1
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
2
|
Pfaller MR, Pham J, Verma A, Pegolotti L, Wilson NM, Parker DW, Yang W, Marsden AL. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3639. [PMID: 35875875 PMCID: PMC9561079 DOI: 10.1002/cnm.3639] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular. We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers.
Collapse
Affiliation(s)
- Martin R. Pfaller
- Pediatric Cardiology, Stanford University, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
- Cardiovascular Institute, Stanford University, CA, USA
| | - Jonathan Pham
- Mechanical Engineering, Stanford University, CA, USA
| | | | - Luca Pegolotti
- Pediatric Cardiology, Stanford University, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
| | | | | | | | - Alison L. Marsden
- Pediatric Cardiology, Stanford University, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
- Cardiovascular Institute, Stanford University, CA, USA
- Bioengineering, Stanford University, CA, USA
| |
Collapse
|
3
|
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application. Cardiovasc Eng Technol 2021; 12:618-630. [PMID: 34114202 DOI: 10.1007/s13239-021-00541-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/30/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cardiovascular simulations for patients with single ventricles undergoing the Fontan procedure can assess patient-specific hemodynamics, explore surgical advances, and develop personalized strategies for surgery and patient care. These simulations have not yet been broadly accepted as a routine clinical tool owing to a number of limitations. Numerous approaches have been explored to seek innovative solutions for improving methodologies and eliminating these limitations. PURPOSE This article first reviews the current state of cardiovascular simulations of Fontan hemodynamics. Then, it will discuss the technical progress of Fontan simulations with the emphasis of its clinical impact, noting that substantial improvements have been made in the considerations of patient-specific anatomy, flow, and blood rheology. The article concludes with insights into potential future directions involving clinical validation, uncertainty quantification, and computational efficiency. The advancements in these aspects could promote the clinical usage of Fontan simulations, facilitating its integration into routine clinical practice.
Collapse
|
4
|
Acuna A, Berman AG, Damen FW, Meyers BA, Adelsperger AR, Bayer KC, Brindise MC, Bungart B, Kiel AM, Morrison RA, Muskat JC, Wasilczuk KM, Wen Y, Zhang J, Zito P, Goergen CJ. Computational Fluid Dynamics of Vascular Disease in Animal Models. J Biomech Eng 2019; 140:2676341. [PMID: 29570754 DOI: 10.1115/1.4039678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.
Collapse
Affiliation(s)
- Andrea Acuna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Brett A Meyers
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Melissa C Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Brittani Bungart
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alexander M Kiel
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Joseph C Muskat
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Yi Wen
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907 e-mail:
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Patrick Zito
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Craig J Goergen
- ASME Membership Bioengineering Division, Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| |
Collapse
|
5
|
Lee W, Hong Y, Dai G. 3D bioprinting of vascular conduits for pediatric congenital heart repairs. Transl Res 2019; 211:35-45. [PMID: 31034816 PMCID: PMC6702035 DOI: 10.1016/j.trsl.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/27/2022]
Abstract
In children with congenital heart defects, surgical correction often involves the use of valves, patches or vascular conduits to establish anatomic continuity. Due to the differences between the pediatric and adult populations, tissue reconstruction in pediatric patients requires a substantially different approach from those in adults. Cardiovascular anatomy of children with congenital heart defect vary, which requires tailored surgical operations for each patient. Since grafts used in these palliative surgeries are sensitive to the local hemodynamic environments, their geometries need to be precisely designed to ensure long-term performance. Tissue engineered vascular grafts (TEVGs) have made tremendous progress over the past decade, but it remains difficult to fabricate patient- and operation-specific vascular grafts. This review summarizes historical milestones of TEVG development for repairing pediatric congenital defects and current clinical outcomes. We also highlight ongoing works on 3D bioprinting of TEVGs with complex geometries and address the current limitations of each technique. Although 3D bioprinted vascular grafts with appropriate functions are yet to be developed, some of the current researches are promising to create better patient specific tissue engineered vascular grafts in the future.
Collapse
Affiliation(s)
- Wenhan Lee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
6
|
Lan H, Updegrove A, Wilson NM, Maher GD, Shadden SC, Marsden AL. A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package. J Biomech Eng 2019; 140:2666622. [PMID: 29238826 DOI: 10.1115/1.4038751] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 11/08/2022]
Abstract
Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.
Collapse
Affiliation(s)
- Hongzhi Lan
- Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Adam Updegrove
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Nathan M Wilson
- Open Source Medical Software Corporation, Santa Monica, CA 90403
| | | | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Alison L Marsden
- Department of Pediatrics, Stanford University, , Stanford, CA 94305-5428.,ICME, Stanford University, Stanford, CA 94305.,Department of Bioengineering, Stanford University, Stanford, CA 94305 e-mail:
| |
Collapse
|
7
|
Rijnberg FM, Hazekamp MG, Wentzel JJ, de Koning PJ, Westenberg JJ, Jongbloed MR, Blom NA, Roest AA. Energetics of Blood Flow in Cardiovascular Disease. Circulation 2018; 137:2393-2407. [DOI: 10.1161/circulationaha.117.033359] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Jolanda J. Wentzel
- Leiden University Medical Center, The Netherlands. Department of Biomechanical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands (J.J.W.)
| | | | | | | | - Nico A. Blom
- Department of Pediatric Cardiology (N.A.B., A.A.W.R.)
| | | |
Collapse
|
8
|
Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJ, Sacks MS, Hsu MC. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2938. [PMID: 29119728 PMCID: PMC5893448 DOI: 10.1002/cnm.2938] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/08/2017] [Accepted: 10/22/2017] [Indexed: 05/07/2023]
Abstract
Numerous studies have suggested that medical image derived computational mechanics models could be developed to reduce mortality and morbidity due to cardiovascular diseases by allowing for patient-specific surgical planning and customized medical device design. In this work, we present a novel framework for designing prosthetic heart valves using a parametric design platform and immersogeometric fluid-structure interaction (FSI) analysis. We parameterize the leaflet geometry using several key design parameters. This allows for generating various perturbations of the leaflet design for the patient-specific aortic root reconstructed from the medical image data. Each design is analyzed using our hybrid arbitrary Lagrangian-Eulerian/immersogeometric FSI methodology, which allows us to efficiently simulate the coupling of the deforming aortic root, the parametrically designed prosthetic valves, and the surrounding blood flow under physiological conditions. A parametric study is performed to investigate the influence of the geometry on heart valve performance, indicated by the effective orifice area and the coaptation area. Finally, the FSI simulation result of a design that balances effective orifice area and coaptation area reasonably well is compared with patient-specific phase contrast magnetic resonance imaging data to demonstrate the qualitative similarity of the flow patterns in the ascending aorta.
Collapse
Affiliation(s)
- Fei Xu
- Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
| | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, via Ferrata 3, 27100, Pavia Italy
| | - Rana Zakerzadeh
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - David Kamensky
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085 La Jolla, CA 92093, USA
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100, Pavia, Italy
| | - Alessandro Reali
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100, Pavia, Italy
| | - Thomas J.R. Hughes
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - Michael S. Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
| |
Collapse
|
9
|
Best C, Strouse R, Hor K, Pepper V, Tipton A, Kelly J, Shinoka T, Breuer C. Toward a patient-specific tissue engineered vascular graft. J Tissue Eng 2018; 9:2041731418764709. [PMID: 29568478 PMCID: PMC5858675 DOI: 10.1177/2041731418764709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application.
Collapse
Affiliation(s)
- Cameron Best
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert Strouse
- Research Innovation and Solutions, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kan Hor
- Department of Cardiology, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Victoria Pepper
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Tipton
- Advanced Cardiac Imaging Laboratory, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Kelly
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiology, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Breuer
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
10
|
Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann Biomed Eng 2016; 45:525-541. [PMID: 27933407 DOI: 10.1007/s10439-016-1762-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.
Collapse
Affiliation(s)
- Adam Updegrove
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Nathan M Wilson
- Open Source Medical Software Corporation, Santa Monica, CA, USA
| | - Jameson Merkow
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Hongzhi Lan
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA.,Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA. .,University of California, Berkeley, CA, 94720-1740, USA.
| |
Collapse
|
11
|
Adaptive outflow boundary conditions improve post-operative predictions after repair of peripheral pulmonary artery stenosis. Biomech Model Mechanobiol 2016; 15:1345-53. [PMID: 26843118 DOI: 10.1007/s10237-016-0766-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
Peripheral pulmonary artery stenosis (PPS) is a congenital abnormality resulting in pulmonary blood flow disparity and right ventricular hypertension. Despite recent advance in catheter-based interventions, surgical reconstruction is still preferred to treat complex PPS. However optimal surgical strategies remain unclear. It would be of great benefit to be able to predict post-operative hemodynamics to assist with surgical planning toward optimizing outcomes. While image-based computational fluid dynamics has been used in cardiovascular surgical planning, most studies have focused on the impact of local geometric changes on hemodynamic performance. Previous experimental studies suggest morphological changes in the pulmonary arteries not only alter local hemodynamics but also lead to distal pulmonary adaptation. In this proof of concept study, a constant shear stress hypothesis and structured pulmonary trees are used to derive adaptive outflow boundary conditions for post-operative simulations. Patient-specific simulations showed the adaptive outflow boundary conditions by the constant shear stress model to provide better predictions of pulmonary flow distribution than the conventional strategy of maintaining outflow boundary conditions. On average, the relative difference, when compared to the gold standard clinical test, in blood flow distribution to the right lung is reduced from 20 to 4 %. This suggests adaptive outflow boundary conditions should be incorporated into post-operative modeling in patients with complex PPS.
Collapse
|
12
|
Kung E, Pennati G, Migliavacca F, Hsia TY, Figliola R, Marsden A, Giardini A. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J Biomech Eng 2015; 136:1852723. [PMID: 24658635 DOI: 10.1115/1.4027271] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/24/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reduced exercise capacity is nearly universal among Fontan patients, though its etiology is not yet fully understood. While previous computational studies have attempted to model Fontan exercise, they did not fully account for global physiologic mechanisms nor directly compare results against clinical and physiologic data. METHODS In this study, we developed a protocol to simulate Fontan lower-body exercise using a closed-loop lumped-parameter model describing the entire circulation. We analyzed clinical exercise data from a cohort of Fontan patients, incorporated previous clinical findings from literature, quantified a comprehensive list of physiological changes during exercise, translated them into a computational model of the Fontan circulation, and designed a general protocol to model Fontan exercise behavior. Using inputs of patient weight, height, and if available, patient-specific reference heart rate (HR) and oxygen consumption, this protocol enables the derivation of a full set of parameters necessary to model a typical Fontan patient of a given body-size over a range of physiologic exercise levels. RESULTS In light of previous literature data and clinical knowledge, the model successfully produced realistic trends in physiological parameters with exercise level. Applying this method retrospectively to a set of clinical Fontan exercise data, direct comparison between simulation results and clinical data demonstrated that the model successfully reproduced the average exercise response of a cohort of typical Fontan patients. CONCLUSION This work is intended to offer a foundation for future advances in modeling Fontan exercise, highlight the needs in clinical data collection, and provide clinicians with quantitative reference exercise physiologies for Fontan patients.
Collapse
|
13
|
Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J Thorac Cardiovasc Surg 2015; 149:247-55. [DOI: 10.1016/j.jtcvs.2014.08.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/19/2014] [Accepted: 08/23/2014] [Indexed: 12/26/2022]
|
14
|
Martin MH, Feinstein JA, Chan FP, Marsden AL, Yang W, Reddy VM. Technical feasibility and intermediate outcomes of using a handcrafted, area-preserving, bifurcated Y-graft modification of the Fontan procedure. J Thorac Cardiovasc Surg 2015; 149:239-45.e1. [DOI: 10.1016/j.jtcvs.2014.08.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/16/2014] [Accepted: 08/23/2014] [Indexed: 11/16/2022]
|
15
|
Lagrangian postprocessing of computational hemodynamics. Ann Biomed Eng 2014; 43:41-58. [PMID: 25059889 DOI: 10.1007/s10439-014-1070-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.
Collapse
|
16
|
Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomech Model Mechanobiol 2014; 13:1261-76. [PMID: 24722951 DOI: 10.1007/s10237-014-0570-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
Kawasaki disease (KD) is the leading cause of acquired heart disease in children and can result in life-threatening coronary artery aneurysms in up to 25 % of patients. These aneurysms put patients at risk of thrombus formation, myocardial infarction, and sudden death. Clinicians must therefore decide which patients should be treated with anticoagulant medication, and/or surgical or percutaneous intervention. Current recommendations regarding initiation of anticoagulant therapy are based on anatomy alone with historical data suggesting that patients with aneurysms [Formula: see text]8 mm are at greatest risk of thrombosis. Given the multitude of variables that influence thrombus formation, we postulated that hemodynamic data derived from patient-specific simulations would more accurately predict risk of thrombosis than maximum diameter alone. Patient-specific blood flow simulations were performed on five KD patients with aneurysms and one KD patient with normal coronary arteries. Key hemodynamic and geometric parameters, including wall shear stress, particle residence time, and shape indices, were extracted from the models and simulations and compared with clinical outcomes. Preliminary fluid structure interaction simulations with radial expansion were performed, revealing modest differences in wall shear stress compared to the rigid wall case. Simulations provide compelling evidence that hemodynamic parameters may be a more accurate predictor of thrombotic risk than aneurysm diameter alone and motivate the need for follow-up studies with a larger cohort. These results suggest that a clinical index incorporating hemodynamic information be used in the future to select patients for anticoagulant therapy.
Collapse
|
17
|
Bossers SSM, Cibis M, Gijsen FJ, Schokking M, Strengers JLM, Verhaart RF, Moelker A, Wentzel JJ, Helbing WA. Computational fluid dynamics in Fontan patients to evaluate power loss during simulated exercise. Heart 2014; 100:696-701. [PMID: 24634021 DOI: 10.1136/heartjnl-2013-304969] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Exercise intolerance is common in total cavopulmonary connection (TCPC) patients. It has been suggested that power loss (Ploss) inside the TCPC plays a role in reduced exercise performance. Our objective is to establish the role of Ploss inside the TCPC during increased flow, simulating exercise in a patient-specific way. METHODS Cardiac MRI (CMR) was used to obtain flow rates from the caval veins during rest and increased flow, simulating exercise with dobutamine. A 3D reconstruction of the TCPC was created using CMR data. Computational fluid dynamics (CFD) simulations were performed to calculate Ploss inside the TCPC structure for rest and stress conditions. To reflect the flow distribution during exercise, a condition where inferior caval vein (IVC) flow was increased twofold compared with rest was added. 29 TCPC patients (15 intra-atrial lateral tunnel (ILT) and 14 extracardiac conduit (ECC)) were included. RESULTS Mean Ploss at rest was 1.36 ± 0.94 (ILT) and 3.20 ± 1.26 (ECC) mW/m(2) (p<0.001), 2.84 ±1.95 (ILT) and 8.41 ± 3.77 (ECC) mW/m(2) (p<0.001) during dobutamine and 5.21 ± 3.50 (ILT) and 15.28 ± 8.30 (ECC) mW/m(2) (p=0.001) with twofold IVC flow. The correlation between cardiac index and Ploss was exponential (ILT: R(2)=0.811, p<0.001; ECC: R(2)=0.690, p<0.001). CONCLUSIONS Ploss inside the TCPC structure is limited but increases with simulated exercise. This relates to the anatomy of TCPC and the surgical technique used. In all flow conditions, ILT patients have lower Ploss than ECC patients. We did not find a relationship between Ploss and exercise capacity.
Collapse
Affiliation(s)
- Sjoerd S M Bossers
- Department of Paediatrics, Division of Cardiology, Erasmus Medical Centre-Sophia Children's Hospital, , Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: total cavopulmonary connection treatments. ScientificWorldJournal 2013; 2013:131597. [PMID: 24385870 PMCID: PMC3872434 DOI: 10.1155/2013/131597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/06/2013] [Indexed: 11/27/2022] Open
Abstract
Total cavopulmonary connection (TCPC), a typical kind of Fontan procedure, is commonly used in the treatment of a functional single ventricle. The palliative cardiothoracic procedure is performed by connecting the superior vena cava and the inferior vena cava to the pulmonary arteries. Due to the difficulty of direct study in vivo, in this paper, computational fluid dynamics (CFD) was introduced to estimate the outcomes of patient-specific TCPC configuration. We mainly focused on the influence of blood pulsation and respiration. Fast Fourier transforms method was employed to separate the measured flow conditions into the rate of breath and heart beat. Blood flow performance around the TCPC connection was investigated by analyzing the results of time-varying energy losses, blood flow distribution rate, local pressure, and wall shear stress distributions. It was found that the value of energy loss including the influence of respiration was 1.5 times higher than the value of energy loss disregarding respiratory influences. The results indicated that the hemodynamic outcomes of TCPC treatment are obviously influenced by respiration. The influence of respiration plays an important role in estimating the results of TCPC treatment and thus should be included as one of the important conditions of computational haemodynamic analysis.
Collapse
|
19
|
Marsden AL. Simulation based planning of surgical interventions in pediatric cardiology. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2013; 25:101303. [PMID: 24255590 PMCID: PMC3820639 DOI: 10.1063/1.4825031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/22/2013] [Indexed: 05/17/2023]
Abstract
Hemodynamics plays an essential role in the progression and treatment of cardiovascular disease. However, while medical imaging provides increasingly detailed anatomical information, clinicians often have limited access to hemodynamic data that may be crucial to patient risk assessment and treatment planning. Computational simulations can now provide detailed hemodynamic data to augment clinical knowledge in both adult and pediatric applications. There is a particular need for simulation tools in pediatric cardiology, due to the wide variation in anatomy and physiology in congenital heart disease patients, necessitating individualized treatment plans. Despite great strides in medical imaging, enabling extraction of flow information from magnetic resonance and ultrasound imaging, simulations offer predictive capabilities that imaging alone cannot provide. Patient specific simulations can be used for in silico testing of new surgical designs, treatment planning, device testing, and patient risk stratification. Furthermore, simulations can be performed at no direct risk to the patient. In this paper, we outline the current state of the art in methods for cardiovascular blood flow simulation and virtual surgery. We then step through pressing challenges in the field, including multiscale modeling, boundary condition selection, optimization, and uncertainty quantification. Finally, we summarize simulation results of two representative examples from pediatric cardiology: single ventricle physiology, and coronary aneurysms caused by Kawasaki disease. These examples illustrate the potential impact of computational modeling tools in the clinical setting.
Collapse
Affiliation(s)
- Alison L Marsden
- Mechanical and Aerospace Engineering Department, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Duvernois V, Marsden AL, Shadden SC. Lagrangian analysis of hemodynamics data from FSI simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:445-61. [PMID: 23559551 PMCID: PMC3875314 DOI: 10.1002/cnm.2523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 05/29/2023]
Abstract
We present the computation of lagrangian-based flow characterization measures for time-dependent, deformable-wall, finite-element blood flow simulations. Applicability of the algorithm is demonstrated in a fluid-structure interaction simulation of blood flow through a total cavopulmonary connection (Fontan procedure), and results are compared with a rigid-vessel simulation. Specifically, we report on several important lagrangian-based measures including flow distributions, finite-time Lyapunov exponent fields, particle residence time, and exposure time calculations. Overall, strong similarity in lagrangian measures of the flow between deformable and rigid-vessel models was observed.
Collapse
|
21
|
Mirabella L, Haggerty CM, Passerini T, Piccinelli M, Powell AJ, Del Nido PJ, Veneziani A, Yoganathan AP. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:197-216. [PMID: 23345252 DOI: 10.1002/cnm.2517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/17/2012] [Indexed: 05/29/2023]
Abstract
The hemodynamics in patients with total cavopulmonary connections (TCPC) is generally very complex and characterized by patient-to-patient variability. To better understand its effect on patients' outcome, CFD models are widely used, also to test and optimize surgical options before their implementation. These models often assume rigid geometries, despite the motion experienced by thoracic vessels that could influence the hemodynamics predictions. By improving their accuracy and expanding the range of simulated interventions, the benefit of treatment planning for patients is expected to increase. We simulate three types of intervention on a patient-specific 3D model, and compare their predicted outcome with baseline condition: a decrease in pulmonary vascular resistance obtainable with medications; a surgical revision of the connection design; the introduction of a fenestration in the TCPC wall. The simulations are performed both with rigid wall assumption and including patient-specific TCPC wall motion, reconstructed from a 4DMRI dataset. The results show the effect of each option on clinically important metrics and highlight the impact of patient-specific wall motion. The largest differences between rigid and moving wall models are observed in measures of energetic efficiency of TCPC as well as in hepatic flow distribution and transit time of seeded particles through the connection.
Collapse
Affiliation(s)
- Lucia Mirabella
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kung E, Baretta A, Baker C, Arbia G, Biglino G, Corsini C, Schievano S, Vignon-Clementel IE, Dubini G, Pennati G, Taylor A, Dorfman A, Hlavacek AM, Marsden AL, Hsia TY, Migliavacca F. Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J Biomech 2013; 46:423-9. [PMID: 23174419 DOI: 10.1016/j.jbiomech.2012.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 10/23/2010] [Indexed: 11/18/2022]
Abstract
Single ventricle hearts are congenital cardiovascular defects in which the heart has only one functional pumping chamber. The treatment for these conditions typically requires a three-staged operative process where Stage 1 is typically achieved by a shunt between the systemic and pulmonary arteries, and Stage 2 by connecting the superior venous return to the pulmonary circulation. Surgically, the Stage 2 circulation can be achieved through a procedure called the Hemi-Fontan, which reconstructs the right atrium and pulmonary artery to allow for an enlarged confluence with the superior vena cava. Based on pre-operative data obtained from two patients prior to Stage 2 surgery, we developed two patient-specific multi-scale computational models, each including the 3D geometrical model of the surgical junction constructed from magnetic resonance imaging, and a closed-loop systemic lumped-parameter network derived from clinical measurements. "Virtual" Hemi-Fontan surgery was performed on the 3D model with guidance from clinical surgeons, and a corresponding multi-scale simulation predicts the patient's post-operative hemodynamic and physiologic conditions. For each patient, a post-operative active scenario with an increase in the heart rate (HR) and a decrease in the pulmonary and systemic vascular resistance (PVR and SVR) was also performed. Results between the baseline and this "active" state were compared to evaluate the hemodynamic and physiologic implications of changing conditions. Simulation results revealed a characteristic swirling vortex in the Hemi-Fontan in both patients, with flow hugging the wall along the SVC to Hemi-Fontan confluence. One patient model had higher levels of swirling, recirculation, and flow stagnation. However, in both models, the power loss within the surgical junction was less than 13% of the total power loss in the pulmonary circulation, and less than 2% of the total ventricular power. This implies little impact of the surgical junction geometry on the SVC pressure, cardiac output, and other systemic parameters. In contrast, varying HR, PVR, and SVR led to significant changes in theses clinically relevant global parameters. Adopting a work-flow of customized virtual planning of the Hemi-Fontan procedure with patient-specific data, this study demonstrates the ability of multi-scale modeling to reproduce patient specific flow conditions under differing physiological states. Results demonstrate that the same operation performed in two different patients can lead to different hemodynamic characteristics, and that modeling can be used to uncover physiologic changes associated with different clinical conditions.
Collapse
Affiliation(s)
- Ethan Kung
- Mechanical and Aerospace Engineering Department, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang W, Feinstein JA, Shadden SC, Vignon-Clementel IE, Marsden AL. Optimization of a Y-Graft Design for Improved Hepatic Flow Distribution in the Fontan Circulation. J Biomech Eng 2012; 135:011002. [DOI: 10.1115/1.4023089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single ventricle heart defects are among the most serious congenital heart diseases, and are uniformly fatal if left untreated. Typically, a three-staged surgical course, consisting of the Norwood, Glenn, and Fontan surgeries is performed, after which the superior vena cava (SVC) and inferior vena cava (IVC) are directly connected to the pulmonary arteries (PA). In an attempt to improve hemodynamic performance and hepatic flow distribution (HFD) of Fontan patients, a novel Y-shaped graft has recently been proposed to replace the traditional tube-shaped extracardiac grafts. Previous studies have demonstrated that the Y-graft is a promising design with the potential to reduce energy loss and improve HFD. However these studies also found suboptimal Y-graft performance in some patient models. The goal of this work is to determine whether performance can be improved in these models through further design optimization. Geometric and hemodynamic factors that influence the HFD have not been sufficiently investigated in previous work, particularly for the Y-graft. In this work, we couple Lagrangian particle tracking to an optimal design framework to study the effects of boundary conditions and geometry on HFD. Specifically, we investigate the potential of using a Y-graft design with unequal branch diameters to improve hepatic distribution under a highly uneven RPA/LPA flow split. As expected, the resulting optimal Y-graft geometry largely depends on the pulmonary flow split for a particular patient. The unequal branch design is demonstrated to be unnecessary under most conditions, as it is possible to achieve the same or better performance with equal-sized branches. Two patient-specific examples show that optimization-derived Y-grafts effectively improve the HFD, compared to initial nonoptimized designs using equal branch diameters. An instance of constrained optimization shows that energy efficiency slightly increases with increasing branch size for the Y-graft, but that a smaller branch size is preferred when a proximal anastomosis is needed to achieve optimal HFD.
Collapse
Affiliation(s)
- Weiguang Yang
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093 e-mail:
| | | | - Shawn C. Shadden
- Mechanical, Materials, and
Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 e-mail:
| | | | - Alison L. Marsden
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093 e-mail:
| |
Collapse
|
24
|
Bockman MD, Kansagra AP, Shadden SC, Wong EC, Marsden AL. Fluid Mechanics of Mixing in the Vertebrobasilar System: Comparison of Simulation and MRI. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-012-0112-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Pulsatile venous waveform quality affects the conduit performance in functional and "failing" Fontan circulations. Cardiol Young 2012; 22:251-62. [PMID: 22008697 DOI: 10.1017/s1047951111001491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the effect of pulsatility of venous flow waveform in the inferior and superior caval vessels on the performance of functional and "failing" Fontan patients based on two primary performance measures - the conduit power loss and the distribution of inferior caval flow (hepatic factors) to the lungs. METHODS Doppler angiography flows were acquired from two typical extra-cardiac conduit "failing" Fontan patients, aged 13 and 25 years, with ventricle dysfunction. Using computational fluid dynamics, haemodynamic efficiencies of "failing", functional, and in vitro-generated mechanically assisted venous flow waveforms were evaluated inside an idealised total cavopulmonary connection with a caval offset. To investigate the effect of venous pulsatility alone, cardiac output was normalised to 3 litres per minute in all cases. To quantify the pulsatile behaviour of venous flows, two new performance indices were suggested. RESULTS Variations in the pulsatile content of venous waveforms altered the conduit efficiency notably. High-frequency and low-amplitude oscillations lowered the pulsatile component of the power losses in "failing" Fontan flow waveforms. Owing to the offset geometry, hepatic flow distribution depended strongly on the ratio of time-dependent caval flows and the pulsatility content rather than mixing at the junction. "Failing" Fontan flow waveforms exhibited less balanced hepatic flow distribution to lungs. CONCLUSIONS The haemodynamic efficiency of single-ventricle circulation depends strongly on the pulsatility of venous flow waveforms. The proposed performance indices can be calculated easily in the clinical setting in efforts to better quantify the energy efficiency of Fontan venous waveforms in pulsatile settings.
Collapse
|
26
|
Long CC, Hsu MC, Bazilevs Y, Feinstein JA, Marsden AL. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:513-527. [PMID: 25099455 DOI: 10.1002/cnm.1485] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 05/29/2023]
Abstract
Children born with single ventricle heart defects typically undergo a staged surgical procedure culminating in a total cavopulmonary connection (TCPC) or Fontan surgery. The goal of this work was to perform physiologic, patient-specific hemodynamic simulations of two post-operative TCPC patients by using fluid-structure interaction (FSI) simulations. Data from two patients are presented, and post-op anatomy is reconstructed from MRI data. Respiration rate, heart rate, and venous pressures are obtained from catheterization data, and inflow rates are obtained from phase contrast MRI data and are used together with a respiratory model. Lumped parameter (Windkessel) boundary conditions are used at the outlets. We perform FSI simulations by using an arbitrary Lagrangian-Eulerian finite element framework to account for motion of the blood vessel walls in the TCPC. This study is the first to introduce variable elastic properties for the different areas of the TCPC, including a Gore-Tex conduit. Quantities such as wall shear stresses and pressures at critical locations are extracted from the simulation and are compared with pressure tracings from clinical data as well as with rigid wall simulations. Hepatic flow distribution and energy efficiency are also calculated and compared for all cases. There is little effect of FSI on pressure tracings, hepatic flow distribution, and time-averaged energy efficiency. However, the effect of FSI on wall shear stress, instantaneous energy efficiency, and wall motion is significant and should be considered in future work, particularly for accurate prediction of thrombus formation.
Collapse
Affiliation(s)
- C C Long
- University of California, San Diego, 9500 Gilman Drive, Mail Code 0411, La Jolla, CA, 92093-0411, USA
| | | | | | | | | |
Collapse
|
27
|
Yang W, Vignon-Clementel IE, Troianowski G, Reddy VM, Feinstein JA, Marsden AL. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: A case series computational fluid dynamics study. J Thorac Cardiovasc Surg 2012; 143:1086-97. [DOI: 10.1016/j.jtcvs.2011.06.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/15/2022]
|
28
|
Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, Pahl E, Villafañe J, Bhatt AB, Peng LF, Johnson BA, Marsden AL, Daniels CJ, Rudd NA, Caldarone CA, Mussatto KA, Morales DL, Ivy DD, Gaynor JW, Tweddell JS, Deal BJ, Furck AK, Rosenthal GL, Ohye RG, Ghanayem NS, Cheatham JP, Tworetzky W, Martin GR. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol 2012; 59:S1-42. [PMID: 22192720 PMCID: PMC6110391 DOI: 10.1016/j.jacc.2011.09.022] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 09/06/2011] [Accepted: 09/20/2011] [Indexed: 01/25/2023]
Abstract
In the recent era, no congenital heart defect has undergone a more dramatic change in diagnostic approach, management, and outcomes than hypoplastic left heart syndrome (HLHS). During this time, survival to the age of 5 years (including Fontan) has ranged from 50% to 69%, but current expectations are that 70% of newborns born today with HLHS may reach adulthood. Although the 3-stage treatment approach to HLHS is now well founded, there is significant variation among centers. In this white paper, we present the current state of the art in our understanding and treatment of HLHS during the stages of care: 1) pre-Stage I: fetal and neonatal assessment and management; 2) Stage I: perioperative care, interstage monitoring, and management strategies; 3) Stage II: surgeries; 4) Stage III: Fontan surgery; and 5) long-term follow-up. Issues surrounding the genetics of HLHS, developmental outcomes, and quality of life are addressed in addition to the many other considerations for caring for this group of complex patients.
Collapse
Affiliation(s)
- Jeffrey A Feinstein
- Department of Pediatrics, Stanford University School of Medicine, Lucile Salter Packard Children's Hospital, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Clipp R, Steele B. An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2012; 9:61-74. [PMID: 22229396 DOI: 10.3934/mbe.2012.9.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
When modeling the cardiovascular system, the use of boundary conditions that closely represent the interaction between the region of interest and the surrounding vessels and organs will result in more accurate predictions. An often overlooked feature of outlet boundary conditions is the dynamics associated with regulation of the distribution of pressure and flow. This study implements a dynamic impedance outlet boundary condition in a one-dimensional fluid dynamics model using the pulmonary vasculature and respiration (feedback mechanism) as an example of a dynamic system. The dynamic boundary condition was successfully implemented and the pressure and flow were predicted for an entire respiration cycle. The cardiac cycles at maximal expiration and inspiration were predicted with a root mean square error of 0.61 and 0.59 mm Hg, respectively.
Collapse
Affiliation(s)
- Rachel Clipp
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7115, USA.
| | | |
Collapse
|
30
|
Sengupta D, Kahn AM, Burns JC, Sankaran S, Shadden SC, Marsden AL. Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomech Model Mechanobiol 2011; 11:915-32. [PMID: 22120599 DOI: 10.1007/s10237-011-0361-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022]
Abstract
Kawasaki Disease (KD) is the leading cause of acquired pediatric heart disease. A subset of KD patients develops aneurysms in the coronary arteries, leading to increased risk of thrombosis and myocardial infarction. Currently, there are limited clinical data to guide the management of these patients, and the hemodynamic effects of these aneurysms are unknown. We applied patient-specific modeling to systematically quantify hemodynamics and wall shear stress in coronary arteries with aneurysms caused by KD. We modeled the hemodynamics in the aneurysms using anatomic data obtained by multi-detector computed tomography (CT) in a 10-year-old male subject who suffered KD at age 3 years. The altered hemodynamics were compared to that of a reconstructed normal coronary anatomy using our subject as the model. Computer simulations using a robust finite element framework were used to quantify time-varying shear stresses and particle trajectories in the coronary arteries. We accounted for the cardiac contractility and the microcirculation using physiologic downstream boundary conditions. The presence of aneurysms in the proximal coronary artery leads to flow recirculation, reduced wall shear stress within the aneurysm, and high wall shear stress gradients at the neck of the aneurysm. The wall shear stress in the KD subject (2.95-3.81 dynes/sq cm) was an order of magnitude lower than the normal control model (17.10-27.15 dynes/sq cm). Particle residence times were significantly higher, taking 5 cardiac cycles to fully clear from the aneurysmal regions in the KD subject compared to only 1.3 cardiac cycles from the corresponding regions of the normal model. In this novel quantitative study of hemodynamics in coronary aneurysms caused by KD, we documented markedly abnormal flow patterns that are associated with increased risk of thrombosis. This methodology has the potential to provide further insights into the effects of aneurysms in KD and to help risk stratify patients for appropriate medical and surgical interventions.
Collapse
Affiliation(s)
- Dibyendu Sengupta
- Department of Mechanical and Aerospace Engineering, University of California San Diego-UCSD, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sankaran S, Marsden AL. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J Biomech Eng 2011; 133:031001. [PMID: 21303177 DOI: 10.1115/1.4003259] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simulations of blood flow in both healthy and diseased vascular models can be used to compute a range of hemodynamic parameters including velocities, time varying wall shear stress, pressure drops, and energy losses. The confidence in the data output from cardiovascular simulations depends directly on our level of certainty in simulation input parameters. In this work, we develop a general set of tools to evaluate the sensitivity of output parameters to input uncertainties in cardiovascular simulations. Uncertainties can arise from boundary conditions, geometrical parameters, or clinical data. These uncertainties result in a range of possible outputs which are quantified using probability density functions (PDFs). The objective is to systemically model the input uncertainties and quantify the confidence in the output of hemodynamic simulations. Input uncertainties are quantified and mapped to the stochastic space using the stochastic collocation technique. We develop an adaptive collocation algorithm for Gauss-Lobatto-Chebyshev grid points that significantly reduces computational cost. This analysis is performed on two idealized problems--an abdominal aortic aneurysm and a carotid artery bifurcation, and one patient specific problem--a Fontan procedure for congenital heart defects. In each case, relevant hemodynamic features are extracted and their uncertainty is quantified. Uncertainty quantification of the hemodynamic simulations is done using (a) stochastic space representations, (b) PDFs, and (c) the confidence intervals for a specified level of confidence in each problem.
Collapse
|
32
|
de Zélicourt DA, Marsden A, Fogel MA, Yoganathan AP. Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. PROGRESS IN PEDIATRIC CARDIOLOGY 2010; 30:31-44. [PMID: 25620865 PMCID: PMC4302339 DOI: 10.1016/j.ppedcard.2010.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Diane A. de Zélicourt
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Alison Marsden
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Mark A. Fogel
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ajit P. Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
33
|
Vignon-Clementel IE, Marsden AL, Feinstein JA. A primer on computational simulation in congenital heart disease for the clinician. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2010.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Das A, Banerjee RK, Gottliebson WM. Right ventricular inefficiency in repaired tetralogy of Fallot: proof of concept for energy calculations from cardiac MRI data. Ann Biomed Eng 2010; 38:3674-87. [PMID: 20589531 DOI: 10.1007/s10439-010-0107-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/15/2010] [Indexed: 11/28/2022]
Abstract
Repaired tetralogy of Fallot (rTOF) patients develop right ventricular (RV) dilatation and dysfunction. To prevent their demise, pulmonary valve replacement is necessary, though appropriate timing for it is challenged by a paucity of reliable diagnostic parameters. In this pilot study, we hypothesized that stroke work (SW) and energy calculations would delineate the inefficiency of RV performance in rTOF. RV SW was calculated for both an rTOF and a normal subject by utilizing RV pressure and volume measurements obtained during cardiac catheterization and MRI studies. Energy transfer rate and ratio were computed at the main pulmonary artery (PA). Compared to the normal RV, the rTOF RV had higher operating pressure, lower computed SW (0.078 J vs. 0.115 J for normal), and higher negative energy transfer at the PA (0.044 J vs. 0.002 J for normal). Furthermore, the energy transfer ratio was nearly twice as high for the normal RV (1.06) as for the rTOF RV (0.56). RV SW and energy transfer ratio delineate important operational efficiency differences in blood flow from the RV to the PA between rTOF and normal subjects. Our pilot data suggest that the rTOF RV is significantly less efficient than normal.
Collapse
Affiliation(s)
- Ashish Das
- Department of Mechanical Engineering, University of Cincinnati, OH, USA
| | | | | |
Collapse
|