1
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhang R, Yang A, Zhang L, He L, Gu X, Yu C, Lu Z, Wang C, Zhou F, Li F, Ji L, Xing J, Guo H. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism. Acta Physiol (Oxf) 2023; 239:e14018. [PMID: 37401731 DOI: 10.1111/apha.14018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
AIM Under hypobaric hypoxia (HH), the heart triggers various defense mechanisms including metabolic remodeling against lack of oxygen. Mitofusin 2 (MFN2), located at the mitochondrial outer membrane, is closely involved in the regulation of mitochondrial fusion and cell metabolism. To date, however, the role of MFN2 in cardiac response to HH has not been explored. METHODS Loss- and gain-of-function approaches were used to investigate the role of MFN2 in cardiac response to HH. In vitro, the function of MFN2 in the contraction of primary neonatal rat cardiomyocytes under hypoxia was examined. Non-targeted metabolomics and mitochondrial respiration analyses, as well as functional experiments were performed to explore underlying molecular mechanisms. RESULTS Our data demonstrated that, following 4 weeks of HH, cardiac-specific MFN2 knockout (MFN2 cKO) mice exhibited significantly better cardiac function than control mice. Moreover, restoring the expression of MFN2 clearly inhibited the cardiac response to HH in MFN2 cKO mice. Importantly, MFN2 knockout significantly improved cardiac metabolic reprogramming during HH, resulting in reduced capacity for fatty acid oxidation (FAO) and oxidative phosphorylation, and increased glycolysis and ATP production. In vitro data showed that down-regulation of MFN2 promoted cardiomyocyte contractility under hypoxia. Interestingly, increased FAO through palmitate treatment decreased contractility of cardiomyocyte with MFN2 knockdown under hypoxia. Furthermore, treatment with mdivi-1, an inhibitor of mitochondrial fission, disrupted HH-induced metabolic reprogramming and subsequently promoted cardiac dysfunction in MFN2-knockout hearts. CONCLUSION Our findings provide the first evidence that down-regulation of MFN2 preserves cardiac function in chronic HH by promoting cardiac metabolic reprogramming.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, China
| | - Ailin Yang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Xiaoming Gu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Caiyong Yu
- Military Medical Innovation Center, Air Force Medical University, Xi'an, China
| | - Zhenxing Lu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Chuang Wang
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Feng Zhou
- Department of General Surgery, The 71st Group Army Hospital of the People's Liberation Army, Xuzhou, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lele Ji
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
- Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Haitao Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Nox2 Upregulation and p38α MAPK Activation in Right Ventricular Hypertrophy of Rats Exposed to Long-Term Chronic Intermittent Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21228576. [PMID: 33202984 PMCID: PMC7698046 DOI: 10.3390/ijms21228576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.
Collapse
|
4
|
Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21176421. [PMID: 32899304 PMCID: PMC7503689 DOI: 10.3390/ijms21176421] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.
Collapse
|
5
|
Hu HL, Kang Y, Zeng Y, Zhang M, Liao Q, Rong MQ, Zhang Q, Lai R. Region-resolved proteomics profiling of monkey heart. J Cell Physiol 2019; 234:13720-13734. [PMID: 30644093 PMCID: PMC7166496 DOI: 10.1002/jcp.28052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Nonhuman primates (NHPs) play an indispensable role in biomedical research because of their similarities in genetics, physiological, and neurological function to humans. Proteomics profiling of monkey heart could reveal significant cardiac biomarkers and help us to gain a better understanding of the pathogenesis of heart disease. However, the proteomic study of monkey heart is relatively lacking. Here, we performed the proteomics profiling of the normal monkey heart by measuring three major anatomical regions (vessels, valves, and chambers) based on iTRAQ‐coupled LC‐MS/MS analysis. Over 3,200 proteins were identified and quantified from three heart tissue samples. Furthermore, multiple bioinformatics analyses such as gene ontology analysis, protein–protein interaction analysis, and gene‐diseases association were used to investigate biological network of those proteins from each area. More than 60 genes in three heart regions are implicated with heart diseases such as hypertrophic cardiomyopathy, heart failure, and myocardial infarction. These genes associated with heart disease are mainly enriched in citrate cycle, amino acid degradation, and glycolysis pathway. At the anatomical level, the revelation of molecular characteristics of the healthy monkey heart would be an important starting point to investigate heart disease. As a unique resource, this study can serve as a reference map for future in‐depth research on cardiac disease‐related NHP model and novel biomarkers of cardiac injury.
Collapse
Affiliation(s)
- Hao-Liang Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Kang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Qiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qin Zhang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| |
Collapse
|
6
|
Yan X, Huang Y, Wu J. Identify Cross Talk Between Circadian Rhythm and Coronary Heart Disease by Multiple Correlation Analysis. J Comput Biol 2018; 25:1312-1327. [PMID: 30234379 DOI: 10.1089/cmb.2017.0254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disorder in circadian rhythm has been revealed as a risk factor for coronary heart disease. Several studies in molecular biology established a gene interaction network using coronary heart susceptibility genes and the circadian rhythm pathway. However, cross talk between genes was mostly discovered in single gene pairs. There might be combination sets of genes intergraded as a unit to regulate the network. To resolve multiple variables in coronary heart susceptibility genes controlling circadian rhythm pathways, a multiple correlation analysis was applied to the transcriptome. Nine genes, including CUGBP, Elav-like family member (CELF); sodium leak channel, nonselective (NALCN); protein phosphatase 2 regulatory subunit B gamma (PPP2R2C); tubulin alpha 1c (TUBA1C); microtubule-associated protein 4 (MAP4); cofilin 1 (CFL1); myosin heavy chain 7 (MYH7); QKI, KH domain containing RNA binding (QKI); and maternal embryonic leucine zipper kinase (MELK), from coronary heart susceptibility were identified to predict the outcome of a linear combination of circadian rhythm pathway genes with R factor more than 0.7. G protein subunit alpha o1 (GNAO1), protein kinase C gamma (PRKCG), RBX, and G protein subunit beta 1 (GNB1) in the circadian rhythm pathway are characterized as combination variables to coexpress with coronary heart susceptibility genes.
Collapse
Affiliation(s)
- Xiaoping Yan
- 1 Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, China
| | - Yu Huang
- 1 Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, China
| | - Jiabin Wu
- 2 Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University , Fuzhou, China
| |
Collapse
|
7
|
Zeng C, Liang B, Jiang R, Shi Y, Du Y. Protein kinase C isozyme expression in right ventricular hypertrophy induced by pulmonary hypertension in chronically hypoxic rats. Mol Med Rep 2017; 16:3833-3840. [PMID: 28765942 PMCID: PMC5647097 DOI: 10.3892/mmr.2017.7098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/06/2017] [Indexed: 11/24/2022] Open
Abstract
In chronic hypoxia, pulmonary hypertension (PH) induces right ventricular hypertrophy (RVH). Evidence indicates that protein kinase C (PKC) serves a crucial role in hypoxia-induced RVH. The present study investigated PKC isoform-specific expression and its involvement in RVH. Rats were exposed to normobaric hypoxia for a number of days to induce PH. PKC isoform-specific membrane translocation and protein expression in the myocardium were evaluated by western blotting and immunostaining. A total of six isoforms of conventional PKC (cPKC; α, βI and βII) and of novel PKC (nPKC; δ, ε and η), were detected in the rat myocardium. Hypoxic exposure (1–21 days) induced PH with RVH and vascular remodeling. nPKCδ membrane translocation at 3–7 days and cPKCβI expression at 1–21 days in the RV following hypoxic exposure were significantly decreased as compared with the normoxia control group. Membrane translocation of cPKCβII at 14–21 days and of nPKCη at 7–21 days in the left ventricle following hypoxic exposure was significantly increased when compared with the control. The results of the present study suggested that the alterations in membrane translocation, and nPKCδ and cPKCβI expression, are associated with RVH following PH, and the upregulation of cPKCβII membrane translocation is involved in left-sided heart failure.
Collapse
Affiliation(s)
- Chao Zeng
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Jiang
- Department of Respiratory Medicine, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| | - Yiwei Shi
- Department of Respiratory Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongcheng Du
- Department of Respiratory Medicine, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
8
|
Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L811-L831. [PMID: 27591245 PMCID: PMC5130539 DOI: 10.1152/ajplung.00302.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition marked by a combination of constriction and remodeling within the pulmonary vasculature. It remains a disease without a cure, as current treatments were developed with a focus on vasodilatory properties but do not reverse the remodeling component. Numerous recent advances have been made in the understanding of cellular processes that drive pathologic remodeling in each layer of the vessel wall as well as the accompanying maladaptive changes in the right ventricle. In particular, the past few years have yielded much improved insight into the pathways that contribute to altered metabolism, mitochondrial function, and reactive oxygen species signaling and how these pathways promote the proproliferative, promigratory, and antiapoptotic phenotype of the vasculature during PH. Additionally, there have been significant advances in numerous other pathways linked to PH pathogenesis, such as sex hormones and perivascular inflammation. Novel insights into cellular pathology have suggested new avenues for the development of both biomarkers and therapies that will hopefully bring us closer to the elusive goal: a therapy leading to reversal of disease.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Meghan Bernier
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
9
|
Li J, Gao H, Huang J, Wang P, Huang Y, Luo W, Zhang X, Shen P, You J, Cai S, Li Z, Liu P. PKCζ interacts with STAT3 and promotes its activation in cardiomyocyte hypertrophy. J Pharmacol Sci 2016; 132:15-23. [DOI: 10.1016/j.jphs.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/24/2023] Open
|
10
|
HOLZEROVÁ K, HLAVÁČKOVÁ M, ŽURMANOVÁ J, BORCHERT G, NECKÁŘ J, KOLÁŘ F, NOVÁK F, NOVÁKOVÁ O. Involvement of PKCε in Cardioprotection Induced by Adaptation to Chronic Continuous Hypoxia. Physiol Res 2015; 64:191-201. [DOI: 10.33549/physiolres.932860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Continuous normobaric hypoxia (CNH) renders the heart more tolerant to acute ischemia/reperfusion injury. Protein kinase C (PKC) is an important component of the protective signaling pathway, but the contribution of individual PKC isoforms under different hypoxic conditions is poorly understood. The aim of this study was to analyze the expression of PKCε after the adaptation to CNH and to clarify its role in increased cardiac ischemic tolerance with the use of PKCε inhibitory peptide KP-1633. Adult male Wistar rats were exposed to CNH (10 % O2, 3 weeks) or kept under normoxic conditions. The protein level of PKCε and its phosphorylated form was analyzed by Western blot in homogenate, cytosolic and particulate fractions; the expression of PKCε mRNA was measured by RT-PCR. The effect of KP-1633 on cell viability and lactate dehydrogenase (LDH) release was analyzed after 25-min metabolic inhibition followed by 30-min re-energization in freshly isolated left ventricular myocytes. Adaptation to CNH increased myocardial PKCε at protein and mRNA levels. The application of KP-1633 blunted the hypoxia-induced salutary effects on cell viability and LDH release, while control peptide KP-1723 had no effect. This study indicates that PKCε is involved in the cardioprotective mechanism induced by CNH.
Collapse
Affiliation(s)
| | - M. HLAVÁČKOVÁ
- Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
11
|
Chichger H, Vang A, O'Connell KA, Zhang P, Mende U, Harrington EO, Choudhary G. PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L827-36. [PMID: 25659900 DOI: 10.1152/ajplung.00184.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 01/26/2023] Open
Abstract
Pulmonary hypertension (PH) eventually leads to right ventricular (RV) fibrosis and dysfunction that is associated with increased morbidity and mortality. Although angiotensin II plays an important role in RV remodeling associated with hypoxic PH, the molecular mechanisms underlying RV fibrosis in PH largely remain unresolved. We hypothesized that PKC-p38 signaling is involved in RV collagen accumulation in PH and in response to angiotensin II stimulation. Adult male Sprague-Dawley rats were exposed to 3 wk of normoxia or hypoxia (10% FiO2 ) as a model of PH. Hypoxic rats developed RV hypertrophy and fibrosis associated with an increase in PKC βII and δ protein expression and p38 dephosphorylation in freshly isolated RV cardiac fibroblasts. Further mechanistic studies were performed in cultured primary cardiac fibroblasts stimulated with angiotensin II, a key activator of ventricular fibrosis in PH. Angiotensin II induced a reduction in p38 phosphorylation that was attenuated following chemical inhibition of PKC βII and δ. Molecular and chemical inhibition of PKC βII and δ abrogated angiotensin II-induced cardiac fibroblast proliferation and collagen deposition in vitro. The effects of PKC inhibition on proliferation and fibrosis were reversed by chemical inhibition of p38. Conversely, constitutive activation of p38 attenuated angiotensin II-induced increase of cardiac fibroblast proliferation and collagen accumulation. PKC βII- and δ-dependent inactivation of p38 regulates cardiac fibroblast proliferation and collagen deposition in response to angiotensin II, which suggests that the PKC-p38 signaling in cardiac fibroblasts may be involved and important in the pathophysiology of RV fibrosis in PH.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Kelly A O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ulrike Mende
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
12
|
Fähling M, Persson PB. Oxygen sensing, uptake, delivery, consumption and related disorders. Acta Physiol (Oxf) 2012; 205:191-3. [PMID: 22520692 DOI: 10.1111/j.1748-1716.2012.02432.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. Fähling
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| |
Collapse
|
13
|
Shi Y, Wang C, Han S, Pang B, Zhang N, Wang J, Li J. Determination of PKC isoform-specific protein expression in pulmonary arteries of rats with chronic hypoxia-induced pulmonary hypertension. Med Sci Monit 2012; 18:BR69-75. [PMID: 22293869 PMCID: PMC3560591 DOI: 10.12659/msm.882458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Evidence indicates that protein kinase C (PKC) plays a pivotal role in hypoxia-induced pulmonary hypertension (PH), but PKC isoform-specific protein expression in pulmonary arteries and their involvement in hypoxia-induced PH are unclear. Material/Methods Male SD rats (200–250 g) were exposed to normobaric hypoxia (10% oxygen) for 1, 3, 7, 14 and 21 d (days) to induce PH. PKC isoform-specific membrane translocation and protein expression in pulmonary arteries were determined by using Western blot and immunostaining. Results We found that only 6 isoforms of conventional PKC (cPKC) α, βI and βII, and novel PKC (nPKC) δ, ɛ and η were detected in pulmonary arteries of rats by Western blot. Hypoxic exposure (1–21 d) could induce rat PH with right ventricle (RV) hypertrophy and vascular remodeling. The cPKCβII membrane translocation at 3–7 d and protein levels of cPKCα at 3–14 d, βI and βII at 1–21 d decreased, while the nPKCδ membrane translocation at 3–21 d and protein levels at 3–14 d after hypoxic exposure in pulmonary arteries increased significantly when compared with that of the normoxia control group (p<0.05 vs. 0 d, n=6 per group). In addition, the down-regulation of cPKCα, βI and βII, and up-regulation of nPKCδ protein expressions at 14 d after hypoxia were further confirmed by immunostaining. Conclusions This study is the first systematic analysis of PKC isoform-specific membrane translocation and protein expression in pulmonary arteries, suggesting that the changes in membrane translocation and protein expression of cPKCα, βI, βII and nPKCδ are involved in the development of hypoxia-induced rat PH.
Collapse
Affiliation(s)
- Yiwei Shi
- Beijing Institute of Respiratory Medicine, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Choudhary G, Troncales F, Martin D, Harrington EO, Klinger JR. Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. J Heart Lung Transplant 2011; 30:827-33. [PMID: 21550822 DOI: 10.1016/j.healun.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 03/06/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Maladaptive right ventricular (RV) hypertrophic responses lead to RV dysfunction and failure in patients with pulmonary arterial hypertension, but the mechanisms responsible for these changes are not well understood. The objective of this study was to evaluate the effect of treatment with bosentan on RV hypertrophy (RVH), fibrosis and expression of protein kinase C (PKC) isoforms in the RV of rats exposed to chronic hypoxia. METHODS Adult Sprague-Dawley rats were housed in normoxia or hypoxia (FIO(2) = 10%) and administered vehicle or 100 mg/kg/day bosentan. After 3 weeks, echocardiographic and hemodynamic assessment was performed. PKC, procollagen-1 and collagen expression levels were assessed using immunoblot or colorimetric assay. RESULTS RV systolic pressure (RVSP) and RVH were higher in hypoxic compared with normoxic animals (RVSP: 72 ± 4 vs 25 ± 2 mm Hg, p < 0.05; RVH: 1.2 ± 0.06 vs 0.5 ± 0.03 mg/g body weight, p < 0.05). Bosentan had no effect on RVSP or mass in normoxic animals, but did attenuate RVH in hypoxic animals (hypoxic/vehicle: 1.2 ± 0.06; hypoxic/bosentan: 1.0 ± 0.05 mg/g body weight; p < 0.05). Hypoxia increased RV procollagen-1, and total collagen expression, effects that were attenuated by bosentan treatment. Hypoxia increased RV total and cytosolic PKC-δ protein expression, but had no effect on PKC-α or -ε isoforms. Administration with bosentan did not affect total PKC-δ protein expression. However, animals treated with bosentan had an increase in membranous PKC-δ when exposed to hypoxia. CONCLUSIONS Bosentan inhibits RVH and RV collagen expression in rats exposed to chronic hypoxia, possibly via alteration of PKC-δ activity.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA.
| | | | | | | | | |
Collapse
|
15
|
Up-regulation and redistribution of protein kinase C-δ in chronically hypoxic heart. Mol Cell Biochem 2010; 345:271-82. [DOI: 10.1007/s11010-010-0581-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 08/27/2010] [Indexed: 12/29/2022]
|
16
|
Paffett ML, Riddle MA, Kanagy NL, Resta TC, Walker BR. Altered protein kinase C regulation of pulmonary endothelial store- and receptor-operated Ca2+ entry after chronic hypoxia. J Pharmacol Exp Ther 2010; 334:753-60. [PMID: 20576798 DOI: 10.1124/jpet.110.165563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is associated with decreased basal pulmonary artery endothelial cell (EC) Ca(2+), which correlates with reduced store-operated Ca(2+) (SOC) entry. Protein kinase C (PKC) attenuates SOC entry in ECs. Therefore, we hypothesized that PKC has a greater inhibitory effect on EC SOC and receptor-operated Ca(2+) entry after CH. To test this hypothesis, we assessed SOC in the presence or absence of the nonselective PKC inhibitor GF109203X [2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide] in freshly isolated, Fura-2-loaded ECs obtained from intrapulmonary arteries of control and CH rats (4 weeks at 0.5 atm). We found that SOC entry and 1-oleoyl-2-acetyl-sn-glycerol (OAG)- and ATP-induced Ca(2+) influx were attenuated in ECs from CH rats versus controls, and GF109203X restored SOC and OAG responses to the level of controls. In contrast, nonselective PKC inhibition with GF109203X or the selective PKC(epsilon) inhibitor myristoylated V1-2 attenuated ATP-induced Ca(2+) entry in ECs from control but not CH pulmonary arteries. ATP-induced Ca(2+) entry was also attenuated by the T-type voltage-gated Ca(2+) channel (VGCC) inhibitor mibefradil in control cells. Consistent with the presence of endothelial T-type VGCC, we observed depolarization-induced Ca(2+) influx in control cells that was inhibited by mibefradil. This response was largely absent in ECs from CH arteries. We conclude that CH enhances PKC-dependent inhibition of SOC- and OAG-induced Ca(2+) entry. Furthermore, these data suggest that CH may reduce the ATP-dependent Ca(2+) entry that is mediated, in part, by PKCepsilon and mibefradil-sensitive Ca(2+) channels in control cells.
Collapse
Affiliation(s)
- Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | | | | | | | | |
Collapse
|