1
|
Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma JM, Zhang H, Padmanabhan P, Moret C, Gulyás B, Blaser MJ, Auwerx J, Holmes E, Nicholson J, Wahli W, Pettersson S. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med 2020; 11:11/502/eaan5662. [PMID: 31341063 DOI: 10.1126/scitranslmed.aan5662] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/30/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
The functional interactions between the gut microbiota and the host are important for host physiology, homeostasis, and sustained health. We compared the skeletal muscle of germ-free mice that lacked a gut microbiota to the skeletal muscle of pathogen-free mice that had a gut microbiota. Compared to pathogen-free mouse skeletal muscle, germ-free mouse skeletal muscle showed atrophy, decreased expression of insulin-like growth factor 1, and reduced transcription of genes associated with skeletal muscle growth and mitochondrial function. Nuclear magnetic resonance spectrometry analysis of skeletal muscle, liver, and serum from germ-free mice revealed multiple changes in the amounts of amino acids, including glycine and alanine, compared to pathogen-free mice. Germ-free mice also showed reduced serum choline, the precursor of acetylcholine, the key neurotransmitter that signals between muscle and nerve at neuromuscular junctions. Reduced expression of genes encoding Rapsyn and Lrp4, two proteins important for neuromuscular junction assembly and function, was also observed in skeletal muscle from germ-free mice compared to pathogen-free mice. Transplanting the gut microbiota from pathogen-free mice into germ-free mice resulted in an increase in skeletal muscle mass, a reduction in muscle atrophy markers, improved oxidative metabolic capacity of the muscle, and elevated expression of the neuromuscular junction assembly genes Rapsyn and Lrp4 Treating germ-free mice with short-chain fatty acids (microbial metabolites) partly reversed skeletal muscle impairments. Our results suggest a role for the gut microbiota in regulating skeletal muscle mass and function in mice.
Collapse
Affiliation(s)
- Shawon Lahiri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Hyejin Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Isabel Garcia-Perez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Sir Alexander Fleming Building, Imperial College London, London SW72AZ, UK
| | - Musarrat Maisha Reza
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Katherine A Martin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Parag Kundu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joel Selkrig
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joram M Posma
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Sir Alexander Fleming Building, Imperial College London, London SW72AZ, UK
| | - Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Catherine Moret
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Balázs Gulyás
- Department of Neuroscience and Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin J Blaser
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.,Medical Service, VA New York Harbor Healthcare System, New York, NY 10010, USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Sir Alexander Fleming Building, Imperial College London, London SW72AZ, UK
| | - Jeremy Nicholson
- Australian National Phenome Center, Murdoch University, WA 6150, Australia
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,INRA ToxAlim Integrative Toxicology and Metabolism UMR1331, Chemin de Tournefeuille, Toulouse Cedex, France
| | - Sven Pettersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Egawa T, Ohno Y, Goto A, Yokoyama S, Hayashi T, Goto K. AMPK Mediates Muscle Mass Change But Not the Transition of Myosin Heavy Chain Isoforms during Unloading and Reloading of Skeletal Muscles in Mice. Int J Mol Sci 2018; 19:ijms19102954. [PMID: 30262782 PMCID: PMC6212939 DOI: 10.3390/ijms19102954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022] Open
Abstract
5′AMP-activated protein kinase (AMPK) plays an important role in the regulation of skeletal muscle mass and fiber-type distribution. However, it is unclear whether AMPK is involved in muscle mass change or transition of myosin heavy chain (MyHC) isoforms in response to unloading or increased loading. Here, we checked whether AMPK controls muscle mass change and transition of MyHC isoforms during unloading and reloading using mice expressing a skeletal-muscle-specific dominant-negative AMPKα1 (AMPK-DN). Fourteen days of hindlimb unloading reduced the soleus muscle weight in wild-type and AMPK-DN mice, but reduction in the muscle mass was partly attenuated in AMPK-DN mice. There was no difference in the regrown muscle weight between the mice after 7 days of reloading, and there was concomitantly reduced AMPKα2 activity, however it was higher in AMPK-DN mice after 14 days reloading. No difference was observed between the mice in relation to the levels of slow-type MyHC I, fast-type MyHC IIa/x, and MyHC IIb isoforms following unloading and reloading. The levels of 72-kDa heat-shock protein, which preserves muscle mass, increased in AMPK-DN-mice. Our results indicate that AMPK mediates the progress of atrophy during unloading and regrowth of atrophied muscles following reloading, but it does not influence the transition of MyHC isoforms.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan.
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan.
| | - Ayumi Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan.
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Shingo Yokoyama
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan.
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan.
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan.
| |
Collapse
|
3
|
Chandrashekar P, Manickam R, Ge X, Bonala S, McFarlane C, Sharma M, Wahli W, Kambadur R. Inactivation of PPARβ/δ adversely affects satellite cells and reduces postnatal myogenesis. Am J Physiol Endocrinol Metab 2015; 309:E122-31. [PMID: 25921579 DOI: 10.1152/ajpendo.00586.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ubiquitously expressed gene with higher levels observed in skeletal muscle. Recently, our laboratory showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that PPARβ/δ modulates myostatin activity to induce myogenesis in skeletal muscle. In the present study, we show that PPARβ/δ-null mice display reduced body weight, skeletal muscle weight, and myofiber atrophy during postnatal development. In addition, a significant reduction in satellite cell number was observed in PPARβ/δ-null mice, suggesting a role for PPARβ/δ in muscle regeneration. To investigate this, tibialis anterior muscles were injured with notexin, and muscle regeneration was monitored on days 3, 5, 7, and 28 postinjury. Immunohistochemical analysis revealed an increased inflammatory response and reduced myoblast proliferation in regenerating muscle from PPARβ/δ-null mice. Histological analysis confirmed that the regenerated muscle fibers of PPARβ/δ-null mice maintained an atrophy phenotype with reduced numbers of centrally placed nuclei. Even though satellite cell numbers were reduced before injury, satellite cell self-renewal was found to be unaffected in PPARβ/δ-null mice after regeneration. Previously, our laboratory had showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that inactivation of PPARβ/δ increases myostatin signaling and inhibits myogenesis. Our results here indeed confirm that inactivation of myostatin signaling rescues the atrophy phenotype and improves muscle fiber cross-sectional area in both uninjured and regenerated tibialis anterior muscle from PPARβ/δ-null mice. Taken together, these data suggest that absence of PPARβ/δ leads to loss of satellite cells, impaired skeletal muscle regeneration, and postnatal myogenesis. Furthermore, our results also demonstrate that functional antagonism of myostatin has utility in rescuing these effects.
Collapse
Affiliation(s)
| | - Ravikumar Manickam
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xiaojia Ge
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore
| | - Sabeera Bonala
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore
| | - Craig McFarlane
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore
| | - Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
| | - Walter Wahli
- LKC School of Medicine, Nanyang Technological University, Singapore
| | - Ravi Kambadur
- School of Biological Sciences, Nanyang Technological University, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore;
| |
Collapse
|
4
|
Wuebbles RD, Sarathy A, Kornegay JN, Burkin DJ. Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy. Dis Model Mech 2013; 6:1175-84. [PMID: 23846963 PMCID: PMC3759337 DOI: 10.1242/dmm.012211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.
Collapse
Affiliation(s)
- Ryan D Wuebbles
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
5
|
Ge X, Vajjala A, McFarlane C, Wahli W, Sharma M, Kambadur R. Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. Am J Physiol Endocrinol Metab 2012; 303:E90-102. [PMID: 22535746 DOI: 10.1152/ajpendo.00113.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fibrosis
- Gene Expression Regulation
- Macrophages/immunology
- Male
- Mice
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/immunology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Myoblasts, Skeletal/enzymology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Myostatin/genetics
- Myostatin/metabolism
- Necrosis
- Neutrophil Infiltration
- RNA, Messenger/metabolism
- Satellite Cells, Skeletal Muscle/enzymology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Signal Transduction
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Xiaojia Ge
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
6
|
Castorena CM, Mackrell JG, Bogan JS, Kanzaki M, Cartee GD. Clustering of GLUT4, TUG, and RUVBL2 protein levels correlate with myosin heavy chain isoform pattern in skeletal muscles, but AS160 and TBC1D1 levels do not. J Appl Physiol (1985) 2011; 111:1106-17. [PMID: 21799128 DOI: 10.1152/japplphysiol.00631.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue. To further elucidate this heterogeneity, we probed relationships between myosin heavy chain (MHC) isoform composition and abundance of GLUT4 and four other proteins that are established or putative GLUT4 regulators [Akt substrate of 160 kDa (AS160), Tre-2/Bub2/Cdc 16-domain member 1 (TBC1D1), Tethering protein containing an UBX-domain for GLUT4 (TUG), and RuvB-like protein two (RUVBL2)] in 12 skeletal muscles or muscle regions from Wistar rats [adductor longus, extensor digitorum longus, epitrochlearis, gastrocnemius (mixed, red, and white), plantaris, soleus, tibialis anterior (red and white), tensor fasciae latae, and white vastus lateralis]. Key results were 1) significant differences found among the muscles (range of muscle expression values) for GLUT4 (2.5-fold), TUG (1.7-fold), RUVBL2 (2.0-fold), and TBC1D1 (2.7-fold), but not AS160; 2) significant positive correlations for pairs of proteins: GLUT4 vs. TUG (R = 0.699), GLUT4 vs. RUVBL2 (R = 0.613), TUG vs. RUVBL2 (R = 0.564), AS160 vs. TBC1D1 (R = 0.293), and AS160 vs. TUG (R = 0.246); 3) significant positive correlations for %MHC-I: GLUT4 (R = 0.460), TUG (R = 0.538), and RUVBL2 (R = 0.511); 4) significant positive correlations for %MHC-IIa: GLUT4 (R = 0.293) and RUVBL2 (R = 0.204); 5) significant negative correlations for %MHC-IIb vs. GLUT4 (R = -0.642), TUG (R = -0.626), and RUVBL2 (R = -0.692); and 6) neither AS160 nor TBC1D1 significantly correlated with MHC isoforms. In 12 rat muscles, GLUT4 abundance tracked with TUG and RUVBL2 and correlated with MHC isoform expression, but was unrelated to AS160 or TBC1D1. Our working hypothesis is that some of the mechanisms that regulate GLUT4 abundance in rat skeletal muscle also influence TUG and RUVBL2 abundance.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, Univ. of Michigan, School of Kinesiology, Ann Arbor, MI 48109-2214, USA
| | | | | | | | | |
Collapse
|
7
|
Carraro U. Special gears for full-time engines: association of dystrophin-glycoprotein complex and focal adhesion complex with myosin heavy chain isoforms in rat skeletal muscle. Acta Physiol (Oxf) 2009; 195:405. [PMID: 19291146 DOI: 10.1111/j.1748-1716.2009.01959_2.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|