1
|
Bernikova O, Durkina A, Gonotkov M, Minnebaeva E, Arteyeva N, Azarov J. Formation of a border ischemic zone depends on plasma potassium concentration. Can J Physiol Pharmacol 2024; 102:331-341. [PMID: 38118123 DOI: 10.1139/cjpp-2023-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Extracellular potassium concentration might modify electrophysiological properties in the border zone of ischemic myocardium. We evaluated the depolarization and repolarization characteristics across the ischemic-normal border under [K+] variation. Sixty-four-lead epicardial mapping was performed in 26 rats ([K+] 2.3-6.4 mM) in a model of acute ischemia/reperfusion. The animals with [K+] < 4.7 mM (low-normal potassium) had an ischemic zone with ST-segment elevation and activation delay, a border zone with ST-segment elevation and no activation delay, and a normal zone without electrophysiological abnormalities. The animals with [K+] >4.7 mM (normal-high potassium) had only the ischemic and normal zones and no transitional area. Activation-repolarization intervals and local conduction velocities were inversely associated with [K+] in linear regression analysis with adjustment for the zone of myocardium. The reperfusion extrasystolic burden (ESB) was greater in the low-normal as compared to normal-high potassium animals. Ventricular tachycardia/fibrillation incidence did not differ between the groups. In patch-clamp experiments, hypoxia shortened action potential duration at 5.4 mM but not at 1.3 mM of [K+]. IK(ATP) current was lower at 1.3 mM than at 5.4 mM of [K+]. We conclude that the border zone formation in low-normal [K+] was associated with attenuation of IK(ATP) response to hypoxia and increased reperfusion ESB.
Collapse
Affiliation(s)
- Olesya Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
- Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | - Aleksandra Durkina
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Minnebaeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
- Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Natalia Arteyeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jan Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
- Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
- Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| |
Collapse
|
2
|
Hull CM, Genge CE, Hobbs Y, Rayani K, Lin E, Gunawan M, Shafaattalab S, Tibbits GF, Claydon TW. Investigating the utility of adult zebrafish ex vivo whole hearts to pharmacologically screen hERG channel activator compounds. Am J Physiol Regul Integr Comp Physiol 2019; 317:R921-R931. [PMID: 31664867 DOI: 10.1152/ajpregu.00190.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.
Collapse
Affiliation(s)
- Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuki Hobbs
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Huo J, Guo X, Lu Q, Qiang H, Liu P, Bai L, Huang CLH, Zhang Y, Ma A. NS1643 enhances ionic currents in a G604S-WT hERG co-expression system associated with long QT syndrome 2. Clin Exp Pharmacol Physiol 2017; 44:1125-1133. [PMID: 28741726 DOI: 10.1111/1440-1681.12820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- JianHua Huo
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Xueyan Guo
- Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Qun Lu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Hua Qiang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Ping Liu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Ling Bai
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | | | - Yanmin Zhang
- Department of Pediatric Cardiology; Childrens Research Institute; affiliate children's hospital of Xi'an Jiaotong University; Xi'an Shaanxi China
| | - Aiqun Ma
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| |
Collapse
|
4
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Afzal MZ, Reiter M, Gastonguay C, McGivern JV, Guan X, Ge ZD, Mack DL, Childers MK, Ebert AD, Strande JL. Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy. J Cardiovasc Pharmacol Ther 2016; 21:549-562. [PMID: 26940570 DOI: 10.1177/1074248416636477] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/30/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. METHODS AND RESULTS Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide-cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. CONCLUSION Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy.
Collapse
Affiliation(s)
- Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Reiter
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Courtney Gastonguay
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jered V McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xuan Guan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Martin K Childers
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Meng J, Shi C, Li L, Du Y, Xu Y. Compound ICA-105574 prevents arrhythmias induced by cardiac delayed repolarization. Eur J Pharmacol 2013; 718:87-97. [PMID: 24041920 DOI: 10.1016/j.ejphar.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 01/14/2023]
Abstract
Impaired ventricular repolarization can lead to long QT syndrome (LQT), a proarrhythmic disease with high risk of developing lethal ventricular tachyarrhythmias. The compound ICA-105574 is a recently developed hERG activator and it enhances IKr current with very high potency by removing the channel inactivation. The present study was designed to investigate antiarrhythmic properties of ICA-105574. For comparison, the effects of another compound NS1643 was in-parallel assessed, which also acts primarily to attenuate channel inactivation with moderate potency. We found that both ICA-105574 and NS1643 concentration-dependently shortened action potential duration (APD) in ventricular myocytes, and QT/QTc intervals in isolated guinea-pig hearts. ICA-105574, but not NS1643, completely prevented ventricular arrhythmias in intact guinea-pig hearts caused by IKr and IKs inhibitors, although both ICA-105574 and NS1643 could reverse the drug-induced prolongation of APD in ventricular myocytes. Reversing prolongation of QT/QTc intervals and antagonizing the increases in transmural dispersion of repolarization and instability of the QT interval induced by IKr and IKs inhibitors contributed to antiarrhythmic effect of ICA-105574. Meanwhile, ICA-105574 at higher concentrations showed a potential proarrhythmic risk in normal hearts. Our results suggest that ICA-105574 has more efficient antiarrhythmic activity than NS1643. However, its potential proarrhythmic risk implies that benefits and risks should be seriously taken into consideration for further developing this type of hERG activators.
Collapse
Affiliation(s)
- Jing Meng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China; Department of Pharmaceutical Chemistry, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
7
|
Osadchii OE. Electrophysiological determinants of arrhythmic susceptibility upon endocardial and epicardial pacing in guinea-pig heart. Acta Physiol (Oxf) 2012; 205:494-506. [PMID: 22356273 DOI: 10.1111/j.1748-1716.2012.02428.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/23/2011] [Accepted: 02/14/2012] [Indexed: 12/01/2022]
Abstract
AIM Endocardial pacing instituted to treat symptomatic bradycardia may nevertheless promote tachyarrhythmia in some pacemaker-implanted patients. We sought to determine the contributing electrophysiological mechanisms. METHODS Left ventricular (LV) monophasic action potential duration (APD(90)) and effective refractory periods were determined in perfused guinea-pig hearts along with volume-conducted ECG recordings during epicardial and endocardial stimulations. RESULTS Consistent with electrotonic modulation of repolarization, APD(90) at a given (either epicardial or endocardial) recording site tended to be longer while pacing from the ipsilateral LV site as compared to stimulations applied at the opposite side of ventricular wall. As a result, the intrinsic transmural repolarization gradient was amplified during endocardial pacing while being significantly reduced upon epicardial stimulations. The maximum slope of APD(90) restitution was greater upon endocardial than epicardial pacing. The excitability was found to recur at earlier repolarization time point at endocardium than epicardium, thereby contributing to increased endocardial critical intervals for re-excitation. Premature extrasystolic beats could have been elicited at shorter coupling stimulation intervals and propagated with greater transmural conduction delay upon endocardial than epicardial stimulations. Endocardial site exhibited lower ventricular fibrillation thresholds and greater inducibility of tachyarrhythmia upon extrasystolic stimulations as compared to epicardium. CONCLUSION Arrhythmic susceptibility in guinea-pig heart is greater during endocardial than epicardial pacing because of greater transmural APD(90) dispersion, steeper electrical restitution slopes, greater critical intervals for LV re-excitation and slower transmural conduction of the earliest premature ectopic beats. Further studies are warranted to determine whether these effects may contribute to proarrhythmia in paced human patients.
Collapse
Affiliation(s)
- O E Osadchii
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
8
|
Abstract
Transgenic rabbits expressing pore mutants of K(V)7.1 display a long QT syndrome 1 (LQT1) phenotype. Recently, NS1643 has been described to increase I(Kr).We hypothesized that NS1643 would shorten the action potential duration (APD(90)) in LQT1 rabbits. Transgenic LQT1 rabbits were compared with littermate control (LMC) rabbits. In vivo electrocardiogram studies in sedated animals were performed at baseline and during 45 minutes of intravenous infusion of NS1643 or vehicle in a crossover design. Ex vivo monophasic action potentials were recorded from Langendorff-perfused hearts at baseline and during 45-minute perfusion with NS1643. Left ventricular refractory periods were assessed before and after NS1643 infusion. Genotype differences in APD accommodation were also addressed. In vivo NS1643 shortened the QTc significantly in LQT1 compared with vehicle. In Langendorff experiments, NS1643 significantly shortened the APD(90) in LQT1 and LMC [32.0 ± 4.3 milliseconds (ms); 21.0 ± 5.0 ms] and left ventricular refractory periods (23.7 ± 8.3; 22.6 ± 9.9 ms). NS1643 significantly decreased dp/dt (LQT1: 49% ± 3%; LMC: 63% ± 4%) and increased the incidence of arrhythmia. The time course of APD adaptation was impaired in LQT1 rabbits and unaffected by I(Kr) augmentation. In conclusion, K(V)11.1 channel activation shortens the cardiac APD in a rabbit model of inherited LQT1, but it comes with the risk of excessive shortening of APD.
Collapse
|
9
|
Schuster AM, Glassmeier G, Bauer CK. Strong activation of ether-à-go-go-related gene 1 K+ channel isoforms by NS1643 in human embryonic kidney 293 and Chinese hamster ovary cells. Mol Pharmacol 2011; 80:930-42. [PMID: 21856740 DOI: 10.1124/mol.111.071621] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Two different mechanisms leading to increased current have been described for the small-molecule human ether-à-go-go-related gene (herg) activator NS1643 [1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea]. On herg1a channels expressed in Xenopus laevis oocytes, it mainly acts via attenuation of inactivation and for rat (r) erg1b channels expressed in human embryonic kidney (HEK)-293 cells, it strongly shifts the activation curve to the left. We now investigated the NS1643 effects on erg1b channels in more detail and performed comparative experiments with rat and human erg1a in different expression systems. Significant differences were observed between expression systems, but not between the rat and human isoform. In HEK-293 or Chinese hamster ovary (CHO) cells, activation of rat erg1b channels occurred in a dose-dependent manner with a maximum current increase of 300% obtained with 10 μM NS1643. In contrast, the NS1643-induced strong leftward shift in the voltage dependence of activation further increased with higher drug concentration, needed more time to develop, and exhibited use dependence. Coexpression of KCNE1 or KCNE2 did not attenuate this NS1643 effect on erg1 channel activation and did thus not mimic the lower drug potency on this parameter observed in oocytes. NS1643 (10 μM) slowed erg1b channel deactivation and recovery from inactivation without significant changes in activation and inactivation kinetics. With the exception of accelerated activation, NS1643 affected erg1a channels similarly, but the effect was less pronounced than in erg1b or erg1a/1b channels. It is noteworthy that rerg1b and herg1a inactivation estimated from fully activated current voltage relationships were unaltered in the continued presence of 10 μM NS1643 in the mammalian expression systems, indicating qualitative differences from NS1643 effects in X. laevis oocytes.
Collapse
Affiliation(s)
- Anna M Schuster
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | | |
Collapse
|
10
|
Long M, Yang L, Huang G, Liu L, Dong Y, Du Z, Tang A, Hu C, Gu R, Gao X, Tang L. Thrombin and its receptor enhance ST-segment elevation in acute myocardial infarction by activating the KATP channel. Mol Med 2010; 16:322-32. [PMID: 20386871 DOI: 10.2119/molmed.2010.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/08/2010] [Indexed: 11/06/2022] Open
Abstract
ST-segment elevation is the major clinical criterion for committing patients with chest pain to have emergent coronary revascularizations; however, the mechanism responsible for ST-segment elevation is unknown. In a guinea pig model of ST-segment elevation acute myocardial infarction (AMI), local application of hirudin, a thrombin antagonist, significantly decreased AMI-induced ST-segment elevation in a dose-dependent manner. Hirudin-induced (5 antithrombin units [ATU]) decrease in ST elevation was reversed by 250 nmol/L thrombin receptor activator peptide (TRAP). TRAP (250 nmol/L [100 microL]) significantly induced ST-segment elevation in hearts without AMI. The TRAP effect was blocked by 4 mg/kg glibenclamide and 4 mg/kg HMR1098 and partially blocked by 3 mg/kg 5HD. Pinacidil (0.45 mg/kg) simulated the effect of TRAP (250 nmol/L [100 microL]) on hearts without AMI. Moreover, single-channel recordings showed that TRAP induced ATP-sensitive K+ channel (KATP channel) activity, and this effect was blocked by HMR1098 but not 5HD. Finally, TRAP significantly shortened the monophasic action potential (MAP) at 90% repolarization (MAP90) and epicardial MAP (EpiMAP) duration. These effects of TRAP were completely reversed by HMR1098 and partially reversed by 5HD. Thrombin and its receptor activation enhanced ST-segment elevation in an AMI model by activating the sarcolemmal KATP channel.
Collapse
Affiliation(s)
- Ming Long
- Division of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hothi SS, Thomas G, Killeen MJ, Grace AA, Huang CLH. Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome. Pflugers Arch 2009; 458:819-35. [PMID: 19430811 PMCID: PMC2719739 DOI: 10.1007/s00424-009-0671-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 11/23/2022]
Abstract
KCNE1 encodes the β-subunit of the slow component of the delayed rectifier K+ current. The Jervell and Lange-Nielsen syndrome is characterized by sensorineural deafness, prolonged QT intervals, and ventricular arrhythmogenicity. Loss-of-function mutations in KCNE1 are implicated in the JLN2 subtype. We recorded left ventricular epicardial and endocardial monophasic action potentials (MAPs) in intact, Langendorff-perfused mouse hearts. KCNE1−/− but not wild-type (WT) hearts showed not only triggered activity and spontaneous ventricular tachycardia (VT), but also VT provoked by programmed electrical stimulation. The presence or absence of VT was related to the following set of criteria for re-entrant excitation for the first time in KCNE1−/− hearts: Quantification of APD90, the MAP duration at 90% repolarization, demonstrated alterations in (1) the difference, ∆APD90, between endocardial and epicardial APD90 and (2) critical intervals for local re-excitation, given by differences between APD90 and ventricular effective refractory period, reflecting spatial re-entrant substrate. Temporal re-entrant substrate was reflected in (3) increased APD90 alternans, through a range of pacing rates, and (4) steeper epicardial and endocardial APD90 restitution curves determined with a dynamic pacing protocol. (5) Nicorandil (20 µM) rescued spontaneous and provoked arrhythmogenic phenomena in KCNE1−/− hearts. WTs remained nonarrhythmogenic. Nicorandil correspondingly restored parameters representing re-entrant criteria in KCNE1−/− hearts toward values found in untreated WTs. It shifted such values in WT hearts in similar directions. Together, these findings directly implicate triggered electrical activity and spatial and temporal re-entrant mechanisms in the arrhythmogenesis observed in KCNE1−/− hearts.
Collapse
Affiliation(s)
- Sandeep S Hothi
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
12
|
Su Z, Limberis J, Souers A, Kym P, Mikhail A, Houseman K, Diaz G, Liu X, Martin RL, Cox BF, Gintant GA. Electrophysiologic characterization of a novel hERG channel activator. Biochem Pharmacol 2009; 77:1383-90. [DOI: 10.1016/j.bcp.2009.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|
13
|
Anti-arrhythmic effects of cyclopiazonic acid in Langendorff-perfused murine hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:281-8. [PMID: 19351518 DOI: 10.1016/j.pbiomolbio.2009.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the effects of reducing sarcoplasmic reticular (SR) Ca(2+) stores using the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA) in Langendorff-perfused mouse hearts exposed to different pro-arrhythmic agents all known to produce Ca(2+)-mediated arrhythmogenesis. CPA (100 and 150 nM) produced progressive (beginning over approximately 1 min) and significant (P<0.0001) reductions in peak amplitudes of Ca(2+) transients evoked by regular stimulation in isolated Fluo-3 loaded myocytes from F/F(0)=3.2+/-0.16 (n=12 cells) to 1.62+/-0.012 (n=6 cells) and 1.53+/-0.06 (n=12 cells), respectively, consistent with previous reports describing reductions of store Ca(2+) in other cell systems. The corresponding effects of CPA were then examined in intact hearts exposed to isoproterenol (100 nM), elevated extracellular [Ca(2+)] (5mM) and caffeine (1mM). All three agents produced ventricular tachycardia either when added alone or simultaneously with CPA during programmed electrical stimulation. However, arrhythmogenicity was not observed when such agents were added approximately 10 min after introduction of CPA. CPA thus antagonized this Ca(2+)-mediated arrhythmogenesis but only under circumstances of SR Ca(2+) depletion. These alterations in arrhythmogenic tendency took place despite an absence of alterations in electrogram and monophasic action potential characteristics. This was in sharp contrast to previous observations in murine, DeltaKPQ-Scn5a (LQT3) and KCNE1(-/-) (LQT5), systems where re-entry has been implicated in arrhythmogenesis.
Collapse
|
14
|
Ghais NS, Zhang Y, Grace AA, Huang CLH. Arrhythmogenic actions of the Ca2+ channel agonist FPL-64716 in Langendorff-perfused murine hearts. Exp Physiol 2008; 94:240-54. [PMID: 18978037 PMCID: PMC2705814 DOI: 10.1113/expphysiol.2008.044669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The experiments explored the extent to which alterations in L-type Ca(2+) channel-mediated Ca(2+) entry triggers Ca(2+)-mediated arrhythmogenesis in Langendorff-perfused murine hearts through use of the specific L-type Ca(2+) channel modulator FPL-64716 (FPL). Introduction of FPL (1 microm) resulted in a gradual development (>10 min) of diastolic electrical events and alternans in spontaneously beating hearts from which monophasic action potentials were recorded. In regularly paced hearts, they additionally led to non-sustained and sustained ventricular tachycardia (nsVT and sVT). Programmed electrical stimulation (PES) resulted in nsVT and sVT after 5-10 and >10 min perfusion, respectively. Pretreatments with nifedipine, diltiazem and cyclopiazonic acid abolished arrhythmogenic tendency induced by subsequent introduction of FPL, consistent with its dependence upon both extracellular Ca(2+) entry and the degree of filling of the sarcoplasmic reticular Ca(2+) store. Values for action potential duration at 90% repolarization when any of these agents were applied to FPL-treated hearts became indistinguishable from those shown by untreated control hearts, in contrast to earlier reports of their altering in long QT syndrome type 3 and hypokalaemic murine models for re-entrant arrhythmogenesis. These arrhythmic effects instead correlated with alterations in Ca(2+) homeostasis at the single-cell level found in investigations of the effects of both FPL and the same agents in regularly stimulated fluo-3 loaded myocytes. These findings are compatible with a prolonged extracellular Ca(2+) entry that potentially results in an intracellular Ca(2+) overload and produces the cardiac arrhythmogenecity following addition of FPL.
Collapse
Affiliation(s)
- Nina S Ghais
- Physiological Laboratory, University of Cambridge, UK
| | | | | | | |
Collapse
|
15
|
Dispersions of repolarization and ventricular arrhythmogenesis: Lessons from animal models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:219-29. [DOI: 10.1016/j.pbiomolbio.2008.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Hothi SS, Booth SW, Sabir IN, Killeen MJ, Simpson F, Zhang Y, Grace AA, Huang CLH. Arrhythmogenic substrate and its modification by nicorandil in a murine model of long QT type 3 syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:267-80. [DOI: 10.1016/j.pbiomolbio.2009.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|