1
|
Shi Q, Malik H, Crawford RM, Streeter J, Wang J, Huo R, Shih JC, Chen B, Hall D, Abel ED, Song LS, Anderson EJ. Cardiac monoamine oxidase-A inhibition protects against catecholamine-induced ventricular arrhythmias via enhanced diastolic calcium control. Cardiovasc Res 2024; 120:596-611. [PMID: 38198753 PMCID: PMC11074799 DOI: 10.1093/cvr/cvae012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
AIMS A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Calcium/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Catecholamines/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diastole/drug effects
- Disease Models, Animal
- Heart Rate/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Monoamine Oxidase/metabolism
- Monoamine Oxidase Inhibitors/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phosphorylation
- Reactive Oxygen Species/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Tachycardia, Ventricular/enzymology
- Tachycardia, Ventricular/physiopathology
Collapse
Affiliation(s)
- Qian Shi
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
| | - Hamza Malik
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
| | - Rachel M Crawford
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave., Iowa City, IA 52242, USA
| | - Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
| | - Jinxi Wang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
| | - Ran Huo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave., Iowa City, IA 52242, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Biyi Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
| | - Duane Hall
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, CBRB 2267285, Newton Rd, Iowa City, IA 52242, USA
| | - E Dale Abel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, CBRB 2267285, Newton Rd, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, 169 Newton Rd, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52242, USA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, CBRB 2267285, Newton Rd, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, 169 Newton Rd, Iowa City, IA 52242, USA
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 S Grand Ave., Iowa City, IA 52242, USA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, CBRB 2267285, Newton Rd, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, 169 Newton Rd, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Gómez-Viquez NL, Balderas-Villalobos J, Bello-Sánchez MD, Mayorga-Luna M, Mailloux-Salinas P, García-Castañeda M, Ríos-Pérez EB, Mártinez-Ávila MA, Camacho-Castillo LDC, Bravo G, Ávila G, Altamirano J, Carvajal K. Oxidative stress in early metabolic syndrome impairs cardiac RyR2 and SERCA2a activity and modifies the interplay of these proteins during Ca 2+ waves. Arch Physiol Biochem 2023; 129:1058-1070. [PMID: 33689540 DOI: 10.1080/13813455.2021.1895224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
We investigated how oxidative stress (OS) alters Ca2+ handling in ventricular myocytes in early metabolic syndrome (MetS) in sucrose-fed rats. The effects of N-acetyl cysteine (NAC) or dl-Dithiothreitol (DTT) on systolic Ca2+ transients (SCaTs), diastolic Ca2+ sparks (CaS) and Ca2+ waves (CaW), recorded by confocal techniques, and L-type Ca2+ current (ICa), assessed by whole-cell patch clamp, were evaluated in MetS and Control cells. MetS myocytes exhibited decreased SCaTs and CaS frequency but unaffected CaW propagation. In Control cells, NAC/DTT reduced RyR2/SERCA2a activity blunting SCaTs, CaS frequency and CaW propagation, suggesting that basal ROS optimised Ca2+ signalling by maintaining RyR2/SERCA2a function and that these proteins facilitate CaW propagation. Conversely, NAC/DTT in MetS recovered RyR2/SERCA2a function, improving SCaTs and CaS frequency, but unexpectedly decreasing CaW propagation. We hypothesised that OS decreases RyR2/SERCA2a activity at early MetS, and while decreased SERCA2a favours CaW propagation, diminished RyR2 restrains it.
Collapse
Affiliation(s)
- Norma Leticia Gómez-Viquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Jaime Balderas-Villalobos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ma Dolores Bello-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Maritza Mayorga-Luna
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Patrick Mailloux-Salinas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Maricela García-Castañeda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Erick Benjamín Ríos-Pérez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | - Guadalupe Bravo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Guillermo Ávila
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Ciudad de México, México
| |
Collapse
|
3
|
Role of thyroid hormones-induced oxidative stress on cardiovascular physiology. Biochim Biophys Acta Gen Subj 2022; 1866:130239. [PMID: 36064072 DOI: 10.1016/j.bbagen.2022.130239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 08/09/2022] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (THs) play an essential role in the maintenance of cardiovascular homeostasis and are involved in the modulation of cardiac contractility, heart rate, diastolic function, systemic vascular resistance, and vasodilation. THs have actions on cardiovascular physiology through the activation or repression of target genes or the activation of intracellular signals through non-genomic mechanisms. Hyperthyroidism alters certain intracellular pathways involved in the preservation of the structure and functionality of the heart, causing relevant cardiovascular disorders. Reactive oxygen species (ROS) play an important role in the cardiovascular system, but the exacerbated increase in ROS caused by chronic hyperthyroidism together with regulation on the antioxidant system have been associated with the development of cardiovascular dysfunction. In this review, we analyze the role of THs-induced oxidative stress in the cellular and molecular changes that lead to cardiac dysfunction, as well as the effectiveness of antioxidant treatments in attenuating cardiac abnormalities developed during hyperthyroidism.
Collapse
|
4
|
Reid MB. Redox Implications of Extreme Task Performance: The Case in Driver Athletes. Cells 2022; 11:cells11050899. [PMID: 35269521 PMCID: PMC8909750 DOI: 10.3390/cells11050899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Redox homeostasis and redox-mediated signaling mechanisms are fundamental elements of human biology. Physiological levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) modulate a range of functional processes at the cellular, tissue, and systemic levels in healthy humans. Conversely, excess ROS or RNS activity can disrupt function, impairing the performance of daily activities. This article analyzes the impact of redox mechanisms on extreme task performance. Such activities (a) require complex motor skills, (b) are physically demanding, (c) are performed in an extreme environment, (d) require high-level executive function, and (e) pose an imminent risk of injury or death. The current analysis utilizes race car driving as a representative example. The physiological challenges of this extreme task include physical exertion, g loading, vibration, heat exposure, dehydration, noise, mental demands, and emotional factors. Each of these challenges stimulates ROS signaling, RNS signaling, or both, alters redox homeostasis, and exerts pro-oxidant effects at either the tissue or systemic levels. These redox mechanisms appear to promote physiological stress during race car driving and impair the performance of driver athletes.
Collapse
Affiliation(s)
- Michael B Reid
- College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Membrane cholesterol oxidation downregulates atrial β-adrenergic responses in ROS-dependent manner. Cell Signal 2020; 67:109503. [DOI: 10.1016/j.cellsig.2019.109503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 01/06/2023]
|
6
|
Plačková P, Šála M, Šmídková M, Dejmek M, Hřebabecký H, Nencka R, Thibaut HJ, Neyts J, Mertlíková-Kaiserová H. 9-Norbornyl-6-chloropurine (NCP) induces cell death through GSH depletion-associated ER stress and mitochondrial dysfunction. Free Radic Biol Med 2016; 97:223-235. [PMID: 27288283 DOI: 10.1016/j.freeradbiomed.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED 9-Norbornyl-6-chloropurine (NCP) is a representative of a series of antienteroviral bicycle derivatives with selective cytotoxicity towards leukemia cell lines. In this work we explored the mechanism of the antileukemic activity of NCP in T-cell lymphoblast cells (CCRF-CEM). Specifically, we searched for a potential link between its ability to induce cell death on the one hand and to modulate intracellular glutathione (GSH) that is necessary to its metabolic transformation via glutathione-S-transferase on the other hand. We have observed that GSH levels decreased rapidly in NCP-treated cells. Despite a complete regeneration following 24h of incubation with NCP, this profound drop in cellular GSH content triggered ER stress, ROS production and lipid peroxidation leading to the loss of mitochondrial membrane potential (MMP). These events induced concentration-dependent cell cycle arrest in G2/M phase and apoptosis. Both MMP loss and apoptosis were reversed by sulfhydryl-containing compounds (GSH, N-acetyl-l-cysteine). Furthermore, we have also shown that NCP-induced GSH decrease activated the Nrf2 pathway and its downstream targets NAD(P)H quinone oxidoreductase (NQO-1) and glutamate cysteine ligase modifier subunit (GCLm), thus explaining the fast restoration of GSH pool and ROS decrease. Importantly, we confirmed that the cell death-inducing properties of the compounds were co-dependent on their ability to diminish cellular GSH level by analyzing the relationships between the GSH-depleting potency and cytotoxicity in a series of other norbornylpurine analogs. Altogether, the results demonstrated that in CCRF-CEM cells NCP triggered apoptosis through GSH depletion-associated oxidative and ER stress and mitochondrial depolarization.
Collapse
Affiliation(s)
- Pavla Plačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic
| | - Hendrik-Jan Thibaut
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
7
|
Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res Cardiol 2015; 111:2. [DOI: 10.1007/s00395-015-0521-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
|
8
|
Odnoshivkina UG, Sytchev VI, Nurullin LF, Giniatullin AR, Zefirov AL, Petrov AM. β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur J Pharmacol 2015; 765:140-53. [PMID: 26297975 DOI: 10.1016/j.ejphar.2015.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
Fenoterol, a β2-adrenoceptor agonist, has anti-apoptotic action in cardiomyocytes and induces a specific pattern of downstream signaling. We have previously reported that exposure to fenoterol (5 μM) results in a delayed positive inotropic effect which is related to changes in both Ca2+ transient and NO. Here, the changes in reactive oxygen species (ROS) production in response to the fenoterol administration and the involvement of ROS in effect of this agonist on contractility were investigated in mouse isolated atria. Stimulation of β2-adrenoceptor increases a level of extracellular ROS, while intracellular ROS level rises only after removal of fenoterol from the bath. NADPH-oxidase inhibitor (apocynin) prevents the increase in ROS production and the Nox2 isoform is immunofluorescently colocalized with β2-adrenoceptor at the atrial myocytes. Treatments with antioxidants (N-acetyl-L-cysteine, NADPH inhibitors, exogenous catalases) significantly inhibit the fenoterol induced increase in the contraction amplitude, probably by attenuating Ca2+ transient and up-regulating NO production. ROS generated in a β2-adrenoceptor-dependent manner can potentiate the activity of some Ca2+ channels. Indeed, inhibition of ryanodine receptors, TRPV-or L-type Ca2+- channels shows a similar efficacy in reduction of positive inotropic effect of both fenoterol and H2O2. In addition, detection of mitochondrial ROS indicates that fenoterol triggers a slow increase in ROS which is prevented by rotenone, but rotenone has no impact on the inotropic effect of fenoterol. We suggest that stimulation of β2-adrenoceptor with fenoterol causes the activation of NADPH-oxidase and after the agonist removal extracellularly generated ROS penetrates into the cell, increasing the atrial contractions probably via Ca2+ channels.
Collapse
Affiliation(s)
- Ulia G Odnoshivkina
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Vaycheslav I Sytchev
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Leniz F Nurullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Biophysics of Synaptic Processes, Lobatchevsky str. 2/31, P.O. 30, Kazan 420111, Russia
| | - Arthur R Giniatullin
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Andrei L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Alexey M Petrov
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia.
| |
Collapse
|
9
|
Crochemore C, Mekki M, Corbière C, Karoui A, Noël R, Vendeville C, Vaugeois JM, Monteil C. Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles. Free Radic Res 2015; 49:331-7. [PMID: 25689624 DOI: 10.3109/10715762.2015.1006212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) subpopulations display distinct biochemical, morphological, and functional characteristics. Moreover, they appear to be differently influenced during cardiac pathologies or toxic injuries. Although mitochondrial reactive oxygen species seem to play a critical role in cardiac function and diseases, limited information exists about the superoxide production characteristics of these mitochondrial subpopulations. In this work, using direct measurement of superoxide by electron paramagnetic resonance, we showed that differences in superoxide production profiles were present between cardiac IFM and SSM, in terms of intensity and major sites of superoxide generation. In SSM incubated with glutamate plus malate as substrates, the total observed superoxide levels were significantly higher than those observed with IFM, with an important contribution of the NADH-oxidizing site of complex I (site If) and the quinol-oxidizing site of complex III (site IIIQ0). In both IFM and SSM, succinate leads to similar rates of total superoxide levels with a substantial role for contribution of reverse electron transfer. Finally, using two spin probes with different membrane permeabilities, our data on complex III showed direct intra- and extra-mitochondrial superoxide release whereas complex I- and II-dependent superoxide were exclusively released inside the mitochondria, confirming previous studies. Feasibility of this approach to measure intra- and extra-mitochondrial superoxide levels and to characterize distinct superoxide production profiles of cardiac IFM and SSM has been demonstrated.
Collapse
Affiliation(s)
- C Crochemore
- Normandy University, Univ Rouen , ABTE EA 4651 , France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosenberger C, Fähling M. Selective endothelin inhibition in diabetic nephropathy: is it the icing on the cake? Acta Physiol (Oxf) 2014; 212:1-4. [PMID: 24947550 DOI: 10.1111/apha.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C. Rosenberger
- Institute of Nephrology and Renal Transplantation; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - M. Fähling
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
11
|
Carvajal K, Balderas-Villalobos J, Bello-Sanchez MD, Phillips-Farfán B, Molina-Muñoz T, Aldana-Quintero H, Gómez-Viquez NL. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress. Cell Calcium 2014; 56:408-15. [PMID: 25168907 DOI: 10.1016/j.ceca.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022]
Abstract
Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling.
Collapse
Affiliation(s)
- Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Jaime Balderas-Villalobos
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico; Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ma Dolores Bello-Sanchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Tzindilu Molina-Muñoz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hugo Aldana-Quintero
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Norma L Gómez-Viquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
12
|
Exposure to intrauterine inflammation leads to impaired function and altered structure in the preterm heart of fetal sheep. Clin Sci (Lond) 2014; 127:559-69. [DOI: 10.1042/cs20140097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intrauterine inflammation gives rise to a reduction in the number and an increase in maturity of cardiac cells in the hearts of fetal lambs. This was accompanied by suppression of contractile function and enhanced vulnerability of the heart to reperfusion injury and stress.
Collapse
|
13
|
Kolseth SM, Rolim NPL, Salvesen Ø, Nordhaug DO, Wahba A, Høydal MA. Levosimendan improves contractility in vivo and in vitro in a rodent model of post-myocardial infarction heart failure. Acta Physiol (Oxf) 2014; 210:865-74. [PMID: 24495280 DOI: 10.1111/apha.12248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/18/2013] [Accepted: 01/30/2014] [Indexed: 01/09/2023]
Abstract
AIM As few studies have presented a thorough analysis of the effect of levosimendan (LEV) on contractility, our purpose was to investigate in vivo cardiac function as well as in vitro cardiomyocyte function and calcium (Ca(2+) ) handling following LEV treatment. METHODS Rats with post-myocardial infarction heart failure (HF) induced by ligation of the left anterior descending coronary artery and sham-operated animals were randomized to the infusion of LEV (2.4 μg kg(-1) min(-1) ) or vehicle for 40 min. Echocardiographic examination was coupled to pressure-volume sampling in the left ventricle before (B) and after (40 min) infusion. Isolated left ventricular cardiomyocytes were studied in an epifluorescence microscope. RESULTS HF LEV (n = 6), HF vehicle (n = 7), sham LEV (n = 5) and sham vehicle (n = 6) animals were included. LEV infusion compared to vehicle in HF animals reduced left ventricular end-diastolic pressure and mean arterial pressure (both P < 0.001) and improved the slope of the preload-recruitable stroke work (P < 0.05). Administrating LEV to HF cardiomyocytes in vitro improved fractional shortening and Ca(2+) sensitivity index ratio, and increased the diastolic Ca(2+) (all P < 0.01). CONCLUSION In HF animals, LEV improved the contractility by increasing the Ca(2+) sensitivity. Furthermore loading conditions were changed, and LEV could consequently change organ perfusion. An observed increase in diastolic Ca(2+) following LEV treatment and clinical implications of this should be further addressed.
Collapse
Affiliation(s)
- S. M. Kolseth
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - N. P. L. Rolim
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- K.G. Jebsen Center of Exercise in Medicine; Trondheim Norway
| | - Ø. Salvesen
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - D. O. Nordhaug
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Cardiothoracic Surgery; St Olav's University Hospital; Trondheim Norway
| | - A. Wahba
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- K.G. Jebsen Center of Exercise in Medicine; Trondheim Norway
- Department of Cardiothoracic Surgery; St Olav's University Hospital; Trondheim Norway
| | - M. A. Høydal
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- K.G. Jebsen Center of Exercise in Medicine; Trondheim Norway
- Norwegian Council on Cardiovascular Disease; Trondheim Norway
| |
Collapse
|
14
|
Wang YG, Li Y, Wang CY, Ai JW, Dong XY, Huang HY, Feng ZY, Pan YM, Lin Y, Wang BX, Yao LL. L-3-n-Butylphthalide protects rats' cardiomyocytes from ischaemia/reperfusion-induced apoptosis by affecting the mitochondrial apoptosis pathway. Acta Physiol (Oxf) 2014; 210:524-33. [PMID: 24286671 DOI: 10.1111/apha.12186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/24/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
AIMS This study investigated the role of L-3-n-Butylphthalide (NBP) in cardiac protection. METHODS The left anterior descending coronary arteries (LAD) of the rats were occluded for 30 min following by 2-h reperfusion to make the ischaemia/reperfusion models. Neonatal cardiomyocytes were cultured and subjected to hypoxia. L-3-n-Butylphthalide was administered intraperitoneally 2 h before the surgery and right after the reperfusion in the in vivo experiments or added to the culture medium in vitro. Haemodynamic parameters were recorded to evaluate the cardiac functions, triphenyltetrazolium chloride (TTC) and Evens blue staining were used to determine the area of risk and infarct area, apoptotic cell numbers were counted with terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. Western blotting was used to determine the apoptotic protein levels and immune staining to determine the translocation of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein. RESULTS Our research showed for the first time that L-3-n-Butylphthalide had great effects in improving cardiac hemodynamic function and decreasing cardiac infarct areas and apoptotic cell numbers in the peri-infarct areas. The apoptotic signals investigation showed that L-3-n-Butylphthalide affected the mitochondrial pathway including Bcl-2 protein expression, inhibition of caspase 3 activation and cytochrome C releasing. Besides, Glyceraldehyde-3-phosphate dehydrogenase protein translocation was inhibited by L-3-n-Butylphthalide treatment, and this effect was mediated by endogenous reactive oxygen species (ROS). CONCLUSION L-3-n-Butylphthalide protects cardiomyocytes from ischaemia/reperfusion-induced apoptosis by antioxidant effect and affecting mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Y.-G. Wang
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - Y. Li
- Anesthesia Department of Zhongshan Hospital Affiliated to Fudan University; Shanghai China
| | - C.-Y. Wang
- Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education; FuWai Hospital; Chinese Academy of Medical Sciences; Beijing China
| | - J.-W. Ai
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| | - X.-Y. Dong
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| | - H.-Y. Huang
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| | - Z.-Y. Feng
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - Y.-M. Pan
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - Y. Lin
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - B.-X. Wang
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - L.-L. Yao
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| |
Collapse
|
15
|
Persson AB, Persson PB. Dealing with radicals. Acta Physiol (Oxf) 2014; 210:2-4. [PMID: 24279518 DOI: 10.1111/apha.12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Bondke Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
16
|
Schmerbach K, Patzak A. Pathophysiological mechanisms in acute mountain sickness. Acta Physiol (Oxf) 2013; 209:246-9. [PMID: 24119164 DOI: 10.1111/apha.12175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K. Schmerbach
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
17
|
Activation of intracellular matrix metalloproteinase-2 by reactive oxygen–nitrogen species: Consequences and therapeutic strategies in the heart. Arch Biochem Biophys 2013; 540:82-93. [DOI: 10.1016/j.abb.2013.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
|
18
|
Affiliation(s)
- A. Bondke Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| |
Collapse
|
19
|
Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 2012; 14:434-56. [PMID: 23263672 PMCID: PMC3565273 DOI: 10.3390/ijms14010434] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/01/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.
Collapse
Affiliation(s)
- Bidur Bhandary
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Anu Marahatta
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, Dental School, Wonkwang University, Iksan 570-749, South Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| |
Collapse
|
20
|
He R, Ju X, Yuan J, Wang L, Girgih AT, Aluko RE. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.08.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|