanding of the chemistry underpinning the molecular initiating event (MIE) to provide a deep understanding of how structural fragments of molecules relate to specific mechanisms of nephrotoxicity. Aims covered: The aim of this investigation was to review the current scientific landscape related to computational methods, including mechanistic data, AOPs, publicly available knowledge bases and current in silico models, for the assessment of pharmaceuticals and other chemicals with regard to their potential to elicit nephrotoxicity. A list of over 250 nephrotoxicants enriched with, where possible, mechanistic and AOP-derived understanding was compiled. Expert opinion: Whilst little mechanistic evidence has been translated into AOPs, this review identified a number of data sources of in vitro, in vivo, and human data that may assist in the development of in silico models which in turn may shed light on the interrelationships between nephrotoxicity mechanisms.
Collapse
Affiliation(s)
- Julia Pletz
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Steven J Enoch
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Diviya M Jais
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Claire L Mellor
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Gopal Pawar
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - James W Firman
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Judith C Madden
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Steven D Webb
- b Department of Applied Mathematics , Liverpool John Moores University , Liverpool , UK
| | - Carlos A Tagliati
- c Departamento de Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Mark T D Cronin
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
14
|
Kensert A, Alvarsson J, Norinder U, Spjuth O. Evaluating parameters for ligand-based modeling with random forest on sparse data sets. J Cheminform 2018; 10:49. [PMID: 30306349 PMCID: PMC6755600 DOI: 10.1186/s13321-018-0304-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Ligand-based predictive modeling is widely used to generate predictive models aiding decision making in e.g. drug discovery projects. With growing data sets and requirements on low modeling time comes the necessity to analyze data sets efficiently to support rapid and robust modeling. In this study we analyzed four data sets and studied the efficiency of machine learning methods on sparse data structures, utilizing Morgan fingerprints of different radii and hash sizes, and compared with molecular signatures descriptor of different height. We specifically evaluated the effect these parameters had on modeling time, predictive performance, and memory requirements using two implementations of random forest; Scikit-learn as well as FEST. We also compared with a support vector machine implementation. Our results showed that unhashed fingerprints yield significantly better accuracy than hashed fingerprints ([Formula: see text]), with no pronounced deterioration in modeling time and memory usage. Furthermore, the fast execution and low memory usage of the FEST algorithm suggest that it is a good alternative for large, high dimensional sparse data. Both support vector machines and random forest performed equally well but results indicate that the support vector machine was better at using the extra information from larger values of the Morgan fingerprint's radius.
Collapse
Affiliation(s)
- Alexander Kensert
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Jonathan Alvarsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ulf Norinder
- Unit of Toxicology Sciences, Karolinska Institutet, Swetox, Forskargatan 20, SE-15136, Södertälje, Sweden.,Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07, Kista, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Zhang H, Ren JX, Ma JX, Ding L. Development of an in silico prediction model for chemical-induced urinary tract toxicity by using naïve Bayes classifier. Mol Divers 2018; 23:381-392. [DOI: 10.1007/s11030-018-9882-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
|
16
|
Grisoni F, Ballabio D, Todeschini R, Consonni V. Molecular Descriptors for Structure-Activity Applications: A Hands-On Approach. Methods Mol Biol 2018; 1800:3-53. [PMID: 29934886 DOI: 10.1007/978-1-4939-7899-1_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular descriptors capture diverse parts of the structural information of molecules and they are the support of many contemporary computer-assisted toxicological and chemical applications. After briefly introducing some fundamental concepts of structure-activity applications (e.g., molecular descriptor dimensionality, classical vs. fingerprint description, and activity landscapes), this chapter guides the readers through a step-by-step explanation of molecular descriptors rationale and application. To this end, the chapter illustrates a case study of a recently published application of molecular descriptors for modeling the activity on cytochrome P450.
Collapse
Affiliation(s)
- Francesca Grisoni
- Department of Earth and Environmental Sciences, Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy.
| | - Davide Ballabio
- Department of Earth and Environmental Sciences, Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | - Roberto Todeschini
- Department of Earth and Environmental Sciences, Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | - Viviana Consonni
- Department of Earth and Environmental Sciences, Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
17
|
Bellera CL, Di Ianni ME, Talevi A. The application of molecular topology for ulcerative colitis drug discovery. Expert Opin Drug Discov 2017; 13:89-101. [PMID: 29088918 DOI: 10.1080/17460441.2018.1396314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although the therapeutic arsenal against ulcerative colitis has greatly expanded (including the revolutionary advent of biologics), there remain patients who are refractory to current medications while the safety of the available therapeutics could also be improved. Molecular topology provides a theoretic framework for the discovery of new therapeutic agents in a very efficient manner, and its applications in the field of ulcerative colitis have slowly begun to flourish. Areas covered: After discussing the basics of molecular topology, the authors review QSAR models focusing on validated targets for the treatment of ulcerative colitis, entirely or partially based on topological descriptors. Expert opinion: The application of molecular topology to ulcerative colitis drug discovery is still very limited, and many of the existing reports seem to be strictly theoretic, with no experimental validation or practical applications. Interestingly, mechanism-independent models based on phenotypic responses have recently been reported. Such models are in agreement with the recent interest raised by network pharmacology as a potential solution for complex disorders. These and other similar studies applying molecular topology suggest that some therapeutic categories may present a 'topological pattern' that goes beyond a specific mechanism of action.
Collapse
Affiliation(s)
- Carolina L Bellera
- a Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata , Buenos Aires , Argentina
| | - Mauricio E Di Ianni
- a Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata , Buenos Aires , Argentina
| | - Alan Talevi
- a Medicinal Chemistry/Laboratory of Bioactive Research and Development, Department of Biological Sciences, Faculty of Exact Sciences , University of La Plata (UNLP) , La Plata , Buenos Aires , Argentina
| |
Collapse
|
18
|
Lei T, Sun H, Kang Y, Zhu F, Liu H, Zhou W, Wang Z, Li D, Li Y, Hou T. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Mol Pharm 2017; 14:3935-3953. [DOI: 10.1021/acs.molpharmaceut.7b00631] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tailong Lei
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Huiyong Sun
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yu Kang
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Feng Zhu
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Hui Liu
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Wenfang Zhou
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhe Wang
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Dan Li
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Youyong Li
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Tingjun Hou
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
19
|
Ruiz P, Sack A, Wampole M, Bobst S, Vracko M. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors. CHEMOSPHERE 2017; 178:99-109. [PMID: 28319747 PMCID: PMC8265162 DOI: 10.1016/j.chemosphere.2017.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 05/30/2023]
Abstract
Thousands of potential endocrine-disrupting chemicals present difficult regulatory challenges. Endocrine-disrupting chemicals can interfere with several nuclear hormone receptors associated with a variety of adverse health effects. The U.S. Environmental Protection Agency (U.S. EPA) has released its reviews of Tier 1 screening assay results for a set of pesticides in the Endocrine Disruptor Screening Program (EDSP), and recently, the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) data. In this study, the predictive ability of QSAR and docking approaches is evaluated using these data sets. This study also presents a computational systems biology approach using carbaryl (1-naphthyl methylcarbamate) as a case study. For estrogen receptor and androgen receptor binding predictions, two commercial and two open source QSAR tools were used, as was the publicly available docking tool Endocrine Disruptome. For estrogen receptor binding predictions, the ADMET Predictor, VEGA, and OCHEM models (specificity: 0.88, 0.88, and 0.86, and accuracy: 0.81, 0.84, and 0.88, respectively) were each more reliable than the MetaDrug™ model (specificity 0.81 and accuracy 0.77). For androgen receptor binding predictions, the Endocrine Disruptome and ADMET Predictor models (specificity: 0.94 and 0.8, and accuracy: 0.78 and 0.71, respectively) were more reliable than the MetaDrug™ model (specificity 0.33 and accuracy 0.4). A consensus approach is proposed that reaches general agreement among the models (specificity 0.94 and accuracy 0.89). This study integrates QSAR, docking, and systems biology approaches as a virtual screening tool for use in risk assessment. As such, this systems biology pathways and network analysis approach provides a means to more critically assess the potential effects of endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- P Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
| | - A Sack
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - M Wampole
- Thomson Reuters, Philadelphia, PA, USA
| | - S Bobst
- ToxSci Advisors, Houston, TX, USA
| | - M Vracko
- Kemijski Inštitut/National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
20
|
Burton J, Worth AP, Tsakovska I, Diukendjieva A. In Silico Models for Acute Systemic Toxicity. Methods Mol Biol 2016; 1425:177-200. [PMID: 27311468 DOI: 10.1007/978-1-4939-3609-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this chapter, we give an overview of the regulatory requirements for acute systemic toxicity information in the European Union, and we review the availability of structure-based computational models that are available and potentially useful in the assessment of acute systemic toxicity. The most recently published literature models for acute systemic toxicity are also discussed, and perspectives for future developments in this field are offered.
Collapse
Affiliation(s)
- Julien Burton
- Systems Toxicology Unit and EURL ECVAM, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra, Varese, Italy
| | - Andrew P Worth
- Systems Toxicology Unit and EURL ECVAM, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra, Varese, Italy.
| | - Ivanka Tsakovska
- Department of QSAR & Molecular Modeling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonia Diukendjieva
- Department of QSAR & Molecular Modeling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
21
|
Mulliner D, Schmidt F, Stolte M, Spirkl HP, Czich A, Amberg A. Computational Models for Human and Animal Hepatotoxicity with a Global Application Scope. Chem Res Toxicol 2016; 29:757-67. [PMID: 26914516 DOI: 10.1021/acs.chemrestox.5b00465] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic toxicity is a key concern for novel pharmaceutical drugs since it is difficult to anticipate in preclinical models, and it can originate from pharmacologically unrelated drug effects, such as pathway interference, metabolism, and drug accumulation. Because liver toxicity still ranks among the top reasons for drug attrition, the reliable prediction of adverse hepatic effects is a substantial challenge in drug discovery and development. To this end, more effort needs to be focused on the development of improved predictive in-vitro and in-silico approaches. Current computational models often lack applicability to novel pharmaceutical candidates, typically due to insufficient coverage of the chemical space of interest, which is either imposed by size or diversity of the training data. Hence, there is an urgent need for better computational models to allow for the identification of safe drug candidates and to support experimental design. In this context, a large data set comprising 3712 compounds with liver related toxicity findings in humans and animals was collected from various sources. The complex pathology was clustered into 21 preclinical and human hepatotoxicity endpoints, which were organized into three levels of detail. Support vector machine models were trained for each endpoint, using optimized descriptor sets from chemometrics software. The optimized global human hepatotoxicity model has high sensitivity (68%) and excellent specificity (95%) in an internal validation set of 221 compounds. Models for preclinical endpoints performed similarly. To allow for reliable prediction of "truly external" novel compounds, all predictions are tagged with confidence parameters. These parameters are derived from a statistical analysis of the predictive probability densities. The whole approach was validated for an external validation set of 269 proprietary compounds. The models are fully integrated into our early safety in-silico workflow.
Collapse
Affiliation(s)
- Denis Mulliner
- R&D DSAR/Preclinical Safety FF, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Building H831, D-65926 Frankfurt am Main, Germany
| | - Friedemann Schmidt
- R&D DSAR/Preclinical Safety FF, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Building H831, D-65926 Frankfurt am Main, Germany
| | - Manuela Stolte
- R&D DSAR/Preclinical Safety FF, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Building H831, D-65926 Frankfurt am Main, Germany
| | - Hans-Peter Spirkl
- R&D DSAR/Preclinical Safety FF, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Building H831, D-65926 Frankfurt am Main, Germany
| | - Andreas Czich
- R&D DSAR/Preclinical Safety FF, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Building H831, D-65926 Frankfurt am Main, Germany
| | - Alexander Amberg
- R&D DSAR/Preclinical Safety FF, Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst, Building H831, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Systems Pharmacology in Small Molecular Drug Discovery. Int J Mol Sci 2016; 17:246. [PMID: 26901192 PMCID: PMC4783977 DOI: 10.3390/ijms17020246] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 12/15/2022] Open
Abstract
Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.
Collapse
|
23
|
Patlewicz G, Fitzpatrick JM. Current and Future Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity. Chem Res Toxicol 2016; 29:438-51. [PMID: 26686752 DOI: 10.1021/acs.chemrestox.5b00388] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exploiting non-testing approaches to predict toxicity early in the drug discovery development cycle is a helpful component in minimizing expensive drug failures due to toxicity being identified in late development or even during clinical trials. Changes in regulations in the industrial chemicals and cosmetics sectors in recent years have prompted a significant number of advances in the development, application, and assessment of non-testing approaches, such as (Q)SARs. Many efforts have also been undertaken to establish guiding principles for performing read-across within category and analogue approaches. This review offers a perspective, as taken from these sectors, of the current status of non-testing approaches, their evolution in light of the advances in high-throughput approaches and constructs such as adverse outcome pathways, and their potential relevance for drug discovery. It also proposes a workflow for how non-testing approaches could be practically integrated within testing and assessment strategies.
Collapse
Affiliation(s)
- Grace Patlewicz
- National Center for Computational Toxicology (NCCT), U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Jeremy M Fitzpatrick
- National Center for Computational Toxicology (NCCT), U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
24
|
Aiba née Kaneko M, Hirota M, Kouzuki H, Mori M. Prediction of genotoxic potential of cosmetic ingredients by an in silico battery system consisting of a combination of an expert rule-based system and a statistics-based system. J Toxicol Sci 2015; 40:77-98. [DOI: 10.2131/jts.40.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Metab Toxicol 2014; 11:259-71. [PMID: 25440524 DOI: 10.1517/17425255.2015.980814] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pharmacokinetics involves the study of absorption, distribution, metabolism, excretion and toxicity of xenobiotics (ADME-Tox). In this sense, the ADME-Tox profile of a bioactive compound can impact its efficacy and safety. Moreover, efficacy and safety were considered some of the major causes of clinical failures in the development of new chemical entities. In this context, machine learning (ML) techniques have been often used in ADME-Tox studies due to the existence of compounds with known pharmacokinetic properties available for generating predictive models. AREAS COVERED This review examines the growth in the use of some ML techniques in ADME-Tox studies, in particular supervised and unsupervised techniques. Also, some critical points (e.g., size of the data set and type of output variable) must be considered during the generation of models that relate ADME-Tox properties and biological activity. EXPERT OPINION ML techniques have been successfully employed in pharmacokinetic studies, helping the complex process of designing new drug candidates from the use of reliable ML models. An application of this procedure would be the prediction of ADME-Tox properties from studies of quantitative structure-activity relationships or the discovery of new compounds from a virtual screening using filters based on results obtained from ML techniques.
Collapse
Affiliation(s)
- Vinícius Gonçalves Maltarollo
- Federal University of ABC (UFABC), Centre for Natural Sciences and Humanities , Santa Adélia Street, 166, Bangu, Santo André -SP , Brazil
| | | | | | | |
Collapse
|
26
|
Ko R, Low Dog T, Gorecki DKJ, Cantilena LR, Costello RB, Evans WJ, Hardy ML, Jordan SA, Maughan RJ, Rankin JW, Smith-Ryan AE, Valerio LG, Jones D, Deuster P, Giancaspro GI, Sarma ND. Evidence-based evaluation of potential benefits and safety of beta-alanine supplementation for military personnel. Nutr Rev 2014; 72:217-25. [PMID: 24697258 DOI: 10.1111/nure.12087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This Department of Defense-sponsored evidence-based review evaluates the safety and putative outcomes of enhancement of athletic performance or improved recovery from exhaustion in studies involving beta-alanine alone or in combination with other ingredients. Beta-alanine intervention studies and review articles were collected from 13 databases, and safety information was collected from adverse event reporting portals. Due to the lack of systematic studies involving military populations, all the available literature was assessed with a subgroup analysis of studies on athletes to determine if beta-alanine would be suitable for the military. Available literature provided only limited evidence concerning the benefits of beta-alanine use, and a majority of the studies were not designed to address safety. Overall, the strength of evidence in terms of the potential for risk of bias in the quality of the available literature, consistency, directness, and precision did not support the use of beta-alanine by military personnel. The strength of evidence for a causal relation between beta-alanine and paresthesia was moderate.
Collapse
|
27
|
Ekins S. Progress in computational toxicology. J Pharmacol Toxicol Methods 2013; 69:115-40. [PMID: 24361690 DOI: 10.1016/j.vascn.2013.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/08/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. METHODS A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. RESULTS The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. DISCUSSION Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay Varina, NC 27526, USA; Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA; Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599-7355, USA.
| |
Collapse
|
28
|
Toropov AA, Toropova AP, Raska I, Leszczynska D, Leszczynski J. Comprehension of drug toxicity: software and databases. Comput Biol Med 2013; 45:20-5. [PMID: 24480159 DOI: 10.1016/j.compbiomed.2013.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool (in silico) to rapidly predict various endpoints in general, and drug toxicity in particular. However, this dynamic evolution of experimental data (expansion of existing experimental data on drugs toxicity) leads to the problem of critical estimation of the data. The carcinogenicity, mutagenicity, liver effects and cardiac toxicity should be evaluated as the most important aspects of the drug toxicity. The toxicity is a multidimensional phenomenon. It is apparent that the main reasons for the increase in applications of in silico prediction of toxicity include the following: (i) the need to reduce animal testing; (ii) computational models provide reliable toxicity prediction; (iii) development of legislation that is related to use of new substances; (iv) filling data gaps; (v) reduction of cost and time; (vi) designing of new compounds; (vii) advancement of understanding of biology and chemistry. This mini-review provides analysis of existing databases and software which are necessary for use of robust computational assessments and robust prediction of potential drug toxicities by means of in silico methods.
Collapse
Affiliation(s)
- Andrey A Toropov
- IRCCS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, Milano 20156, Italy.
| | - Alla P Toropova
- IRCCS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, Milano 20156, Italy
| | - Ivan Raska
- 3rd Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 1, 12808 Prague 2, Czech Republic
| | - Danuta Leszczynska
- Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, 1325 Lynch St, Jackson, MS 39217-0510, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University, 1400 J. R. Lynch Street, PO Box 17910, Jackson, MS 39217, USA
| |
Collapse
|
29
|
Roncaglioni A, Toropov AA, Toropova AP, Benfenati E. In silico methods to predict drug toxicity. Curr Opin Pharmacol 2013; 13:802-6. [PMID: 23797035 DOI: 10.1016/j.coph.2013.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 02/07/2023]
Abstract
This review describes in silico methods to characterize the toxicity of pharmaceuticals, including tools which predict toxicity endpoints such as genotoxicity or organ-specific models, tools addressing ADME processes, and methods focusing on protein-ligand docking binding. These in silico tools are rapidly evolving. Nowadays, the interest has shifted from classical studies to support toxicity screening of candidates, toward the use of in silico methods to support the expert. These methods, previously considered useful only to provide a rough, initial estimation, currently have attracted interest as they can assist the expert in investigating toxic potential. They provide the expert with safety perspectives and insights within a weight-of-evidence strategy. This represents a shift of the general philosophy of in silico methodology, and it is likely to further evolve especially exploiting links with system biology.
Collapse
Affiliation(s)
- Alessandra Roncaglioni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | | | | | | |
Collapse
|
30
|
Ness D, Ren Z, Gardai S, Sharpnack D, Johnson VJ, Brennan RJ, Brigham EF, Olaharski AJ. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis. PLoS One 2013; 8:e66164. [PMID: 23799078 PMCID: PMC3682960 DOI: 10.1371/journal.pone.0066164] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV) and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Daniel Ness
- Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Zhao Ren
- Assay Development, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Shyra Gardai
- Exploratory Biology, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | | | - Victor J. Johnson
- Burleson Research Technologies Inc. (BRT), Morrisville, North Carolina, United States of America
| | | | - Elizabeth F. Brigham
- Pharmacology, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
| | - Andrew J. Olaharski
- Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ruiz P, Myshkin E, Quigley P, Faroon O, Wheeler JS, Mumtaz MM, Brennan RJ. Assessment of hydroxylated metabolites of polychlorinated biphenyls as potential xenoestrogens: a QSAR comparative analysis∗. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:393-416. [PMID: 23557136 DOI: 10.1080/1062936x.2013.781537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alternative methods, including quantitative structure-activity relationships (QSAR), are being used increasingly when appropriate data for toxicity evaluation of chemicals are not available. Approximately 40 mono-hydroxylated polychlorinated biphenyls (OH-PCBs) have been identified in humans. They represent a health and environmental concern because some of them have been shown to have agonist or antagonist interactions with human hormone receptors. This could lead to modulation of steroid hormone receptor pathways and endocrine system disruption. We performed QSAR analyses using available estrogenic activity (human estrogen receptor ER alpha) data for 71 OH-PCBs. The modelling was performed using multiple molecular descriptors including electronic, molecular, constitutional, topological, and geometrical endpoints. Multiple linear regressions and recursive partitioning were used to best fit descriptors. The results show that the position of the hydroxyl substitution, polarizability, and meta adjacent un-substituted carbon pairs at the phenolic ring contribute towards greater estrogenic activity for these chemicals. These comparative QSAR models may be used for predictive toxicity, and identification of health consequences of PCB metabolites that lack empirical data. Such information will help prioritize such molecules for additional testing, guide future basic laboratory research studies, and help the health/risk assessment community understand the complex nature of chemical mixtures.
Collapse
Affiliation(s)
- P Ruiz
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, USA.
| | | | | | | | | | | | | |
Collapse
|