1
|
de Wijs‐Meijler DPM, Duncker DJ, Danser AHJ, Reiss IKM, Merkus D. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease. Physiol Rep 2018; 6:e13889. [PMID: 30375198 PMCID: PMC6205946 DOI: 10.14814/phy2.13889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neonatal pulmonary vascular disease (PVD) is increasingly recognized as a disease that complicates the cardiopulmonary adaptations after birth and predisposes to long-term cardiopulmonary disease. There is growing evidence that PVD is associated with disruptions in the nitric oxide (NO)-cGMP-phosphodiesterase 5 (PDE5) pathway. Examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of neonatal PVD. For this purpose, the role of the NO-cGMP-PDE5 pathway in regulation of pulmonary vascular function was investigated in vivo, both at rest and during exercise, and in isolated pulmonary small arteries in vitro, in a neonatal swine model with hypoxia-induced PVD. Endothelium-dependent vasodilatation was impaired in piglets with hypoxia-induced PVD both in vivo at rest and in vitro. Moreover, the responsiveness to the NO-donor SNP was reduced in hypoxia-exposed piglets in vivo, while the relaxation to SNP and 8-bromo-cyclicGMP in vitro were unaltered. Finally, PDE5 inhibition-induced pulmonary vasodilatation was impaired in hypoxia-exposed piglets both in vitro and in vivo at rest. During exercise, however, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in hypoxia-exposed as compared to normoxia-exposed piglets. In conclusion, the impaired endothelium-dependent vasodilatation in piglets with hypoxia-induced PVD was accompanied by reduced responsiveness to NO, potentially caused by altered sensitivity and/or activity of soluble guanylyl cyclase (sGC), resulting in an impaired cGMP production. Our findings in a newborn animal model for neonatal PVD suggests that sGC stimulators/activators may be a novel treatment strategy to alleviate neonatal PVD.
Collapse
Affiliation(s)
- Daphne P. M. de Wijs‐Meijler
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Dirk J. Duncker
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of PharmacologyDepartment of Internal MedicineErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - Irwin K. M. Reiss
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Daphne Merkus
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| |
Collapse
|
2
|
Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases. Nitric Oxide 2018; 77:88-95. [PMID: 29738821 DOI: 10.1016/j.niox.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The NO/sGC/cGMP signaling cascade plays a pivotal role in regulation of cardiovascular, cardiopulmonary and cardiorenal diseases and impairment of this cascade results in severe pathologies. Therefore, pharmacological interventions, targeting this pathway are promising strategies for treating a variety of diseases. Nitrates, supplementing NO and, PDE5 inhibitors preventing cGMP degradation, are used for angina pectoris treatment and the treatment of pulmonary arterial hypertension (PAH), respectively. More recently, a new class of drugs which directly stimulate the sGC enzyme and trigger NO-independent cGMP production was introduced and termed sGC stimulators. In 2013, the first sGC stimulator, riociguat, was approved for the treatment of PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Since cGMP targets multiple intracellular downstream targets, sGC stimulators have shown - beyond the well characterized vasodilatation - anti-fibrotic, anti-inflammatory and anti-proliferative effects. These additional modes of action might extend the therapeutic potential of this drug class substantially. This review summarizes the NO/sGC/cGMP signaling cascades, the discovery and the mode of action of sGC stimulators. Furthermore, the preclinical evidence and development of riociguat for the treatment of PAH and CTEPH is reviewed. Finally, a summary of the antifibrotic effects of sGC stimulators, especially the most recent finding for skin fibrosis are included which may indicate efficacy in fibrotic diseases like Systemic Sclerosis (SSc).
Collapse
|
3
|
Alogna A, Schwarzl M, Manninger M, Hamdani N, Zirngast B, Kloth B, Steendijk P, Verderber J, Zweiker D, Westermann D, Blankenberg S, Maechler H, Tschöpe C, Linke WA, Marsche G, Pieske BM, Post H. Acute stimulation of the soluble guanylate cyclase does not impact on left ventricular capacitance in normal and hypertrophied porcine hearts in vivo. Am J Physiol Heart Circ Physiol 2018; 315:H669-H680. [PMID: 29727215 DOI: 10.1152/ajpheart.00510.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental data indicate that stimulation of the nitric oxide-soluble guanylate cyclase(sGC)-cGMP-PKG pathway can increase left ventricular (LV) capacitance via phosphorylation of the myofilamental protein titin. We aimed to test whether acute pharmacological sGC stimulation with BAY 41-8543 would increase LV capacitance via titin phosphorylation in healthy and deoxycorticosteroneacetate (DOCA)-induced hypertensive pigs. Nine healthy Landrace pigs and 7 pigs with DOCA-induced hypertension and LV concentric hypertrophy were acutely instrumented to measure LV end-diastolic pressure-volume relationships (EDPVRs) at baseline and during intravenous infusion of BAY 41-8543 (1 and 3 μg·kg-1·min-1 for 30 min, respectively). Separately, in seven healthy and six DOCA pigs, transmural LV biopsies were harvested from the beating heart to measure titin phosphorylation during BAY 41-8543 infusion. LV EDPVRs before and during BAY 41-8543 infusion were superimposable in both healthy and DOCA-treated pigs, whereas mean aortic pressure decreased by 20-30 mmHg in both groups. Myocardial titin phosphorylation was unchanged in healthy pigs, but total and site-specific (Pro-Glu-Val-Lys and N2-Bus domains) titin phosphorylation was increased in DOCA-treated pigs. Bicoronary nitroglycerin infusion in healthy pigs ( n = 5) induced a rightward shift of the LV EDPVR, demonstrating the responsiveness of the pathway in this model. Acute systemic sGC stimulation with the sGC stimulator BAY 41-8543 did not recruit an LV preload reserve in both healthy and hypertrophied LV porcine myocardium, although it increased titin phosphorylation in the latter group. Thus, increased titin phosphorylation is not indicative of increased in vivo LV capacitance. NEW & NOTEWORTHY We demonstrate that acute pharmacological stimulation of soluble guanylate cyclase does not increase left ventricular compliance in normal and hypertrophied porcine hearts. Effects of long-term soluble guanylate cyclase stimulation with oral compounds in disease conditions associated with lowered myocardial cGMP levels, i.e., heart failure with preserved ejection fraction, remain to be investigated.
Collapse
Affiliation(s)
- Alessio Alogna
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| | - Michael Schwarzl
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf , Hamburg , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Hamburg/Kiel/Lübeck, Hamburg , Germany
| | - Martin Manninger
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz , Graz , Austria
| | - Nazha Hamdani
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Birgit Zirngast
- Department of Cardiothoracic Surgery, Medical University of Graz , Graz , Austria
| | - Benjamin Kloth
- Department of Cardiovascular Surgery, University Heart Center Hamburg-Eppendorf , Hamburg , Germany
| | - Paul Steendijk
- Department of Cardiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Jochen Verderber
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz , Graz , Austria
| | - David Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz , Graz , Austria
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf , Hamburg , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Hamburg/Kiel/Lübeck, Hamburg , Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf , Hamburg , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Hamburg/Kiel/Lübeck, Hamburg , Germany
| | - Heinrich Maechler
- Department of Cardiothoracic Surgery, Medical University of Graz , Graz , Austria
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz , Graz , Austria
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| | - Heiner Post
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
5
|
Wu JR, Kao LP, Wu BN, Dai ZK, Wang YY, Chai CY, Chen IJ. Buffered l-ascorbic acid, alone or bound to KMUP-1 or sildenafil, reduces vascular endothelium growth factor and restores endothelium nitric oxide synthase in hypoxic pulmonary artery. Kaohsiung J Med Sci 2015; 31:241-54. [PMID: 25910559 DOI: 10.1016/j.kjms.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/26/2022] Open
Abstract
Ascorbic acid bound to KMUP-1 and sildenafil were examined for their antioxidant effects on vascular endothelium growth factor (VEGF) and endothelium nitric oxide synthase (eNOS) in hypoxic pulmonary artery (PA). Inhaled KMUP-1 and oral sildenafil released NO from eNOS. The effect of buffered l-ascorbic acid, alone and bound to KMUP-1 or sildenafil, for treating pulmonary arterial hypertension (PAH) is unclear. In this study, the antioxidant capacity of ascorbic acid increased the beneficial effects of KMUP-1 on PAH. KMUP-1A and sildenafil-A (5 mg/kg/d) were administered to hypoxic PAH rats. Pulmonary artery blood pressure, and VEGF, Rho kinase II (ROCK II), eNOS, soluble guanylate cyclase (sGC-α), and protein kinase G expression in lung tissues were measured to link PAH and right ventricular hypertrophy. Hypoxic rats had higher pulmonary artery blood pressure, greater PA medial wall thickness and cardiac weight, and a higher right ventricle/left ventricle + septum [RV/(LV+S)] ratio than normoxic rats. Oral KMUP-1A or sildenafil-A for 21 days in hypoxia prevented the rarefaction of eNOS in immunohistochemistry (IHC), reduced the IHC of VEGF in PAs, restored eNOS/protein kinase G/phosphodiesterase 5A; unaffected sGC-α and inactivated ROCK II expression were also found in lung tissues. In normoxic PA, KMUP-1A/Y27632 (10μM) increased eNOS and reduced ROCK II. ROCK II/reactive oxidative species was increased and eNOS was reduced after long-term hypoxia for 21 days. KMUP-1A or Y27632 blunted ROCK II in short-term hypoxic PA at 24 hours. l-Ascorbic acid + l-sodium ascorbate (40, 80μM) buffer alone directly inhibited the IHC of VEGF in hypoxic PA. Finally, KMUP-1A or sildenafil-A reduced PAH and associated right ventricular hypertrophy.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Pin Kao
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ya Wang
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Dasgupta A, Bowman L, D'Arsigny CL, Archer SL. Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Clin Pharmacol Ther 2014; 97:88-102. [PMID: 25670386 DOI: 10.1002/cpt.10] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) activates soluble guanylate cyclase (sGC) by binding its prosthetic heme group, thereby catalyzing cyclic guanosine monophosphate (cGMP) synthesis. cGMP causes vasodilation and may inhibit smooth muscle cell proliferation and platelet aggregation. The NO-sGC-cGMP pathway is disordered in pulmonary arterial hypertension (PAH), a syndrome in which pulmonary vascular obstruction, inflammation, thrombosis, and constriction ultimately lead to death from right heart failure. Expression of sGC is increased in PAH but its function is reduced by decreased NO bioavailability, sGC oxidation and the related loss of sGC's heme group. Two classes of sGC modulators offer promise in PAH. sGC stimulators (e.g., riociguat) require heme-containing sGC to catalyze cGMP production, whereas sGC activators (e.g., cinaciguat) activate heme-free sGC. Riociguat is approved for PAH and yields functional and hemodynamic benefits similar to other therapies. Its main serious adverse effect is dose-dependent hypotension. Riociguat is also approved for inoperable chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- A Dasgupta
- Department of Medicine, Queen's University, Etherington Hall, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr Opin Nephrol Hypertens 2014; 23:135-42. [PMID: 24419369 DOI: 10.1097/01.mnh.0000441048.91041.3a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Nitric oxide (NO)-soluble guanylate cyclase (sGC)-dependent signaling mechanisms have a profound effect on the regulation of blood pressure (BP). In this review, we will discuss recent findings in the field that support the importance of sGC in the development of hypertension. RECENT FINDINGS The importance of sGC in BP regulation was highlighted by studies using genetically modified animal models, chemical stimulators/activators and inhibitors of the NO/sGC signaling pathway, and genetic association studies in humans. Many studies further support the role of NO/sGC in vasodilation and vascular dysfunction, which is underscored by the early clinical success of synthetic sGC stimulators for the treatment of pulmonary hypertension. Recent work has uncovered more details about the structural basis of sGC activation, enabling the development of more potent and efficient modulators of sGC activity. Finally, the mechanisms involved in the modulation of sGC by signaling gases other than NO, as well as the influence of redox signaling on sGC, have been the subject of several interesting studies. SUMMARY sGC is fast becoming an interesting therapeutic target for the treatment of vascular dysfunction and hypertension, with novel sGC stimulating/activating compounds as promising clinical treatment options.
Collapse
|
8
|
Rosenberger C, Fähling M. Selective endothelin inhibition in diabetic nephropathy: is it the icing on the cake? Acta Physiol (Oxf) 2014; 212:1-4. [PMID: 24947550 DOI: 10.1111/apha.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C. Rosenberger
- Institute of Nephrology and Renal Transplantation; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - M. Fähling
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
9
|
Kylhammar D, Bune LT, Rådegran G. P2Y₁ and P2Y₁₂ receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig. Eur J Appl Physiol 2014; 114:1995-2006. [PMID: 24929904 DOI: 10.1007/s00421-014-2921-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the role of P2Y₁ and P2Y₁₂ receptors in hypoxia- and adenosine diphosphate (ADP)-induced pulmonary vasoconstriction. METHODS 19 anaesthetized, mechanically ventilated pigs (31.3 ± 0.7 kg) were evaluated in normoxia and hypoxia, without (n = 6) or with P2Y₁ receptor antagonist MRS2500 (n = 7) or P2Y₁₂ receptor antagonist cangrelor (n = 6) treatment. 12 pigs (29.3 ± 0.4 kg) were evaluated before and during ADP infusion, without and with MRS2500 (n = 6) or cangrelor (n = 6) pre-treatment. RESULTS Hypoxia increased (p < 0.05) mean pulmonary artery pressure (MPAP) by 14.2 ± 1.1 mmHg and pulmonary vascular resistance (PVR) by 2.7 ± 0.4 WU. Without treatment MPAP and PVR remained unaltered (p = ns) for 90 min hypoxia. During hypoxia MRS2500 decreased (p < 0.013) MPAP by 4.3 ± 1.2 mmHg within 15 min. Cangrelor decreased (p < 0.036) MPAP to be 3.3 ± 0.4 and 3.6 ± 0.6 mmHg lower than hypoxia baseline after 10 and 30 min. PVR was, however, unaltered (p = ns) by MRS2500 or cangrelor during hypoxia. ADP increased (p < 0.001) MPAP and PVR to stabilize 11.1 ± 1.3 mmHg and 2.7 ± 0.3 WU higher than baseline. MRS2500 or cangrelor pre-treatment totally abolished the sustained MPAP- and PVR-increases to ADP. CONCLUSIONS ADP elicits pulmonary vasoconstriction through P2Y₁ and P2Y₁₂ receptor activation. ADP is not a mandatory modulator, but may still contribute to pulmonary vascular tone during acute hypoxia. Further investigations into the mechanisms behind ADP-induced pulmonary vasoconstriction and the role of ADP as a modulator of pulmonary vascular tone during hypoxia are warranted.
Collapse
Affiliation(s)
- David Kylhammar
- The Öresund Cardiovascular Research Collaboration, The Section for Heart Failure and Valvular Disease, The Clinic for Heart- and Lung Disease, Skåne University Hospital, 221 85, Lund, Sweden,
| | | | | |
Collapse
|
10
|
Tsou CY, Chen CY, Zhao JF, Su KH, Lee HT, Lin SJ, Shyue SK, Hsiao SH, Lee TS. Activation of soluble guanylyl cyclase prevents foam cell formation and atherosclerosis. Acta Physiol (Oxf) 2014; 210:799-810. [PMID: 24299003 DOI: 10.1111/apha.12210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/22/2013] [Accepted: 11/28/2013] [Indexed: 12/11/2022]
Abstract
AIMS Soluble guanylyl cyclase (sGC) is a key modulator in the regulation of vascular tone. However, its role and involving mechanism in cholesterol metabolism of macrophages and atherosclerosis remain unclear. METHODS Oil red O staining, Dil-oxidized low-density lipoprotein (oxLDL)-binding assay and cholesterol efflux assay were performed in biology of foam cells. Levels of cytokines or intracellular lipid were evaluated by ELISA or colorimetric kits. Expression of gene or protein was determined by quantitative real-time PCR or Western blotting. Histopathology was examined by haematoxylin and eosin staining. RESULTS Soluble guanylyl cyclase was expressed in macrophages of mouse atherosclerotic lesions. Treatment with 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, sGC inhibitor) exacerbated oxLDL-induced cholesterol accumulation in macrophages. In contrast, 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1, sGC activator) attenuated the oxLDL-induced cholesterol accumulation because of increased cholesterol efflux. Additionally, YC-1 dose dependently increased the protein expression of ATP-binding cassette transporter A1 (ABCA1) but did not alter that of scavenger receptor class A (SR-A), CD36, SR-BI or ABCG1. Moreover, YC-1-upregulated ABCA1 level depended on liver X receptor α (LXRα). Inhibition of the LXRα-ABCA1 pathway by LXRα small interfering RNA (siRNA), ABCA1 neutralizing antibody or ABCA1 siRNA abolished the effect of YC-1 on cholesterol accumulation and cholesterol efflux. In vivo, YC-1 retarded the development of atherosclerosis, accompanied by reduced serum levels of cholesterol and pro-inflammatory cytokines, in apolipoprotein E-deficient mice. CONCLUSION Activation of sGC by YC-1 leads to LXRα-dependent upregulation of ABCA1 in macrophages and may confer protection against atherosclerosis.
Collapse
Affiliation(s)
- C.-Y. Tsou
- Department of Physiology; National Yang-Ming University; Taipei Taiwan
| | - C.-Y. Chen
- Department of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J.-F. Zhao
- Department of Physiology; National Yang-Ming University; Taipei Taiwan
| | - K.-H. Su
- Department of Physiology; National Yang-Ming University; Taipei Taiwan
| | - H.-T. Lee
- Institute of Anatomy and Cell Biology; National Yang-Ming University; Taipei Taiwan
| | - S.-J. Lin
- Division of Cardiology; Department of Internal Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - S.-K. Shyue
- Cardiovascular Division; Institute of Biomedical Sciences; Academia Sinica; Taipei Taiwan
| | - S.-H. Hsiao
- Department of Surgery; Ren-Ai Taipei City Hospital; Taipei Taiwan
| | - T.-S. Lee
- Department of Physiology; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
11
|
Schmerbach K, Patzak A. Pathophysiological mechanisms in acute mountain sickness. Acta Physiol (Oxf) 2013; 209:246-9. [PMID: 24119164 DOI: 10.1111/apha.12175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K. Schmerbach
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
12
|
Schroll S, Lange TJ, Arzt M, Sebah D, Nowrotek A, Lehmann H, Wensel R, Pfeifer M, Blumberg FC. Effects of simvastatin on pulmonary fibrosis, pulmonary hypertension and exercise capacity in bleomycin-treated rats. Acta Physiol (Oxf) 2013; 208:191-201. [PMID: 23527830 DOI: 10.1111/apha.12085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/09/2012] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
AIM Pulmonary fibrosis is often complicated by pulmonary hypertension. Statins reduce fibroblast activity in vitro and pulmonary hypertension in vivo. We investigated whether Simvastatin exerts beneficial effects on pulmonary fibrosis and pulmonary hypertension in Bleomycin-treated rats in vivo. METHODS Rats were randomly assigned to controls, Bleomycin, Bleomycin plus Simvastatin from day 1 to 28 and Bleomycin plus Simvastatin from day 13 to 28. 28 days after Bleomycin instillation, right ventricular systolic pressure (RVSP), right ventricular mass (RV/(LV+S)), right ventricular and circulating brain natriuretic peptide (BNP) levels were determined to assess pulmonary hypertension. Pulmonary hydroxyproline content (HPC), pulmonary connective tissue growth factor (CTGF) transcription and lung compliance (LC) were analysed to characterize pulmonary fibrosis. Exercise capacity was determined by treadmill tests. RESULTS Compared with controls, Bleomycin increased RVSP, RV/(LV+S), BNP levels, HPC and CTGF transcription and decreased LC significantly. Simvastatin administered from day 1 to 28 normalized all these parameters. Simvastatin administered from day 13 to 28 had no effect on HPC and LC, but reduced RV/(LV+S) significantly and induced a strong trend to lower RVSP and BNP levels. Exercise capacity was reduced by Bleomycin. Simvastatin significantly improved exercise intolerance in both treatment groups. CONCLUSIONS Simvastatin prevents the development of pulmonary fibrosis, but fails to attenuate already established pulmonary fibrosis. In contrast, it ameliorates pulmonary hypertension and thereby exercise capacity in the prevention and the treatment group regardless of its effects on pulmonary fibrosis. Whether statins are a treatment option in humans with pulmonary fibrosis needs to be investigated by further study.
Collapse
Affiliation(s)
- S. Schroll
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - T. J. Lange
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - M. Arzt
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - D. Sebah
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - A. Nowrotek
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | - H. Lehmann
- Department of Internal Medicine II; Pneumology; University of Regensburg; Regensburg; Germany
| | | | | | | |
Collapse
|