1
|
Cheng Y, Liu R, Yang T, Yang S, Chen J, Huang Y, Long D, Zeng J, Wu D, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Wang Y. Genetic factors of grain cadmium concentration in Polish wheat (Triticum polonicum L.). PLANT PHYSIOLOGY 2024; 196:979-995. [PMID: 38917222 DOI: 10.1093/plphys/kiae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.
Collapse
Affiliation(s)
- Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Rui Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Tian Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jia Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
2
|
Gonçalves PP, Stenovec M, Grácio L, Kreft M, Zorec R. Calcium-dependent subquantal peptide release from single docked lawn-resident vesicles of pituitary lactotrophs. Cell Calcium 2023; 109:102687. [PMID: 36528978 DOI: 10.1016/j.ceca.2022.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Regulated exocytosis consists of the fusion between vesicles and the plasma membranes, leading to the formation of a narrow fusion pore through which secretions exit the vesicle lumen into the extracellular space. An increase in the cytosolic concentration of free Ca2+ ([Ca2+]i) is considered the stimulus of this process. However, whether this mechanism can be preserved in a simplified system of membrane lawns with docked secretory vesicles, devoid of cellular components, is poorly understood. Here, we studied peptide discharge from individual secretory vesicles docked at the plasma membrane, prepared from primary endocrine pituitary cells (the lactotrophs), releasing hormone prolactin. To label secretory vesicles, we transfected lactotrophs to express the fluorescent atrial natriuretic peptide (ANP.emd), previously shown to be expressed in and released from prolactin-containing vesicles. We used stimulating solutions containing different [Ca2+] to evoke vesicle peptide discharge, which appeared similar in membrane lawns and in intact stimulated lactotrophs. All vesicles examined discharged peptides in a subquantal manner, either exhibiting a unitary or sequential time course. In the membrane lawns, the unitary vesicle peptide discharge was predominant and slightly slower than that recorded in intact cells, but with a shorter delay with respect to the stimulation onset. This study revealed directly that Ca2+ triggers peptide discharge from docked single vesicles in the membrane lawns with a half-maximal response of ∼8 µM [Ca2+], consistent with previous whole-cell patch-clamp studies in endocrine cells where the rapid component of exocytosis, interpreted to represent docked vesicles, was fully activated at <10 µM [Ca2+]. Interestingly, the sequential subquantal peptide vesicle discharge indicates that fluctuations between constricted and dilated fusion pore states are preserved in membrane lawns and that fusion pore regulation appears to be an autonomously controlled process.
Collapse
Affiliation(s)
- Paula P Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Luciano Grácio
- CRACS & INESC-TEC - Centre for Research in Advanced Computing Systems & Institute for Systems and Computer Engineering, Technology and Science, Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Department of Biology, University of Ljubljana, Biotechnical Faculty, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Chemically Functionalized Water-Soluble Single-Walled Carbon Nanotubes Obstruct Vesicular/Plasmalemmal Recycling in Astrocytes Down-Stream of Calcium Ions. Cells 2020; 9:cells9071597. [PMID: 32630262 PMCID: PMC7408470 DOI: 10.3390/cells9071597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/24/2023] Open
Abstract
We used single-walled carbon nanotubes chemically functionalized with polyethylene glycol (SWCNT-PEG) to assess the effects of this nanomaterial on astrocytic endocytosis and exocytosis. We observed that the SWCNT-PEG do not affect the adenosine triphosphate (ATP)-evoked Ca2+ elevations in astrocytes but significantly reduce the Ca2+-dependent glutamate release. There was a significant decrease in the endocytic load of the recycling dye during constitutive and ATP-evoked recycling. Furthermore, SWCNT-PEG hampered ATP-evoked exocytotic release of the loaded recycling dye. Thus, by functionally obstructing evoked vesicular recycling, SWCNT-PEG reduced glutamate release from astrocytes via regulated exocytosis. These effects implicate SWCNT-PEG as a modulator of Ca2+-dependent exocytosis in astrocytes downstream of Ca2+, likely at the level of vesicle fusion with/pinching off the plasma membrane.
Collapse
|
4
|
Dey S, Gudipati S, Giuliano C, Zervos MJ, Monk JM, Szubin R, Jorgensen SCJ, Sakoulas G, Berti AD. Reduced Production of Bacterial Membrane Vesicles Predicts Mortality in ST45/USA600 Methicillin-Resistant Staphylococcus aureus Bacteremia. Antibiotics (Basel) 2019; 9:antibiotics9010002. [PMID: 31861446 PMCID: PMC7168145 DOI: 10.3390/antibiotics9010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Immune biomarkers can stratify mortality risk in staphylococcal bacteremia. Microbial biomarkers may provide more consistent signals during early infection. We demonstrate that in ST45/USA600 bacteremia, bacterial membrane vesicle production in vitro predicts clinical mortality (773 vs. 116 RFU, survivors vs. decedents, p < 0.0001). Using a threshold of 301 relative fluorescence units (RFU), the sensitivity and specificity of the membrane vesicles to predict mortality are 78% and 90%, respectively. This platform is facile, scalable and can be integrated into clinical microbiology lab workflows.
Collapse
Affiliation(s)
- Somrita Dey
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (S.D.); (C.G.)
| | - Smitha Gudipati
- Henry Ford Hospital, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (M.J.Z.)
| | - Christopher Giuliano
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (S.D.); (C.G.)
| | - Marcus J. Zervos
- Henry Ford Hospital, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (M.J.Z.)
| | - Jonathan M. Monk
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA; (J.M.M.); (R.S.)
| | - Richard Szubin
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA; (J.M.M.); (R.S.)
| | - Sarah C. J. Jorgensen
- Department of Pharmacy, Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada;
| | - George Sakoulas
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA;
- Sharp Memorial Hospital, San Diego, CA 92093, USA
| | - Andrew D. Berti
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (S.D.); (C.G.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University College of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-3565
| |
Collapse
|
5
|
Stenovec M, Lasič E, Božić M, Bobnar ST, Stout RF, Grubišić V, Parpura V, Zorec R. Ketamine Inhibits ATP-Evoked Exocytotic Release of Brain-Derived Neurotrophic Factor from Vesicles in Cultured Rat Astrocytes. Mol Neurobiol 2015; 53:6882-6896. [PMID: 26660497 DOI: 10.1007/s12035-015-9562-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
Abstract
In the brain, astrocytes signal to neighboring cells via regulated exocytotic release of gliosignaling molecules, such as brain-derived neurotrophic factor (BDNF). Recent studies uncovered a role of ketamine, an anesthetic and antidepressant, in the regulation of BDNF expression and in the disruption of astrocytic Ca2+ signaling, but it is unclear whether it affects astroglial BDNF release. We investigated whether ketamine affects ATP-evoked Ca2+ signaling and exocytotic release of BDNF at the single-vesicle level in cultured rat astrocytes. Cells were transfected with a plasmid encoding preproBDNF tagged with the pH-sensitive fluorescent protein superecliptic pHluorin, (BDNF-pHse) to load vesicles and measure the release of BDNF-pHse when the exocytotic fusion pore opens and alkalinizes the luminal pH. In addition, cell-attached membrane capacitance changes were recorded to monitor unitary vesicle interaction with the plasma membrane. Intracellular Ca2+ activity was monitored with Fluo-4 and confocal microscopy, which was also used to immunocytochemically characterize BDNF-pHse-laden vesicles. As revealed by double-fluorescent micrographs, BDNF-pHse localized to vesicles positive for the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins, vesicle-associated membrane protein 2 (VAMP2), VAMP3, and synaptotagmin IV. Ketamine treatment decreased the number of ATP-evoked BDNF-pHse fusion/secretion events (P < 0.05), the frequency of ATP-evoked transient (P < 0.001) and full-fusion exocytotic (P < 0.05) events, along with a reduction in the ATP-evoked increase in intracellular Ca2+ activity in astrocytes by ~70 % (P < 0.001). The results show that ketamine treatment suppresses ATP-triggered vesicle fusion and BDNF secretion by increasing the probability of a narrow fusion pore open state and/or by reducing astrocytic Ca2+ excitability.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Randy F Stout
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladimir Grubišić
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
| | - Robert Zorec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Stenovec M, Gonçalves PP, Zorec R. Peptide hormone release monitored from single vesicles in "membrane lawns" of differentiated male pituitary cells: SNAREs and fusion pore widening. Endocrinology 2013; 154:1235-46. [PMID: 23372020 DOI: 10.1210/en.2012-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study we used live-cell immunocytochemistry and confocal microscopy to study the release from a single vesicle in a simplified system called membrane lawns. The lawns were prepared by exposing differentiated pituitary prolactin (PRL)-secreting cells to a hypoosmotic shear stress. The density of the immunolabeled ternary soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes that bind complexin was approximately 10 times lower than the PRL-positive, lawn-resident vesicles; this indicates that some but not all vesicles are associated with ternary SNARE complexes. However, lawn-resident PRL vesicles colocalized relatively well with particular SNARE proteins: synaptobrevin 2 (35%), syntaxin 1 (22%), and 25-kDa synaptosome associated protein (6%). To study vesicle discharge, we prepared lawn-resident vesicles, derived from atrial natriuretic peptide tagged with emerald fluorescent protein (ANP.emd)-transfected cells, which label vesicles. These maintained the structural passage to the exterior because approximately 40% of ANP.emd-loaded vesicles were labeled by extracellular PRL antibodies. Cargo release from the lawn-resident vesicles, monitored by the decline in the ANP.emd fluorescence intensity, was similar to that in intact cells. It is likely that SNARE proteins are required for calcium-dependent release from these vesicles. This is because the expression of the dominant-negative SNARE peptide, which interferes with SNARE complex formation, reduced the number of PRL-positive spots per cell (PRL antibodies placed extracellularly) significantly, from 58 ± 9 to 4 ± 2. In dominant-negative SNARE-treated cells, the PRL-positive area was reduced from 0.259 ± 0.013 to 0.123 ± 0.014 μm(2), which is consistent with a hindered vesicle luminal access for extracellular PRL antibodies. These results indicate that vesicle discharge is regulated by SNARE-mediated fusion pore widening.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica Biomedical Center, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
7
|
Kreft M, Prebil M, Chowdhury HH, Grilc S, Jensen J, Zorec R. Analysis of confocal images using variable-width line profiles. PROTOPLASMA 2010; 246:73-80. [PMID: 20229327 DOI: 10.1007/s00709-010-0127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/19/2010] [Indexed: 05/28/2023]
Abstract
A line profile of fluorescent intensities in confocal images is frequently examined. We have developed the computer software tool to analyse the profiles of intensities of fluorescent probes in confocal images. The software averages neighbouring pixels, adjacent to the central line, without reducing the spatial resolution of the image. As an experimental model, we have used the skeletal muscle fibre isolated from the rat skeletal muscle extensor digitorum brevis. As a marker of myofibrils' structure, we have used phalloidin-rhodamine staining and the anti-TIM antibody to label mitochondria. We also tested the distribution of the protein kinase B/Akt. Since signalling is ordered in modules and large protein complexes appear to direct signalling to organelles and regulate specific physiological functions, a software tool to analyse such complexes in fluorescent confocal images is required. The software displays the image, and the user defines the line for analysis. The image is rotated by the angle of the line. The line profile is calculated by averaging one dimension of the cropped rotated image matrix. The spatial resolution in averaged line profile is not decreased compared with single-pixel line profile, which was confirmed by the discrete Fourier transform computed with a fast Fourier transform algorithm. We conclude that the custom software tool presented here is a useful tool to analyse line profiles of fluorescence intensities in confocal images.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|