1
|
Hu JJ, Lee JKJ, Liu YT, Yu C, Huang L, Aphasizheva I, Aphasizhev R, Zhou ZH. Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase. Structure 2023; 31:100-110.e4. [PMID: 36543169 PMCID: PMC9825669 DOI: 10.1016/j.str.2022.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
3-methylcrotonyl-CoA carboxylase (MCC) is a biotin-dependent mitochondrial enzyme necessary for leucine catabolism in most organisms. While the crystal structure of recombinant bacterial MCC has been characterized, the structure and potential polymerization of native MCC remain elusive. Here, we discovered that native MCC from Leishmania tarentolae (LtMCC) forms filaments, and determined the structures of different filament regions at 3.4, 3.9, and 7.3 Å resolution using cryoEM. α6β6 LtMCCs assemble in a twisted-stacks architecture, manifesting as supramolecular rods up to 400 nm. Filamentous LtMCCs bind biotin non-covalently and lack coenzyme A. Filaments elongate by stacking α6β6 LtMCCs onto the exterior α-trimer of the terminal LtMCC. This stacking immobilizes the biotin carboxylase domains, sequestering the enzyme in an inactive state. Our results support a new model for LtMCC catalysis, termed the dual-swinging-domains model, and cast new light on the function of polymerization in the carboxylase superfamily and beyond.
Collapse
Affiliation(s)
- Jason J Hu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
| | - Jane K J Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus (BUMC), Boston, MA 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus (BUMC), Boston, MA 02118, USA; Department of Biochemistry, BUMC, Boston, MA 02118, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Schopfer LM, Champion MM, Tamblyn N, Thompson CM, Lockridge O. Characteristic mass spectral fragments of the organophosphorus agent FP-biotin and FP-biotinylated peptides from trypsin and bovine albumin (Tyr410). Anal Biochem 2005; 345:122-32. [PMID: 16125664 DOI: 10.1016/j.ab.2005.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/21/2005] [Accepted: 07/06/2005] [Indexed: 11/16/2022]
Abstract
A mass spectrometry-based method was developed for selective detection of FP-biotinylated peptides in complex mixtures. Mixtures of peptides, at the low-picomole level, were analyzed by liquid chromatography and positive ion, nanospray, triple quadrupole, linear ion trap mass spectrometry. Peptides were fragmented by collision-activated dissociation in the mass spectrometer. The free FP-biotin and peptides containing FP-biotinylated serine or FP-biotinylated tyrosine yielded characteristic fragment ions at 227, 312, and 329 m/z. FP-biotinylated serine yielded an additional characteristic fragment ion at 591 m/z. Chromatographic peaks containing FP-biotinylated peptides were indicated by these diagnostic ions. Data illustrating the selectivity of the approach are presented for tryptic digests of FP-biotinylated trypsin and FP-biotinylated serum albumin. A 16-residue peptide from bovine trypsin was biotinylated on the active site serine. A 3-residue peptide from bovine albumin, YTR, was biotinylated on Tyr410. This latter result confirms that the organophosphorus binding site of albumin is a tyrosine. This method can be used to search for new biomarkers of organophosphorus agent exposure.
Collapse
Affiliation(s)
- Lawrence M Schopfer
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE 68198, USA.
| | | | | | | | | |
Collapse
|
5
|
Rothenberg BE, Hayes BK, Toomre D, Manzi AE, Varki A. Biotinylated diaminopyridine: an approach to tagging oligosaccharides and exploring their biology. Proc Natl Acad Sci U S A 1993; 90:11939-43. [PMID: 8265652 PMCID: PMC48100 DOI: 10.1073/pnas.90.24.11939] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fluorescent tagging of free oligosaccharides by reductive amination permits sensitive detection and fractionation of these molecules. To expand the scope of this approach, we have synthesized a fluorescent reagent, 2-amino-(6-amidobiotinyl)pyridine. This reagent can tag oligosaccharides under nondegradative conditions with high efficiency. The resulting adducts show excellent fractionation by reverse-phase HPLC with sensitive detection in the low picomole range. When combined with sequential exoglycosidase digestion, stepwise sequencing of the sugar chains is possible. The biotinyl group can also be used to recover the sugar chain from reaction mixtures. The high-affinity interaction of the biotinyl group with multivalent avidin or streptavidin can be used to create the functional equivalent of neoglycoproteins carrying multiple copies of oligosaccharides of defined structure. These complexes allow the production of IgG antibodies directed against the oligosaccharide chain. They can also harness the power of (strept)avidin-biotin technology for the detection and isolation of oligosaccharide-specific receptors from native sources of recombinant libraries.
Collapse
Affiliation(s)
- B E Rothenberg
- Glycobiology Program, University of California, San Diego Cancer Center, La Jolla
| | | | | | | | | |
Collapse
|