1
|
Grainger N. Identifying peristaltic pacemaker cells in the upper urinary tract. J Physiol 2024. [PMID: 38180778 DOI: 10.1113/jp284754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Urine expulsion from the upper urinary tract is a necessary process that eliminates waste, promotes renal filtration and prevents nephron damage. To facilitate the movement of urine boluses throughout the upper urinary tract, smooth muscle cells that line the renal pelvis contract in a coordinated effort to form peristaltic waves. Resident pacemaker cells in the renal pelvis are critical to this process and spontaneously evoke transient depolarizations that initiate each peristaltic wave and establish rhythmic contractions. Renal pacemakers have been termed atypical smooth muscle cells due to their low expression of smooth muscle myosin and poor organization of myofilaments compared to typical (or contractile) smooth muscle cells that perform peristalsis. Recent findings discovered that pacemaker cells also express the tyrosine kinase receptor PDGFRα, enabling their identification and purification amongst other renal pelvis cell types. Improved identification methods have determined that the calcium-activated chloride channel, ANO1, is expressed by pacemaker cells and may contribute to spontaneous depolarization. A greater understanding of pacemaker and peristaltic mechanisms is warranted since aberrant contractile function may underlie diseases such as hydronephrosis, a deleterious condition that can cause significant and irreversible nephron injury.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
2
|
Grainger N, Shonnard CC, Quiggle SK, Fox EB, Presley H, Daugherty R, Shonnard MC, Drumm BT, Sanders KM. Propagation of Pacemaker Activity and Peristaltic Contractions in the Mouse Renal Pelvis Rely on Ca 2+-activated Cl - Channels and T-Type Ca 2+ Channels. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac041. [PMID: 36325511 PMCID: PMC9614935 DOI: 10.1093/function/zqac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
The process of urine removal from the kidney occurs via the renal pelvis (RP). The RP demarcates the beginning of the upper urinary tract and is endowed with smooth muscle cells. Along the RP, organized contraction of smooth muscle cells generates the force required to move urine boluses toward the ureters and bladder. This process is mediated by specialized pacemaker cells that are highly expressed in the proximal RP that generate spontaneous rhythmic electrical activity to drive smooth muscle depolarization. The mechanisms by which peristaltic contractions propagate from the proximal to distal RP are not fully understood. In this study, we utilized a transgenic mouse that expresses the genetically encoded Ca2+ indicator, GCaMP3, under a myosin heavy chain promotor to visualize spreading peristaltic contractions in high spatial detail. Using this approach, we discovered variable effects of L-type Ca2+ channel antagonists on contraction parameters. Inhibition of T-type Ca2+ channels reduced the frequency and propagation distance of contractions. Similarly, antagonizing Ca2+-activated Cl- channels or altering the transmembrane Cl- gradient decreased contractile frequency and significantly inhibited peristaltic propagation. These data suggest that voltage-gated Ca2+ channels are important determinants of contraction initiation and maintain the fidelity of peristalsis as the spreading contraction moves further toward the ureter. Recruitment of Ca2+-activated Cl- channels, likely Anoctamin-1, and T-type Ca2+ channels are required for efficiently conducting the depolarizing current throughout the length of the RP. These mechanisms are necessary for the efficient removal of urine from the kidney.
Collapse
Affiliation(s)
| | - Cameron C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Sage K Quiggle
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Emily B Fox
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Hannah Presley
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robbie Daugherty
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Matthew C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA,Department of Life and Health Science, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
3
|
Abdalla M. Anatomical features in the kidney involved in water conservation through urine concentration in dromedaries ( Camelus dromedarius). Heliyon 2020; 6:e03139. [PMID: 31922050 PMCID: PMC6948238 DOI: 10.1016/j.heliyon.2019.e03139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to report some of the morphological characteristics of the kidney involved in urine concentration and hence water conservation in the dromedaries. A total of 20 fresh kidneys of 10 apparently healthy camels were used in this study. The architecture of the renal pelvis was revealed by dissection and polyvinyl chloride corrosion casts. Samples were also processed for histology and for enzyme histochemistry. The camel kidney is bean shaped, smooth, multilobar, unipapillary, in which the fusion of renal papillae is complete forming a common renal papilla or crest, which channel urine into a central renal pelvis. It is more or less similar to equine, caprine, ovine and canine kidney. Under certain anatomical requisites the renal pelvis is known to play a role in urine concentration through recycling of urea to increase the medullary osmotic concentration which favors the counter-current mechanism. One of these requisites is an elaborate renal pelvis which is closely associated with the renal medulla. The renal pelvis of the camel has a main crescentic cavity following the long axis and curvature of the kidney. A thick extensive renal crest projects into the cavity of the pelvis. The thick renal crest contains large numbers of long loops of Henle and vasa recta which are important for urine concentration. The renal crest is formed by convergence of the medullary pyramids before it projects into the cavity of the renal pelvis. The crescentic main cavity of the pelvis forms 20-24 three dimensional radiating collateral recesses which contain the medullary pyramids. This close association of the renal pelvis and medulla provide a large surface area for the recycling of urea and hence urine concentration. This large pelvic-medullary interface is lined by simple low cuboidal epithelium which enhances the recycling of urea and water from the pelvic urine into the medulla and directly contributes to urine concentration. The rest of the wall of the renal pelvis and its recesses facing away from the renal crest and medullary pyramids is lined by impermeable transitional epithelium. Another feature is the intense activity of alkaline phosphatase demonstrated in the proximal convoluted tubules which indicates increased membrane transport. It is concluded that the kidney in dromedaries has the anatomical and histochemical requisites for the production of concentrated urine. These requisites enable the kidney to adequately contribute to the ability of the camel to conserve water and withstand the aridity of its habitat.
Collapse
Affiliation(s)
- M.A. Abdalla
- Department of Anatomy, Faculty of Medicine, University of Khartoum, Sudan
| |
Collapse
|
4
|
Keppner A, Maric D, Sergi C, Ansermet C, De Bellis D, Kratschmar DV, Canonica J, Klusonova P, Fenton RA, Odermatt A, Crambert G, Hoogewijs D, Hummler E. Deletion of the serine protease CAP2/Tmprss4 leads to dysregulated renal water handling upon dietary potassium depletion. Sci Rep 2019; 9:19540. [PMID: 31863073 PMCID: PMC6925205 DOI: 10.1038/s41598-019-55995-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The kidney needs to adapt daily to variable dietary K+ contents via various mechanisms including diuretic, acid-base and hormonal changes that are still not fully understood. In this study, we demonstrate that following a K+-deficient diet in wildtype mice, the serine protease CAP2/Tmprss4 is upregulated in connecting tubule and cortical collecting duct and also localizes to the medulla and transitional epithelium of the papilla and minor calyx. Male CAP2/Tmprss4 knockout mice display altered water handling and urine osmolality, enhanced vasopressin response leading to upregulated adenylate cyclase 6 expression and cAMP overproduction, and subsequently greater aquaporin 2 (AQP2) and Na+-K+-2Cl− cotransporter 2 (NKCC2) expression following K+-deficient diet. Urinary acidification coincides with significantly increased H+,K+-ATPase type 2 (HKA2) mRNA and protein expression, and decreased calcium and phosphate excretion. This is accompanied by increased glucocorticoid receptor (GR) protein levels and reduced 11β-hydroxysteroid dehydrogenase 2 activity in knockout mice. Strikingly, genetic nephron-specific deletion of GR leads to the mirrored phenotype of CAP2/Tmprss4 knockouts, including increased water intake and urine output, urinary alkalinisation, downregulation of HKA2, AQP2 and NKCC2. Collectively, our data unveil a novel role of the serine protease CAP2/Tmprss4 and GR on renal water handling upon dietary K+ depletion.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Darko Maric
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Chloé Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Camille Ansermet
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland.,Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Denise V Kratschmar
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Jérémie Canonica
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland.,Ophthalmic Hospital Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Petra Klusonova
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland. .,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Dugbartey GJ, Quinn B, Luo L, Mickelsen DM, Ture SK, Morrell CN, Czyzyk J, Doyley MM, Yan C, Berk BC, Korshunov VA. The Protective Role of Natriuretic Peptide Receptor 2 against High Salt Injury in the Renal Papilla. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1721-1731. [PMID: 31220449 PMCID: PMC6724224 DOI: 10.1016/j.ajpath.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Breandan Quinn
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Sara K Ture
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Jan Czyzyk
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Chen Yan
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York; Department of Medicine, Neurorestoration Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| | - Vyacheslav A Korshunov
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| |
Collapse
|
6
|
Grases F, Söhnel O. Can Randall's plug composed of calcium oxalate form via the free particle mechanism? BMC Urol 2017; 17:80. [PMID: 28886706 PMCID: PMC5591557 DOI: 10.1186/s12894-017-0274-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The likelihood of a Randall's plug composed of calcium oxalate monohydrate (COM) forming by the free particle mechanism in a model of kidney with a structure recently described by Robertson was examined at the most favourable conditions for the considered mechanism. METHODS The Robertson model of the kidney is used in the following development. The classical theory of crystallization was used for calculations. RESULTS Initial COM nuclei were assumed to form at the beginning of the ascending loop of Henle where the supersaturation with respect to COM has been shown to reach the threshold level for spontaneous nucleation. Nucleation proceeds by a heterogeneous mechanism. The formed particles are transported in the nephron by a laminar flow of liquid with a parabolic velocity profile. Particles travel with a velocity dependent on their position in the cross-section of the nephron assumed to be straight tubule with smooth walls and without any sharp bends and kinks. These particles move faster with time as they grow as a result of being surrounded by the supersaturated liquid. Individual COM particles (crystals) can reach maximum diameter of 5.2 × 10-6 m, i.e. 5.2 μm, at the opening of the CD and would thus always be washed out of the CD into the calyx regardless of the orientation of the CD. Agglomeration of COM crystals forms a fractal object with an apparent density lower than the density of solid COM. The agglomerate that can block the beginning of the CD is composed of more crystals than are available even during crystaluria. Moreover the settling velocity of agglomerate blocking the opening of the CD is lower than the liquid flow and thus such agglomerate would be washed out even from upward-draining CD. CONCLUSIONS The free particle mechanism may be responsible for the formation of a Randall's plug composed by COM only in specific infrequent cases such as an abnormal structure of kidney. Majority of incidences of Randall's plug development by COM are caused by mechanism different from the free particle mechanism.
Collapse
Affiliation(s)
- F Grases
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research(IUNICS), University of Balearic Islands, Palma of Mallorca, Spain.
| | - O Söhnel
- University of J.E. Purkyně, Faculty of Environmental Studies, Ústí n.L, Czech Republic
| |
Collapse
|
7
|
Tejo Riquelme PA, Diaz Isenrath GB, Andino N, Borghi CE. Renal intraspecific variation along an aridity gradient detected by new renal indices in a desert herbivorous rodent. ACTA ACUST UNITED AC 2014; 321:348-56. [PMID: 24799362 DOI: 10.1002/jez.1863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/08/2022]
Abstract
Mammals that live in arid and semi-arid environments in South America present physiological mechanisms that enable them to conserve water. Body water is lost through the kidneys, lungs, skin, and intestines. Regarding renal adaptation for water conservation, several indices have been used to estimate the capacity of the kidneys to produce a maximum urine concentration. Most studies were conducted at an inter-specific level, with only few performed at the intraspecific level. In this work, we compare renal function and morphology among five populations of Southern mountain cavy, Microcavia australis, present along an aridity gradient. We hypothesized that individuals from drier zones would present morphological and functional renal modifications that imply a greater capability to conserve body water. These features were studied considering the classical indices (RMT, PMT, PMA, and RMA) and three new indices that consider area measurements; the latter showed to be more adequate to reflect intraspecific differences. Our results suggest that the morphological modifications of kidneys, that is, the greater areas of renal inner medulla, would be related to the aridity gradient where populations of Southern mountain cavy occur.
Collapse
Affiliation(s)
- Patricia A Tejo Riquelme
- Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Rivadavia, San Juan, Argentina
| | | | | | | |
Collapse
|
8
|
Moss R, Thomas SR. Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis. Am J Physiol Renal Physiol 2013; 306:F224-48. [PMID: 24107423 DOI: 10.1152/ajprenal.00089.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a lumped-nephron model that explicitly represents the main features of the underlying physiology, incorporating the major hormonal regulatory effects on both tubular and vascular function, and that accurately simulates hormonal regulation of renal salt and water excretion. This is the first model to explicitly couple glomerulovascular and medullary dynamics, and it is much more detailed in structure than existing whole organ models and renal portions of multiorgan models. In contrast to previous medullary models, which have only considered the antidiuretic state, our model is able to regulate water and sodium excretion over a variety of experimental conditions in good agreement with data from experimental studies of the rat. Since the properties of the vasculature and epithelia are explicitly represented, they can be altered to simulate pathophysiological conditions and pharmacological interventions. The model serves as an appropriate starting point for simulations of physiological, pathophysiological, and pharmacological renal conditions and for exploring the relationship between the extrarenal environment and renal excretory function in physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Robert Moss
- Mathematics Dept., Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|
9
|
Liu N, Patzak A, Sendeski MM. Nitric oxide and reactive oxygen species in renal medulla pathophysiology - so small yet so special: the renal medulla. Acta Physiol (Oxf) 2013; 208:144-7. [PMID: 23374156 DOI: 10.1111/apha.12075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Andreas Patzak
- Charité-Universitaetsmedizin Berlin; Institute fuer Vegetative Physiologie; Berlin; Germany
| | - Mauricio M. Sendeski
- Charité-Universitaetsmedizin Berlin; Institute fuer Vegetative Physiologie; Berlin; Germany
| |
Collapse
|
10
|
Tripathi D, Pandey S, Siddiqui A, Bég OA. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system. Comput Methods Biomech Biomed Engin 2012; 17:591-603. [DOI: 10.1080/10255842.2012.703660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|