1
|
Tao YT, Breves JP. Hypersalinity tolerance of mummichogs (Fundulus heteroclitus): A branchial transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101338. [PMID: 39413658 DOI: 10.1016/j.cbd.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Along the east coast of North America, mummichogs (Fundulus heteroclitus) are subjected to a broad range of salinities in their nearshore habitats. However, there is a paucity of information regarding the molecular and cellular processes that mummichogs (and other highly osmotolerant fishes) engage to survive environmental salinities greater than seawater (SW). To reveal branchial processes underlying their extraordinarily broad salinity tolerance, we performed an RNA-Seq analysis to identify differentially expressed genes (DEGs) in mummichogs residing in 3, 35, and 105 ppt conditions. We identified a series of DEGs previously associated with both freshwater (FW)- and SW-type ionocytes; however, the heightened expression of anoctamin 1a, a Ca2+-activated Cl- channel, in 35 and 105 ppt indicates that an undescribed Cl--secretion pathway may operate within the SW-type ionocytes of mummichogs. Concerning FW-adaptive branchial processes, we identified claudin 5a as a gene whose product may limit the diffusive loss of ions between cellular tight junctions. Further, in response to hypersaline conditions, we identified DEGs linked with myo-inositol synthesis and kinase signaling. This study provides new molecular targets for future physiological investigations that promise to reveal the mechanistic bases for how mummichogs and other euryhaline species tolerate hypersaline conditions.
Collapse
Affiliation(s)
- Yixuan T Tao
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
2
|
Luo L, Yang LS, Huang JH, Jiang SG, Zhou FL, Li YD, Jiang S, Yang QB. Effects of Different Salinity Stress on the Transcriptomic Responses of Freshwater Crayfish ( Procambarus clarkii, Girard, 1852). BIOLOGY 2024; 13:530. [PMID: 39056722 PMCID: PMC11273973 DOI: 10.3390/biology13070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Salinization of freshwater ecosystems is a pressing global issue. Changes in salinity can exert severe pressure on aquatic animals and jeopardize their survival. Procambarus clarkii is a valuable freshwater aquaculture species that exhibits some degree of salinity tolerance, making it an excellent research model for freshwater aquaculture species facing salinity stress. In the present study, crayfish were exposed to acute low salt (6 ppt) and high salt (18 ppt) conditions. The organisms were continuously monitored at 6, 24, and 72 h using RNA-Seq to investigate the mechanisms of salt stress resistance. Transcriptome analysis revealed that the crayfish responded to salinity stress with numerous differentially expressed genes, and most of different expression genes was observed in high salinity group for 24h. GO and KEGG enrichment analyses indicated that metabolic pathways were the primary response pathways in crayfish under salinity stress. This suggests that crayfish may use metabolic pathways to compensate for energy loss caused by osmotic stress. Furthermore, gene expression analysis revealed the differential expression of immune and antioxidant-related pathway genes under salinity stress, implying that salinity stress induces immune disorders in crayfish. More genes related to cell proliferation, differentiation, and apoptosis, such as the Foxo, Wnt, Hippo, and Notch signaling pathways, responded to high-salinity stress. This suggests that regulating the cellular replication cycle and accelerating apoptosis may be necessary for crayfish to cope with high-salinity stress. Additionally, we identified 36 solute carrier family (SLC) genes related to ion transport, depicting possible ion exchange mechanisms in crayfish under salinity stress. These findings aimed to establish a foundation for understanding crustacean responses to salinity stress and their osmoregulatory mechanisms.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li-Shi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China;
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Yun-Dong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (L.L.); (J.-H.H.); (S.-G.J.); (F.-L.Z.); (Y.-D.L.); (S.J.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
| | - Qi-Bin Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China;
| |
Collapse
|
3
|
Seale AP, Breves JP. Endocrine and osmoregulatory responses to tidally-changing salinities in fishes. Gen Comp Endocrinol 2022; 326:114071. [PMID: 35697315 DOI: 10.1016/j.ygcen.2022.114071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main physical properties that govern the distribution of fishes across aquatic habitats. In order to maintain their body fluids near osmotic set points in the face of salinity changes, euryhaline fishes rely upon tissue-level osmotically-induced responses and systemic endocrine signaling to direct adaptive ion-transport processes in the gill and other critical osmoregulatory organs. Some euryhaline teleosts inhabit tidally influenced waters such as estuaries where salinity can vary between fresh water (FW) and seawater (SW). The physiological adaptations that underlie euryhalinity in teleosts have been traditionally identified in fish held under steady-state conditions or following unidirectional transfers between FW and SW. Far fewer studies have employed salinity regimes that simulate the tidal cycles that some euryhaline fishes may experience in their native habitats. With an emphasis on prolactin (Prl) signaling and branchial ionocytes, this mini-review contrasts the physiological responses between euryhaline fish responding to tidal versus unidirectional changes in salinity. Three patterns that emerged from studying Mozambique tilapia (Oreochromis mossambicus) subjected to tidally-changing salinities include, 1) fish can compensate for continuous and marked changes in external salinity to maintain osmoregulatory parameters within narrow ranges, 2) tilapia maintain branchial ionocyte populations in a fashion similar to SW-acclimated fish, and 3) there is a shift from systemic to local modulation of Prl signaling.
Collapse
Affiliation(s)
- Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
4
|
Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, Chen C, You H, Li ZH. Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105736. [PMID: 36049432 DOI: 10.1016/j.marenvres.2022.105736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.
Collapse
Affiliation(s)
- Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
The genome-wide identification and adaptive evolution of slc9 genes in Leuciscus waleckii under extremely alkaline conditions. Gene 2022; 840:146769. [PMID: 35907566 DOI: 10.1016/j.gene.2022.146769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
The solute carrier family 9 (slc9) genes, especially slc9a isoform coding proteins contribute to electroneutral countertransport of H+ for Na+ across the plasmalemmal and organellar membranes, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. These functional properties determine a potential basis for organisms to challenge stressful conditions. However, these well-done researches have been reported more in mammals. Thus, in this study, a total of eleven slc9 genes were identified from the latest version genome of L. waleckii, a cyprinid fish that could tolerate extremely alkaline environments (pH 9.6). The evolutionary footprint of slc9 genes was uncovered via the analysis of copy numbers, gene structure, motif composition, chromosome location and phylogenetic relationship. More importantly, there were two SNPs located on 5' UTR and three non-synonymous mutations in the coding region of the slc9a3.2 gene by comparing freshwater with alkaline water populations attached to resequencing technology. Slc9a3.2 gene was a statistically significant low expression in gill tissue with extremely alkaline pressure. Generally, slc9 gene family in L. waleckii was highly conserved. Several important SNPs with high Fst values were identified where non-synonymous mutations occurred between freshwater and alkaline water populations, and they may play an important role in specific functional differentiation. Slc9 genes had clear tissue expression preferences and were involved in abiotic stress response, indicating their roles in physiological function and strong self-regulating capacity. Our insight into the genetic variations that take place in the individual genes under extreme conditions could provide a feasible example for studying specific molecular mechanisms based on genomic data with increasing environmental stress.
Collapse
|
6
|
Inokuchi M, Hiroi J, Kaneko T. Why can Mozambique Tilapia Acclimate to Both Freshwater and Seawater? Insights From the Plasticity of Ionocyte Functions in the Euryhaline Teleost. Front Physiol 2022; 13:914277. [PMID: 35711299 PMCID: PMC9194847 DOI: 10.3389/fphys.2022.914277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
In teleost fishes, ionocytes in the gills are important osmoregulatory sites in maintaining ionic balance. During the embryonic stages before the formation of the gills, ionocytes are located in the yolk-sac membrane and body skin. In Mozambique tilapia embryos, quintuple-color immunofluorescence staining allowed us to classify ionocytes into four types: type I, showing only basolateral Na+/K+-ATPase (NKA) staining; type II, basolateral NKA and apical Na+, Cl− cotransporter 2; type III, basolateral NKA, basolateral Na+, K+, 2Cl− cotransporter 1a (NKCC1a) and apical Na+/H+ exchanger 3; and type IV, basolateral NKA, basolateral NKCC1a and apical cystic fibrosis transmembrane conductance regulator Cl− channel. The ionocyte population consisted mostly of type I, type II and type III in freshwater, while type I and IV dominated in seawater. In adult tilapia, dual observations of whole-mount immunocytochemistry and scanning electron microscopy showed morphofunctional alterations in ionocytes. After transfer from freshwater to seawater, while type-II ionocytes closed their apical openings to suspend ion absorption, type-III ionocytes with a concave surface were transformed into type IV with a pit via a transitory surface. The proposed model of functional classification of ionocytes can account not only for ion uptake in freshwater and ion secretion in seawater, but also for plasticity in ion-transporting functions of ionocytes in tilapia.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Japan
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo, Japan
| |
Collapse
|
7
|
Shah VS, Chivukula RR, Lin B, Waghray A, Rajagopal J. Cystic Fibrosis and the Cells of the Airway Epithelium: What Are Ionocytes and What Do They Do? ANNUAL REVIEW OF PATHOLOGY 2022; 17:23-46. [PMID: 34437820 PMCID: PMC10837786 DOI: 10.1146/annurev-pathol-042420-094031] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystic fibrosis (CF) is caused by defects in an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Recently, a new airway epithelial cell type has been discovered and dubbed the pulmonary ionocyte. Unexpectedly, these ionocytes express higher levels of CFTR than any other airway epithelial cell type. However, ionocytes are not the sole CFTR-expressing airway epithelial cells, and CF-associated disease genes are in fact expressed in multiple airway epithelial cell types. The experimental depletion of ionocytes perturbs epithelial physiology in the mouse trachea, but the role of these rare cells in the pathogenesis of human CF remains mysterious. Ionocytes have been described in diverse tissues(kidney and inner ear) and species (frog and fish). We draw on these prior studies to suggest potential roles of airway ionocytes in health and disease. A complete understanding of ionocytes in the mammalian airway will ultimately depend on cell type-specific genetic manipulation.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Raghu R Chivukula
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Brian Lin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Avinash Waghray
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jayaraj Rajagopal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Wu B, Chen X, Yu M, Ren J, Hu J, Shao C, Zhou L, Sun X, Yu T, Zheng Y, Wang Y, Wang Z, Zhang H, Fan G, Liu Z. Chromosome-level genome and population genomic analysis provide insights into the evolution and environmental adaptation of Jinjiang oyster Crassostrea ariakensis. Mol Ecol Resour 2021; 22:1529-1544. [PMID: 34800349 DOI: 10.1111/1755-0998.13556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023]
Abstract
The Jinjiang oyster Crassostrea ariakensis, naturally distributing in estuarine regions with low salinity, is an important economic and ecological species in China. However, studies on its genomics and population genetics remain lacking. Here, we assembled the chromosome-level genome of a female C. ariakensis and re-sequenced 261 individuals from five locations in China representing three typical habitats. The C. ariakensis genome was 662.9 Mb with contig N50 length of 5.9 Mb using PacBio HiFi-CCS long reads, and 99.83% sequences were anchored onto 10 pseudochromosomes using Hi-C data. A total of 26,354 protein-coding genes were predicted. We identified three significantly expanded gene families which are closely associated with osmotic pressure regulation, including CDO, SLC13 and SDR. Population structure analysis revealed that the C. ariakensis from five locations were clustered into three typical groups (northern, southern and Shanghai) (K = 3) and their phylogenetic relationship was consistently correlated to their geographical distribution. Furtherly, the differentiation between northern and southern groups was clearly demonstrated by estimated population differentiation coefficient (FST = 0.1154), and the PSMC distribution showed the two groups of effective population size separated at 0.1 Ma. Meanwhile gene flow from southern to Shanghai was detected. Selective sweep analysis between northern and southern group detected genes associated with heat response and salinity adaptation. This study could provide valuable genomic resources and information for further research on the molecular evolution, genetic breeding, biological function and evolutionary adaptation of C. ariakensis.
Collapse
Affiliation(s)
- Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xi Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jianfeng Ren
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Changwei Shao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liqing Zhou
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yan Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhenyuan Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhihong Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Chang YM, Zhao XF, Liew HJ, Sun B, Wang SY, Luo L, Zhang LM, Liang LQ. Effects of Bicarbonate Stress on Serum Ions and Gill Transporters in Alkali and Freshwater Forms of Amur Ide ( Leuciscus waleckii). Front Physiol 2021; 12:676096. [PMID: 34594232 PMCID: PMC8476968 DOI: 10.3389/fphys.2021.676096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
The Amur ide (Leuciscus waleckii) is a fish in the Cyprinidae family. Compared with other Amur ide living in freshwater ecosystems, the Amur ide population in Lake Dali Nor of China is famous for its high tolerance to the alkaline conditions of 54 mM (pH 9.6). Yet, surprisingly, the ionoregulatory mechanism responsible for this remarkable alkaline adaptation remains unclear. Therefore, this study sought to investigate how bicarbonate affects the acid-base balancing and ionoregulatory responses of this animal. Here, using a comparative approach, the alkali form of Amur ide and its ancestral freshwater form living in other freshwater basins were each exposed to 50 mM (pH 9.59 ± 0.09), a level close to the alkalinity of Lake Dali Nor, and their physiological (AE1) adjustment of ions and acid-base regulation were investigated. This study highlighted differences in blood pH and serum ions (e.g., Na+, K+, Cl−, and Ca2+), Na+/K+ ATPase (NKA) activity and its mRNA level, and mRNA expression of gill transporters (Na+/H+ exchanger member 2 and/or 3, Na+/HCO3- cotransporter (NBC1), Cl−/HCO3- exchanger, Na+/Cl− cotransporter (NCC), Na+/K+/2Cl− (NKCC1), SLC26A5, and SLC26A6) for alkalinity adaptation between the two forms of Amur ide differing in alkalinity tolerance. Specifically, close relationships among the serum Na+ and mRNA levels of NCC, NKCC1, and NHE, and also NKA and NBC1, in addition to serum Cl− and bicarbonate transporters (e.g., SLC26A5 and SLC26A6), characterized the alkali form of Amur ide. We propose that this ecotype can ensure its transepithelial Cl− and Na+ uptake/base secretions are highly functional, by its basolateral NKA with NBC1 and apical ionic transporters, and especially NCC incorporated with other transporters (e.g., SLC26). This suggests an evolved strong ability to maintain an ion osmotic and acid-base balance for more effectively facilitating its adaptability to the high alkaline environment. This study provides new insights into the physiological responses of the alkaline form of the Amur ide fish for adapting to extreme alkaline conditions. This information could be used as a reference to cultivating alkaline-tolerant fish species in abandoned alkaline waters.
Collapse
Affiliation(s)
- Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hon Jung Liew
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,Higher Institution of Center Excellence, Institute of Tropical Aquaculture and Fisheries, Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Bo Sun
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liang Luo
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
10
|
The time course of molecular acclimation to seawater in a euryhaline fish. Sci Rep 2021; 11:18127. [PMID: 34518569 PMCID: PMC8438076 DOI: 10.1038/s41598-021-97295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
The Arabian pupfish, Aphanius dispar, is a euryhaline fish inhabiting both inland nearly-freshwater desert ponds and highly saline Red Sea coastal lagoons of the Arabian Peninsula. Desert ponds and coastal lagoons, located respectively upstream and at the mouths of dry riverbeds (“wadies”), have been found to potentially become connected during periods of intense rainfall, which could allow the fish to migrate between these different habitats. Flash floods would therefore flush Arabian pupfish out to sea, requiring a rapid acclimation to a greater than 40 ppt change in salinity. To investigate the molecular pathways of salinity acclimation during such events, a Red Sea coastal lagoon and a desert pond population were sampled, with the latter exposed to a rapid increase in water salinity. Changes in branchial gene expression were investigated via genome-wide transcriptome measurements over time from 6 h to 21 days. The two natural populations displayed basal differences in genes related to ion transport, osmoregulation and immune system functions. These mechanisms were also differentially regulated in seawater transferred fish, revealing their crucial role in long-term adaptation. Other processes were only transiently activated shortly after the salinity exposure, including cellular stress response mechanisms, such as molecular chaperone synthesis and apoptosis. Tissue remodelling processes were also identified as transient, but took place later in the timeline, suggesting their importance to long-term acclimation as they likely equip the fish with lasting adaptations to their new environment. The alterations in branchial functional pathways displayed by Arabian pupfish in response to salinity increases are diverse. These reveal a large toolkit of molecular processes important for adaptation to hyperosmolarity that allow for successful colonization to a wide variety of different habitats.
Collapse
|
11
|
Increased polyamine levels and maintenance of γ-aminobutyric acid (Gaba) homeostasis in the gills is indicative of osmotic plasticity in killifish. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110969. [PMID: 33915271 DOI: 10.1016/j.cbpa.2021.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/23/2022]
Abstract
The Fundulus genus of killifish includes species that inhabit marshes along the U.S. Atlantic coast and the Gulf of Mexico, but differ in their ability to adjust rapidly to fluctuations in salinity. Previous work suggests that euryhaline killifish stimulate polyamine biosynthesis and accumulate putrescine in the gills during acute hypoosmotic challenge. Despite evidence that polyamines have an osmoregulatory role in euryhaline killifish species, their function in marine species is unknown. Furthermore, the consequences of hypoosmotic-induced changes in polyamine synthesis on downstream pathways, such as ƴ-aminobutyric acid (Gaba) production, have yet to be explored. Here, we examined the effects of acute hypoosmotic exposure on polyamine, glutamate, and Gaba levels in the gills of a marine (F. majalis) and two euryhaline killifish species (F. heteroclitus and F. grandis). Fish acclimated to 32 ppt or 12 ppt water were transferred to fresh water, and concentrations of glutamate (Glu), Gaba, and the polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) were measured in the gills using high-performance liquid chromatography. F. heteroclitus and F. grandis exhibited an increase in gill Put concentration, but showed no change in Glu or Gaba levels following freshwater transfer. F. heteroclitus also accumulated Spd in the gills, whereas F. grandis showed transient increases in Spd and Spm levels. In contrast, gill Put, Spm, Glu, and Gaba levels decreased in F. majalis following freshwater transfer. Together, these findings suggest that increasing polyamine levels and maintaining Glu and Gaba levels in the gills may enable euryhaline teleosts to acclimate to shifts in environmental salinity.
Collapse
|
12
|
|
13
|
Sun Z, Lou F, Zhang Y, Song N. Gill Transcriptome Sequencing and De Novo Annotation of Acanthogobius ommaturus in Response to Salinity Stress. Genes (Basel) 2020; 11:genes11060631. [PMID: 32521805 PMCID: PMC7349121 DOI: 10.3390/genes11060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Acanthogobius ommaturus is a euryhaline fish widely distributed in coastal, bay and estuarine areas, showing a strong tolerance to salinity. In order to understand the mechanism of adaptation to salinity stress, RNA-seq was used to compare the transcriptome responses of Acanthogobius ommaturus to the changes of salinity. Four salinity gradients, 0 psu, 15 psu (control), 30 psu and 45 psu were set to conduct the experiment. In total, 131,225 unigenes were obtained from the gill tissue of A. ommaturus using the Illumina HiSeq 2000 platform (San Diego, USA). Compared with the gene expression profile of the control group, 572 differentially expressed genes (DEGs) were screened, with 150 at 0 psu, 170 at 30 psu, and 252 at 45 psu. Additionally, among these DEGs, Gene Ontology (GO) analysis indicated that binding, metabolic processes and cellular processes were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis detected 3, 5 and 8 pathways related to signal transduction, metabolism, digestive and endocrine systems at 0 psu, 30 psu and 45 psu, respectively. Based on GO enrichment analysis and manual literature searches, the results of the present study indicated that A. ommaturus mainly responded to energy metabolism, ion transport and signal transduction to resist the damage caused by salinity stress. Eight DEGs were randomly selected for further validation by quantitative real-time PCR (qRT-PCR) and the results were consistent with the RNA-seq data.
Collapse
Affiliation(s)
| | | | | | - Na Song
- Correspondence: or ; Tel.: +86-532-820-31658
| |
Collapse
|
14
|
Lee SY, Lee HJ, Kim YK. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci Rep 2020; 10:1987. [PMID: 32029805 PMCID: PMC7005315 DOI: 10.1038/s41598-020-58915-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Salmonid fishes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fish in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identified. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fishes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identified osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The findings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species.
Collapse
Affiliation(s)
- Sang Yoon Lee
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hwa Jin Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Yi Kyung Kim
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
15
|
Lou F, Gao T, Han Z. Effect of salinity fluctuation on the transcriptome of the Japanese mantis shrimp Oratosquilla oratoria. Int J Biol Macromol 2019; 140:1202-1213. [PMID: 31470058 DOI: 10.1016/j.ijbiomac.2019.08.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Salinity fluctuation may detrimentally affect the composition and biological processes of crustaceans. As a euryhaline crustacean, Oratosquilla oratoria can survive at salinities ranging from 20 psu to 40 psu. Therefore, we designed five salinity gradients (20, 25, 30, 35, and 40 psu) and 66.39 Gb clean transcriptome data were obtained after O. oratorias were exposed to each gradient for 24 h. All clean data were spliced into 50,482 unigenes and 17,035 unigenes were annotated in at least one database. Compared with 30 psu, 1010, 851, 1733 and 2188 differentially expressed genes were obtained at 20, 25, 35 and 40 psu, respectively. Results also showed that the osmoregulation of O. oratoria is primarily regulated by lipid and amino acid metabolism, amongst others. No significant up-regulated pathways were enriched at 25 psu and 35 psu, although more significant down-regulated pathways were obtained at 35 psu. Therefore, we assumed that the optimum survival salinity of O. oratoria may range from 25 psu to 35 psu. However, 35 psu may be more suitable for O. oratoria. In addition, 55 unigenes that encode putative inorganic ion exchanges were identified. This study aims to provide fundamental information for understanding the osmoregulation mechanisms of crustaceans.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Fishery College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
16
|
Alteration in branchial NKA and NKCC ion-transporter expression and ionocyte distribution in adult hilsa during up-river migration. J Comp Physiol B 2018; 189:69-80. [PMID: 30483930 DOI: 10.1007/s00360-018-1193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
Hilsa (Tenualosa ilisha) is a clupeid that migrates from the off-shore area through the freshwater river for spawning. The purpose of this study was to investigate the involvement of branchial Na+/K+-ATPase (NKA) and Na+/K+/2Cl- cotransporter (NKCC) in maintaining ionic homeostasis in hilsa while moving across the salt barriers. Hilsa, migrating through marine and brackish waters, did not show any significant decline in NKA activity, plasma osmolality, and plasma ionic concentration. In contrast, all the parameters declined significantly, after the fish reached in freshwater zone of the river. Immunoblotting with NKA α antibody recognized two bands in gill homogenates. The intensity of the higher molecular NKA band decreased, while the other band subsequently increased accompanying the movement of hilsa from marine water (MW) to freshwater. Nevertheless, total NKA expression in marine water did not change prior to freshwater entry. NKCC expression was down-regulated in gill, parallel with NKA activity, as the fish approached to the freshwater stretch of river. The NKA α-1 and NKCC1 protein abundance decreased in freshwater individuals by 40% and 31%, respectively, compared to MW. NKA and NKCC1 were explicitly localized to branchial ionocytes and immunoreactive signal appeared throughout the cytoplasm except for the nucleus and the most apical region indicates a basolateral/tubular distribution. Immunoreactive ionocytes were distributed on the filaments and lamellae; lamellar ionocytes were more in number irrespective of habitat salinity. The decrease in salinity caused a slight reduction in ionocyte number, but not in size and the underlying distribution pattern did not alter. The overall results support previously proposed models that both the ion transporters are involved in maintaining ionic homeostasis and lamellar ionocytes may have the function in hypo-osmoregulation in migrating hilsa, unlike other anadromous teleosts.
Collapse
|
17
|
Kono T, Ida T, Kawahara N, Watanabe F, Biswas G, Sato T, Mori K, Miyazato M. Identification and immunoregulatory function of neuromedin U (Nmu) in the Japanese pufferfish Takifugu rubripes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:246-256. [PMID: 28286258 DOI: 10.1016/j.dci.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
In this study, immunoregulatory function of neuromedin U (Nmu) in the teleost fish Fugu (Takifugu rubripes) was characterized. Three splicing variants of nmu mRNA encoding preproNMUs consisting of 164 (Nmu1), 139 (Nmu2), and 129 (Nmu3) amino acid residues were found in Fugu.The biologically active C-terminal region of Fugu Nmu showed high homology among fish and other vertebrate NMUs. The genomic organization of Fugu nmu differed from those of zebrafish and mammals. However, in phylogenetic analysis, Fugu Nmu formed a cluster with NMUs of other vertebrates, in addition to neuromedin S. The splicing variants of mRNA were identified in various tissues. Nmu-21 and Nmu-9 were purified as endogenous peptides from Fugu intestine. The synthetic Nmu-21 peptide activated phagocytic cells, and elevated the expression of cytokine mRNA in peripheral blood leukocytes.
Collapse
Affiliation(s)
- Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Takanori Ida
- Division of Searching and Identification of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan; Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Natsumi Kawahara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Fumiya Watanabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Gouranga Biswas
- ICAR-Central Institute of Brackishwater Aquaculture, Kakdwip Research Centre, Kakdwip, South 24 Parganas, West Bengal 743347, India
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka 839-0864, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| |
Collapse
|
18
|
Abstract
The anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) transporter. CFTR plays a pivotal role in transepithelial ion transport as its dysfunction in the genetic disease cystic fibrosis (CF) dramatically demonstrates. Phylogenetic analysis suggests that CFTR first appeared in aquatic vertebrates fulfilling important roles in osmosensing and organ development. Here, we review selectively, knowledge of CFTR structure, function and pharmacology, gleaned from cross-species comparative studies of recombinant CFTR proteins, including CFTR chimeras. The data argue that subtle changes in CFTR structure can affect strongly channel function and the action of CF mutations.
Collapse
|
19
|
The potential role of polyamines in gill epithelial remodeling during extreme hypoosmotic challenges in the Gulf killifish, Fundulus grandis. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:39-50. [DOI: 10.1016/j.cbpb.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 02/04/2023]
|
20
|
|
21
|
Lam SH, Lui EY, Li Z, Cai S, Sung WK, Mathavan S, Lam TJ, Ip YK. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 2014; 15:921. [PMID: 25342237 PMCID: PMC4213501 DOI: 10.1186/1471-2164-15-921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Mozambique tilapia Oreochromis mossambicus has the ability to adapt to a broad range of environmental salinities and has long been used for investigating iono-osmoregulation. However, to date most studies have focused mainly on several key molecules or parameters hence yielding a limited perspective of the versatile iono-osmoregulation in the euryhaline fish. This study aimed to capture transcriptome-wide differences between the freshwater- and seawater-acclimated gills of the Mozambique tilapia. RESULTS We have identified over 5000 annotated gene transcripts with high homology (E-value <1.0E-50) to human genes that were differentially expressed in freshwater- and seawater-acclimated gills of the Mozambique tilapia. These putative human homologs were found to be significantly associated with over 50 canonical signaling pathways that are operating in at least 23 biological processes in relation to branchial iono-osmoregulation and cellular remodeling. The analysis revealed multiple signaling pathways in freshwater-acclimated gills acting in concert to maintain cellular homeostasis under hypo-osmotic environment while seawater-acclimated gills abounded with molecular signals to cope with the higher cellular turn-over rate, energetics and iono-regulatory demands under hyper-osmostic stress. Additionally, over 100 transcripts encoding putative inorganic ion transporters/channels were identified, of which several are well established in gill iono-regulation while the remainder are lesser known. We have also validated the expression profiles of 47 representative genes in freshwater- and seawater-acclimated gills, as well as in hypersaline-acclimated (two-fold salinity of seawater) gills. The findings confirmed that many of these responsive genes retained their expression profiles in hypersaline-acclimated gills as in seawater-acclimated gills, although several genes had changed significantly in their expression level/direction in hypersaline-acclimated gills. CONCLUSIONS This is the first study that has provided an unprecedented transcriptomic-wide perspective of gill iono-osmoregulation since such studies were initiated more than 80 years ago. It has expanded our molecular perspective from a relatively few well-studied molecules to a plethora of gene transcripts and a myriad of canonical signaling pathways driving various biological processes that are operating in gills under hypo-osmotic and hyper-osmotic stresses. These findings would provide insights and resources to fuel future studies on gill iono-osmoregulation and cellular remodeling in response to salinity challenge and acclimation.
Collapse
Affiliation(s)
- Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive, 117411 Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
23
|
Castillo-Briceno P, Kodjabachian L. Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context. Front Zool 2014; 11:9. [PMID: 24502321 PMCID: PMC4015847 DOI: 10.1186/1742-9994-11-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
Background How important are sexual hormones beyond their function in reproductive biology has yet to be understood. In this study, we analyzed the effects of sex steroids on the biology of the embryonic amphibian epidermis, which represents an easily amenable model of non-reproductive mucociliary epithelia (MCE). MCE are integrated systems formed by multiciliated (MC), mucus-secreting (MS) and mitochondrion-rich (MR) cell populations that are shaped by their microenvironment. Therefore, MCE could be considered as ecosystems at the cellular scale, found in a wide array of contexts from mussel gills to mammalian oviduct. Results We showed that the natural estrogen (estradiol, E2) and androgen (testosterone, T) as well as the synthetic estrogen (ethinyl-estradiol, EE2), all induced a significant enhancement of MC cell numbers. The effect of E2, T and EE2 extended to the MS and MR cell populations, to varying degrees. They also modified the expression profile of RNA MCE markers, and induced a range of “non-typical” cellular phenotypes, with mixed identities and aberrant morphologies, as revealed by imaging analysis through biomarker confocal detection and scanning electron microscopy. Finally, these hormones also affected tadpole pigmentation, revealing an effect on the entire cellular ecosystem of the Xenopus embryonic skin. Conclusions This study reveals the impact in vivo, at the molecular, cellular, tissue and organism levels, of sex steroids on non-reproductive mucociliary epithelium biogenesis, and validates the use of Xenopus as a relevant model system in this field.
Collapse
Affiliation(s)
- Patricia Castillo-Briceno
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|
24
|
Hiroi J, McCormick SD. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 2012; 184:257-68. [PMID: 22850177 DOI: 10.1016/j.resp.2012.07.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
Teleost fishes are able to acclimatize to seawater by secreting excess NaCl by means of specialized "ionocytes" in the gill epithelium. Antibodies against Na(+)/K(+)-ATPase (NKA) have been used since 1996 as a marker for identifying branchial ionocytes. Immunohistochemistry of NKA by itself and in combination with Na(+)/K(+)/2Cl(-) cotransporter and CFTR Cl(-) channel provided convincing evidence that ionocytes are functional during seawater acclimation, and also revealed morphological variations in ionocytes among teleost species. Recent development of antibodies to freshwater- and seawater-specific isoforms of the NKA alpha-subunit has allowed functional distinction of ion absorptive and secretory ionocytes in Atlantic salmon. Cutaneous ionocytes of tilapia embryos serve as a model for branchial ionocytes, allowing identification of 4 types: two involved in ion uptake, one responsible for salt secretion and one with unknown function. Combining molecular genetics, advanced imaging techniques and immunohistochemistry will rapidly advance our understanding of both the unity and diversity of ionocyte function and regulation in fish osmoregulation.
Collapse
Affiliation(s)
- Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki 216-8511, Japan.
| | | |
Collapse
|
25
|
|
26
|
Wormser C, Mason LZ, Helm EM, Light DB. Regulatory volume response following hypotonic stress in Atlantic salmon erythrocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:745-759. [PMID: 21336592 DOI: 10.1007/s10695-011-9474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to examine regulatory volume decrease (RVD) in Atlantic salmon red blood cells (RBCs). Osmotic fragility was determined optically, mean cell volume was measured electronically, and changes in intracellular Ca(2+) concentration were visualized using fluorescence microscopy and fluo-4-AM. Cells displayed an increase in osmotic fragility and an inhibition of volume recovery following hypotonic shock when they were exposed to a high taurine Ringer or when placed in a high K(+) medium. Interestingly, RVD in cells from fish collected during the summer depended more on taurine efflux, whereas fall cells relied more on the loss of K(+). In addition, RVD in fall cells was prevented with the K(+) channel inhibitor quinine, whereas the ionophore gramicidin decreased osmotic fragility and potentiated volume recovery. Further, hypotonic shock (0.5X Ringer) for both summer and fall cells caused an increase in cytosolic Ca(2+), which resulted from influx of this ion because it was not observed when extracellular Ca(2+) was chelated with EGTA (10 nM free Ca(2+)). Cells exposed to a low Ca(2+) hypotonic Ringer also had a greater osmotic fragility and failed to recover from hypotonic swelling. Finally, inhibition of phospholipase A(2) with ONO-RS-082 blocked volume recovery. In conclusion, Atlantic salmon RBCs displayed volume decrease in response to hypotonic shock, which depended on a swelling-induced influx of Ca(2+) and an increase in the efflux of K(+) and taurine.
Collapse
Affiliation(s)
- Chloe Wormser
- Department of Biology, Lake Forest College, Lake Forest, IL 60045, USA
| | | | | | | |
Collapse
|