1
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
2
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
3
|
Ge Y, Huang Y, Kohan DE. Role of the renin-angiotensin-aldosterone system in collecting duct-derived endothelin-1 regulation of blood pressure. Can J Physiol Pharmacol 2008; 86:329-36. [PMID: 18516095 DOI: 10.1139/y08-028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal collecting duct (CD)-specific knockout of endothelin-1 (ET-1) causes hypertension and impaired Na excretion. A previous study noted failure to suppress the renin-angiotensin-aldosterone axis in these knockout (KO) mice, hence the current investigation was undertaken to examine the role of this system in CD ET-1 KO. Renal renin content was similar in kidneys from CD ET-1 KO and control mice during normal Na intake; high-Na intake suppressed renal renin content to a similar degree in KO and control. Plasma renin concentrations paralleled changes in renal renin content. Valsartan, an angiotensin receptor blocker (ARB), abolished the hypertension in CD ET-1 KO mice during normal Na intake. High-Na intake + ARB treatment increased blood pressure in CD ET-1 KO, but not in controls. High-Na intake was associated with reduced Na excretion in CD ET-1 KO animals, but no changes in water excretion or creatinine clearance were noted. Spironolactone, an aldosterone antagonist, also normalized blood pressure in CD ET-1 KO mice during normal Na intake, whereas high-Na intake + spironolactone raised blood pressure only in CD ET-1 KO animals. In summary, hypertension in CD ET-1 KO is partly due to angiotensin II and aldosterone. We speculate that CD-derived ET-1 may regulate, via a novel pathway, renal renin production.
Collapse
Affiliation(s)
- Yuqiang Ge
- Division of Nephrology, University of Utah Health Sciences Center, 1900 East 30 North, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
4
|
Berthold H, Münter K, Just A, Kirchheim HR, Ehmke H. Stimulation of the renin-angiotensin system by endothelin subtype A receptor blockade in conscious dogs. Hypertension 1999; 33:1420-4. [PMID: 10373226 DOI: 10.1161/01.hyp.33.6.1420] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies in dogs have shown additive or even synergistic effects of combined angiotensin-converting enzyme inhibition and either nonselective endothelin subtype A/B (ETA/B) or selective endothelin subtype A (ETA) receptor blockade on renal vascular resistance and mean arterial blood pressure. A possible mechanism underlying this interaction may be a stimulation of the renin-angiotensin system during endothelin (ET) receptor blockade. We therefore investigated whether plasma renin activity and renin release are regulated by the ETA receptor. Experiments were made in conscious, chronically instrumented dogs receiving either saline or the selective ETA receptor antagonist LU 135252 (10 mg/kg IV). Eighty to 100 minutes after the administration of LU 135252 (n=5), heart rate (99+/-7 versus 81+/-6 bpm; P<0.05) and renal blood flow (327+/-40 versus 278+/-36 mL/min; P<0.05) were increased significantly, whereas mean arterial blood pressure tended to be lower (93+/-5 versus 105+/-7 mm Hg). These changes were associated with a 2-fold increase in plasma renin activity (0.74+/-0.12 versus 0.37+/-0.10 ng angiotensin I per milliliter per hour; P<0.05). Measurements of renin release at various renal perfusion pressures (n=5) with the use of a vascular occluder implanted around the left renal artery revealed that ETA receptor blockade did not alter renin release at resting renal perfusion pressure (78+/-25 versus 71+/-39 U/min) but strongly enhanced the sensitivity of pressure-dependent renin release <80 mm Hg approximately 2.2-fold. In conclusion, selective ETA receptor blockade is associated with a stimulation of the circulating renin-angiotensin system, which results from both a sensitization of pressure-dependent renin release and a larger proportion of blood pressure values falling into the low pressure range, where renin release is stimulated. These find-ings strengthen the view that ET and the renin-angiotensin system closely interact to regulate vascular resistance and provide a physiological basis for synergistic hypotensive effects of a combined blockade of both pressor systems.
Collapse
Affiliation(s)
- H Berthold
- I. Physiologisches Institut der Ruprecht-Karls-Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
5
|
Berthold H, Münter K, Just A, Kirchheim HR, Ehmke H. Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F417-24. [PMID: 10070165 DOI: 10.1152/ajprenal.1999.276.3.f417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenous endothelin-1 (ET-1) is a strong vasoconstrictor in the canine kidney and causes a decrease in renal blood flow (RBF) by stimulating the ETA receptor subtype. The aim of the present study was to investigate the role of endogenously generated ET-1 in renal hemodynamics under physiological conditions. In six conscious foxhounds, the time course of the effects of the selective ETA receptor antagonist LU-135252 (10 mg/kg iv) on mean arterial blood pressure (MAP), heart rate (HR), RBF, and glomerular filtration rate (GFR), as well as its effects on renal autoregulation, were examined. LU-135252 increased RBF by 20% (from 270 +/- 21 to 323 +/- 41 ml/min, P < 0.05) and HR from 76 +/- 5 to 97 +/- 8 beats/min (P < 0. 05), but did not alter MAP, GFR, or autoregulation of RBF and GFR. Since a number of interactions between ET-1 and the renin-angiotensin system have been reported previously, experiments were repeated during angiotensin converting enzyme (ACE) inhibition by trandolaprilat (2 mg/kg iv). When ETA receptor blockade was combined with ACE inhibition, which by itself had no effects on renal hemodynamics, marked changes were observed: MAP decreased from 91 +/- 4 to 80 +/- 5 mmHg (P < 0.05), HR increased from 85 +/- 5 to 102 +/- 11 beats/min (P < 0.05), and RBF increased from 278 +/- 23 to 412 +/- 45 ml/min (P < 0.05). Despite a pronounced decrease in renal vascular resistance over the entire pressure range investigated (40-100 mmHg), the capacity of the kidneys to autoregulate RBF was not impaired. The GFR remained completely unaffected at all pressure levels. These results demonstrate that endogenously generated ET-1 contributes significantly to renal vascular tone but does not interfere with the mechanisms of renal autoregulation. If ETA receptors are blocked, then the vasoconstrictor effects of ET-1 in the kidney are compensated for to a large extent by an augmented influence of ANG II. Thus ET-1 and ANG II appear to constitute a major interrelated vasoconstrictor system in the control of RBF.
Collapse
Affiliation(s)
- H Berthold
- I. Physiologisches Institut der Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
6
|
Abstract
In the mammalian body the kidney might be the most important organ for long-term blood pressure regulation. Nitric oxide seems to play a particular role in the control of renal haemodynamics, and changes in renal nitric oxide synthesis should therefore be of great importance for the renal control of blood pressure.
Collapse
Affiliation(s)
- C Thorup
- Department of Physiology, Göteborg University, Sweden
| | | |
Collapse
|
7
|
Abstract
Endothelin-1 (ET-1) is a 21-amino acid peptide that potently modulates renal function. ET-1 is produced by, and binds to, most renal cell types. ET-1 exerts a wide range of biologic effects in the kidney, including constriction of most renal vessels, mesangial cell contraction, inhibition of sodium and water reabsorption by the nephron, enhancement of glomerular cell proliferation, and stimulation of extracellular matrix accumulation. ET-1 functions primarily as an autocrine or paracrine factor; its renal effects must be viewed in the context of its local production and actions. This is particularly important when comparing ET-1 biology in the nephron, where it promotes relative hypotension through increased salt and water excretion, with ET-1 effects in the vasculature, where it promotes relative hypertension through vasoconstriction. Numerous studies indicate that ET-1 is involved in the pathogenesis of a broad spectrum of renal diseases. These include those characterized by excessive renal vascular resistance, such as ischemic renal failure, cyclosporine (CyA) nephrotoxicity, radiocontrast nephropathy, endotoxemia, rhabdomyolysis, acute liver rejection, and others. ET-1 appears to play a role in cell proliferation in the setting of inflammatory glomerulonephritides. The peptide also may mediate, at least in part, excessive extracellular matrix accumulation and fibrosis occurring in chronic renal failure, diabetes mellitus, and other disorders. Deranged ET-1 production in the nephron may cause inappropriate sodium and water retention, thereby contributing to the development and/or maintenance of hypertension. Finally, impaired renal clearance of ET-1 may cause hypertension in patients with end-stage renal disease. Many ET-1 antagonists have been developed; however, their clinical usefulness has not yet been determined. Despite this, these agents hold great promise for the treatment of renal diseases; it is hoped that the next decade will witness their introduction into clinical practice.
Collapse
Affiliation(s)
- D E Kohan
- Department of Medicine, Veterans Affairs Medical Center, Salt Lake City 84132, USA
| |
Collapse
|
8
|
Nussdorfer GG, Rossi GP, Belloni AS. The role of endothelins in the paracrine control of the secretion and growth of the adrenal cortex. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 171:267-308. [PMID: 9066130 DOI: 10.1016/s0074-7696(08)62590-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endothelins (ETs) are a family of vasoactive peptides (ET-1, ET-2, and ET-3) mainly secreted by vascular endothelium and widely distributed in the various body systems, where they play major autocrine/paracrine regulatory functions, acting via two subtypes of receptors (ETA and ETB): Adrenal cortex synthesizes and releases ETS and expresses both ETA and ETB. Zona glomerulosa possesses both ETA and ETB, whereas zona fasciculata/reticularis is almost exclusively provided with ETB. ETS exert a strong mineralocorticoid and a less intense glucocorticoid secretagogue action, mainly via ETB receptors. ETS also appear to enhance the growth and steroidogenic capacity of zona glomerulosa and to stimulate its proliferative activity. This trophic action of ETS is likely to be mediated mainly by ETA receptors. The intraadrenal release of ETS undergoes a multiple regulation, with the rise in blood flow rate and the local release of nitric oxide being the main stimulatory factors. Data are also available that indicate that ETS may also have a role in the pathophysiology of primary aldosteronism caused by adrenal adenomas and carcinomas.
Collapse
|
9
|
Ritthaler T, Della Bruna R, Krämer BK, Kurtz A. Endothelins inhibit cyclic-AMP induced renin gene expression in cultured mouse juxtaglomerular cells. Kidney Int 1996; 50:108-15. [PMID: 8807579 DOI: 10.1038/ki.1996.293] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have recently described that endothelins-1 to -3 equipotently inhibit cAMP stimulated renin secretion from cultured mouse juxtaglomerular cells by a process involving phospholipase C activation. This study examined the influence of endothelin-2 on renin gene expression in renal juxtaglomerular cells. To this end we semiquantitated renin mRNA levels by competitive RT-PCR in primary cultures of mouse renal juxtaglomerular cells after 20 hours of incubation. We found that endothelin-2 (0.1 to 100 nmol/liter) did not change basal renin gene expression. The adenylate cyclase activator forskolin (3 mumol/ liter) increased renin mRNA levels to 400% of the controls and this stimulation was dose-dependently attenuated by ET-2 to 250% of the control value. The effect of ET-2 was mimicked by the ETB-receptor agonist sarafotoxin S6c. The kinase inhibitor staurosporine (100 nmol/ liter) increased renin secretion and renin mRNA levels. Combination of staurosporine with forskolin produced the same effects on renin secretion and renin mRNA levels as did staurosporine alone. In the presence of both forskolin and staurosporine ET-2 had no significant effect on renin secretion and renin gene expression. The phorbol ester PMA (30 nmol/ liter), which was used to stimulate protein kinase C activity, attenuated cAMP stimulated renin secretion and renin mRNA levels. Lowering the extracellular concentration of calcium by the addition of 1 mmol/liter EGTA did not inhibit the effect of ET-2 on cAMP induced renin secretion and renin gene expression. These findings suggest that endothelins inhibit cAMP stimulated renin gene expression by an event that is mediated via ETB receptors. This inhibitory effect may in part involve protein kinase C activation.
Collapse
Affiliation(s)
- T Ritthaler
- Physiologisches Institut, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
10
|
Scholz H, Krämer BK, Hamann M, Götz KH, Kurtz A. Effects of endothelins on renin secretion from rat kidneys. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 155:173-82. [PMID: 8669290 DOI: 10.1111/j.1748-1716.1995.tb09962.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using a preparation of isolated rat kidneys perfused at constant renal artery pressure (80 mmHG) we investigated the role of endothelins in the regulation of renin release. Addition of three related endothelins (ET-1, ET-2, ET-3) at a concentration of 10 pmol L(-1) tended to enhance renin secretion rates. Higher doses (100 pmol L(-1), 1 nmol L(-1)) of different ETs such as the selective ETB receptor agonist sarafotoxin S6c (100 pmol L(-1), 1 nmol L(-1)) inhibited renin release and increased renal vascular resistance with similar potency. These effects of ETs were blunted when calcium ions were removed from the perfusate. Renin release activated by isoproterenol (10 nmol L(-1)) was also significantly reduced with ET-1, -2 and -3 (1 nmol L(-1)). BQ-123 (500 nmol L(-1)), a selective ETA receptor antagonist, only attenuated, whilst the non-selective ET receptor blocker bosentan (Ro 47-0203, 10 micro mol L(-1)) almost abolished the renal vasopressor and renin inhibitory action of ET-1 and sarafotoxin S6c. BQ-123 and bosentan alone did not affect either perfusate flow or basal renin secretion rates in isolated perfused kidneys. These findings indicate that all three ET peptides equipotently inhibit renin secretion from the kidneys. Most of the vasopressor and renin inhibitory effect of ETs is mediated by ETB rather than ETA receptors involving a calcium-dependent signal transduction mechanism. Moreover, our results suggest that intrarenally released ETs do not contribute to the regulation of renin secretion from isolated perfused rat kidneys.
Collapse
Affiliation(s)
- H Scholz
- Physiologisches Institut, Universität Regensburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Schricker K, Scholz H, Hamann M, Clozel M, Krämer BK, Kurtz A. Role of endogenous endothelins in the renin system of normal and two-kidney, one clip rats. Hypertension 1995; 25:1025-9. [PMID: 7737710 DOI: 10.1161/01.hyp.25.5.1025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study aimed to investigate the relevance of endogenous endothelins in the control of renin secretion and renin gene expression under basal conditions and stimulated conditions achieved with unilateral renal artery stenosis. To this end, we studied the effects of the orally active endothelin antagonist Ro 47-0203 (100 mg/kg per day) for 2 days on plasma renin activity and renal renin mRNA levels in normal rats and rats with unilateral renal artery clips (0.2 mm). Treatment with Ro 47-0203 did not change basal arterial pressure but significantly attenuated the rise of blood pressure in response to renal artery clipping. Although Ro 47-0203 tended to increase basal plasma renin activity, this effect was not significant. Basal renin mRNA levels of kidneys were also not changed by the drug. Unilateral renal artery clipping increased plasma renin activity from 12 to 34 ng angiotensin I/mL per hour, increased renin mRNA levels to 328% of controls in the clipped kidneys, and decreased renin mRNA levels to 23% of controls in the contralateral intact kidneys. These changes were not influenced by Ro 47-0203. In isolated perfused rat kidneys, Ro 47-0203 (10 mumol/L) also had no effect on basal renin secretion or vascular resistance, but it substantially attenuated the decrease of renin secretion and renal flow in response to administration of exogenous endothelin. Taken together, these findings suggest that endogenous endothelins play no relevant role in the control of renin secretion and of renin gene expression in normal and hypoperfused rat kidneys.
Collapse
Affiliation(s)
- K Schricker
- Physiologisches Institut, Universität Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Schulz E, Ruschitzka F, Lueders S, Heydenbluth R, Schrader J, Müller GA. Effects of endothelin on hemodynamics, prostaglandins, blood coagulation and renal function. Kidney Int 1995; 47:795-801. [PMID: 7752579 DOI: 10.1038/ki.1995.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of the endogenous vasoconstrictors endothelin (ET), angiotensin II (Ang II) and catecholamines with the kallikrein-kinin-, prostaglandin and renin-aldosterone systems in the pathogenesis of acute renal failure (ARF) is still to be defined. In 18 anesthesized pigs the influence of i.v. bolus applications of ET (2 micrograms/kg), Ang II (10 micrograms/kg) and norepinephrine (NE; 20 micrograms/kg) on hemodynamics, plasmatic coagulation and fibrinolysis system, prostaglandins and renal function was studied. ET induced a biphasic change in blood pressure, starting with an initial short-lasting reduction followed by a long-lasting elevation of systolic and diastolic blood pressure. Endothelin bolus resulted in a significant increase of 6-keto-PGF1 alpha, PGE2 and TXB2 plasma levels (P < 0.05 against preinjection values), whereas prostaglandins remained unchanged in the Ang II and NE groups. There was a distinct correlation between the plasma ET and 6-keto-PGF1 alpha levels (r = 0.82). In contrast to Ang II or NE, ET induced a shortening of the activated partial thromboplastin time (aPTT) and increase of antithrombin III levels (ATIII), fibrin monomers (FM), prekallikrein (PKK) and factor VIII activity at the beginning. Finally a pronounced decrease of ATIII, FM and PKK occurred, indicating a consumptive coagulopathy. At the end of the experiment, elevated plasma renin activity and pCO2, significantly decreased creatinine clearance, blood pH, pO2, base excess, HCO3-, oxygen saturation (P < 0.01), a distinct glomerular proteinuria, and a final anuria were observated. These results reveal that ET activates the plasmatic coagulation system and induces an ARF accompanied by impairment of pulmonary function.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Schulz
- Department of Nephrology/Rheumatology, University of Göttingen, Germany
| | | | | | | | | | | |
Collapse
|