1
|
Thapa RK, Kim JO. Nanomedicine-based commercial formulations: current developments and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:19-33. [PMID: 36568502 PMCID: PMC9761651 DOI: 10.1007/s40005-022-00607-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Background In recent decades, there has been a considerable increase in the number of nanomedicine-based formulations, and their advantages, including controlled/targeted drug delivery with increased efficacy and reduced toxicity, make them ideal candidates for therapeutic delivery in the treatment of complex and difficult-to-treat diseases, such as cancer. Areas covered This review focuses on nanomedicine-based formulation development, approved and marketed nanomedicines, and the challenges faced in nanomedicine development as well as their future prospects. Expert opinion To date, the Food and Drug Administration and the European Medicines Agency have approved several nanomedicines, which are now commercially available. However, several critical challenges, including reproducibility, proper characterization, and biological evaluation, e.g., via assays, are still associated with their use. Therefore, rigorous studies alongside stringent guidelines for effective and safe nanomedicine development and use are still warranted. In this study, we provide an overview of currently available nanomedicine-based formulations. Thus, the findings here reported may serve as a basis for further studies regarding the use of these formulations for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Pharmacy Program, Gandaki University, Gyankunja, Pokhara-32, Kaski, Nepal
| | - Jong Oh Kim
- grid.413028.c0000 0001 0674 4447College of Pharmacy, Yeungnam University, 214-1 Dae-dong, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|
2
|
Zhao X, Ye Y, Ge S, Sun P, Yu P. Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Curr Top Med Chem 2021; 20:2762-2776. [PMID: 32851962 DOI: 10.2174/1568026620666200826122402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Yun Ye
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Pingping Sun
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ping Yu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
3
|
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, Najib S, Siddiqui NA. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target 2020; 28:468-486. [PMID: 31984810 DOI: 10.1080/1061186x.2020.1722137] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines due to its unique features such as large surface to mass ratio, targeting potential, ability to adsorbed and carry other compound which makes them suitable for biomedical applications. However, the problem of the large-scale synthesis of nanoparticles remains challenging due to physical instability associated with nanoparticles which lead to generation of aggregates particles with high polydispersity index (PDI) indicating low particle homogeneity and eventually loss of their special nanoscale properties. The stabilisation concept can be generated by repulsive electrostatic force, which nanoparticles experience, when they are surrounded by a double layer of electric charges. Selection of proper stabiliser will govern the stability of NPs and ultimately development of optimised drug delivery system. This review summarises mechanism of physical instability issues likely to be encountered during the development of nanoformulations. It also discusses potential stabilising agents used so far and their mechanism in achieving stable nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Waad Aloufi
- Pharmaceutics, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- Pharmaceutical Chemistry, Taif University, Taif, Saudi Arabia
| | - Shehla Najib
- Pharmacognosy and Phytochemistry, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
4
|
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14:93-126. [PMID: 30451076 PMCID: PMC6391637 DOI: 10.2217/nnm-2018-0120] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
- Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran
| | - Omid Gohari
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Burke BP, Cawthorne C, Archibald SJ. Multimodal nanoparticle imaging agents: design and applications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0261. [PMID: 29038384 DOI: 10.1098/rsta.2017.0261] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 05/24/2023]
Abstract
Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Benjamin P Burke
- Department of Chemistry, Cottingham Road, Hull HU6 7RX, UK
- Positron Emission Tomography Research Centre, Cottingham Road, Hull HU6 7RX, UK
| | - Christopher Cawthorne
- Positron Emission Tomography Research Centre, Cottingham Road, Hull HU6 7RX, UK
- School of Life Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Stephen J Archibald
- Department of Chemistry, Cottingham Road, Hull HU6 7RX, UK
- Positron Emission Tomography Research Centre, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
6
|
Janjic JM, Gorantla VS. Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS JOURNAL 2017; 19:1304-1316. [PMID: 28779380 DOI: 10.1208/s12248-017-0129-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Accidental and iatrogenic trauma are major causes of peripheral nerve injury. Healing after nerve injury is complex and often incomplete, which can lead to acute or chronic pain and functional impairment. Current assessment methods for nerve regeneration lack sensitivity and objectivity. There is a need for reliable and reproducible, noninvasive strategies with adequate spatial and temporal resolution for longitudinal evaluation of degeneration or regeneration after injury/treatment. Methods for noninvasive monitoring of the efficacy and effectiveness of neurotherapeutics in nerve regeneration or of neuropathic pain are needed to ensure adequacy and responsiveness to management, especially given the large variability in the patient populations, etiologies, and complexity of nerve injuries. Surrogate biomarkers are needed with positive predictive correlation for the dynamics and kinetics of neuroregeneration. They can provide direct real-time insight into the efficacy and mechanisms of individualized therapeutic intervention. Here, we review the state-of-the-art tools, technologies, and therapies in peripheral nerve injury and regeneration as well as provide perspectives for the future. We present compelling evidence that advancements in nanomedicine and innovation in nanotechnology such as nanotheranostics hold groundbreaking potential as paradigm shifts in noninvasive peripheral nerve imaging and drug delivery. Nanotechnology, which revolutionized molecular imaging in cancer and inflammatory disease, can be used to delineate dynamic molecular imaging signatures of neuroinflammation and neuroregeneration while simultaneously monitoring cellular or tissue response to drug therapy. We believe that current clinical successes of nanotechnology can and should be adopted and adapted to the science of peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, 415 Mellon Hall, Pittsburgh, Pennsylvania, 15282, USA. .,Chronic Pain Research Consortium, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 1602 E. Carson Street, Pittsburgh, Pennsylvania, 15203, USA.
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
7
|
Satalkar P, Elger B, Shaw D. Stakeholder views on participant selection for first-in-human trials in cancer nanomedicine. Curr Oncol 2016; 23:e530-e537. [PMID: 28050141 PMCID: PMC5176378 DOI: 10.3747/co.23.3214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Participant selection for first-in-human (fih) trials involves complex decisions. The trial design makes it unlikely that participants will receive clinically relevant therapeutic benefit, but they are likely to experience risks of various magnitudes and types. The aim of the present paper was to describe and discuss the views of investigators and ethics committee members about the choice of trial participants for fih trials in cancer nanomedicine. METHODS We drew insights from an exploratory qualitative study involving thematic analysis of 46 in-depth interviews with key stakeholders in Europe and North America involved in fih nanomedicine trials. The present work draws on subset of 21 interviews with investigators and ethics committee members who have either conducted or reviewed a fih cancer nanomedicine trial or are planning one. RESULTS Investigators and ethics committee members are aware of the ethics standards for recruiting patients with end-stage cancer into fih trials, but they nonetheless question the practice and provide reasons against it. CONCLUSIONS Although it is a standard and ethically accepted practice to enrol patients with end-stage cancer and no treatment options into fih trials of investigational chemotherapeutic molecules, doing so can threaten the validity and generalizability of the trials, thereby weakening translational research. Another possibility is to stratify and include patients with less advanced disease who demonstrate certain biomarkers or cancer genotypes and who have a disease profile similar to that tested in preclinical studies. The latter approach could be a step toward personalized medical research and targeted drug development. Such a patient selection approach requires multi-stakeholder discussion to reach scientific and ethics consensus.
Collapse
Affiliation(s)
- P. Satalkar
- Institute for Biomedical Ethics, Basel, Switzerland
| | - B.S. Elger
- Institute for Biomedical Ethics, Basel, Switzerland
| | - D.M. Shaw
- Institute for Biomedical Ethics, Basel, Switzerland
| |
Collapse
|
8
|
Genske A, Engel-Glatter S. Rethinking risk assessment for emerging technology first-in-human trials. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2016; 19:125-139. [PMID: 26276449 DOI: 10.1007/s11019-015-9660-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent progress in synthetic biology (SynBio) has enabled the development of novel therapeutic opportunities for the treatment of human disease. In the near future, first-in-human trials (FIH) will be indicated. FIH trials mark a key milestone in the translation of medical SynBio applications into clinical practice. Fostered by uncertainty of possible adverse events for trial participants, a variety of ethical concerns emerge with regards to SynBio FIH trials, including 'risk' minimization. These concerns are associated with any FIH trial, however, due to the novelty of the approach, they become more pronounced for medical applications of emerging technologies (emTech) like SynBio. To minimize potential harm for trial participants, scholars, guidelines, regulations and policy makers alike suggest using 'risk assessment' as evaluation tool for such trials. Conversely, in the context of emTech FIH trials, we believe it to be at least questionable to contextualize uncertainty of potential adverse events as 'risk' and apply traditional risk assessment methods. Hence, this issue needs to be discussed to enable alterations of the evaluation process before the translational phase of SynBio applications begins. In this paper, we will take the opportunity to start the debate and highlight how a misunderstanding of the concept of risk, and the possibilities and limitations of risk assessment, respectively, might impair decision-making by the relevant regulatory authorities and research ethics committees, and discuss possible solutions to tackle the issue.
Collapse
Affiliation(s)
- Anna Genske
- Forschungsstelle Ethik/CERES (Cologne Center for Ethics, Rights, Economics, and Social Sciences of Health), Universität zu Köln, Albertus Magnus-Platz, 50923, Köln, Germany
| | - Sabrina Engel-Glatter
- Institut für Bio- und Medizinethik, Universität Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.
| |
Collapse
|
9
|
Karathanasis E, Ghaghada KB. Crossing the barrier: treatment of brain tumors using nanochain particles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:678-95. [PMID: 26749497 DOI: 10.1002/wnan.1387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022]
Abstract
Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Efstathios Karathanasis
- Department of Biomedical Engineering and Department of Radiology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ketan B Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Abstract
Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.
Collapse
Affiliation(s)
- Joseph J Fins
- Division of Medical Ethics, Weill Cornell Medical College , 435 East 70th Street, Suite 4-J, New York, NY, 10021, USA,
| |
Collapse
|
11
|
Hogle LF. Concepts of risk in nanomedicine research. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:809-22. [PMID: 23289683 DOI: 10.1111/j.1748-720x.2012.00709.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Risk takes center stage in ethical debates over nanomedical technologies. Yet concepts of risk may hold different meanings, and they are embedded within particular political, economic, and social contexts. This article discusses framings of risk in debates over medical innovations such as nanomedicine, and draws attention to organizational and institutional forms of risk which are less visible in bioethical policy debates. While significant, possibly unique risks may exist in specific nano-based products, risk may also arise from the very processes and procedures that develop, test, and oversee any novel technology. This supports recommendations to coordinate efforts through an interagency Working Group and a Secretary-level Advisory Committee to provide flexibility and sensitivity to emerging issues of concern.
Collapse
Affiliation(s)
- Linda F Hogle
- Medical Social Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
King NMP. Nanomedicine first-in-human research: challenges for informed consent. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:823-830. [PMID: 23289684 DOI: 10.1111/j.1748-720x.2012.00710.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Risks of harm, translational uncertainty, ambiguities in potential direct benefit, and long-term follow-up merit consideration in first-in-human research. Some nanomedical technologies have additional characteristics that should be addressed, including: defining and describing nanomedical interventions; bystander risks; the therapeutic misconception; and a decision-making context that includes both common use of nanomaterials outside medicine and persistent unknowns about the effects of nanosize. This paper considers how to address these issues in informed consent to first-in-human nanomedicine research.
Collapse
Affiliation(s)
- Nancy M P King
- Department of Social Sciences and Health Policy and Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, USA
| |
Collapse
|
13
|
Wolf SM. Introduction: the challenge of nanomedicine human subjects research: protecting participants, workers, bystanders, and the environment. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:712-715. [PMID: 23289676 PMCID: PMC4464664 DOI: 10.1111/j.1748-720x.2012.00702.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Susan M Wolf
- University of Minnesota, Consortium on Law and Values in Health, Environment & the Life Sciences, MN, USA
| |
Collapse
|
14
|
Fleege L, Lawrenz F. An empirical examination of the current state of publically available nanotechnology guidance materials. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2012; 40:751-762. [PMID: 23289678 DOI: 10.1111/j.1748-720x.2012.00704.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As part of "Nanodiagnostics and Nanotherapeutics: Building Research Ethics and Oversight," an empirical search was conducted to identify publicly available resources that guided understanding about human subjects issues in nanomedicine or nanotechnology including policy statements, guidance documents, or consent forms. The authors conducted 5,083 internet searches and analyzed 175 documents. Results show that very little guidance is publicly available and most documents focused on occupational and environmental concerns.
Collapse
Affiliation(s)
- Laura Fleege
- University of Minnesota Law School, Minneapolis, MN, USA
| | | |
Collapse
|