1
|
da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJA, Just WW, Kirschner DA, Sousa MM, Brites P. Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 2014; 124:2560-70. [PMID: 24762439 DOI: 10.1172/jci72063] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.
Collapse
|
2
|
Conrad AH, Albrecht M, Pettit-Scott M, Conrad GW. Embryonic corneal Schwann cells express some Schwann cell marker mRNAs, but no mature Schwann cell marker proteins. Invest Ophthalmol Vis Sci 2009; 50:4173-84. [PMID: 19387082 DOI: 10.1167/iovs.08-3136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Embryonic chick nerves encircle the cornea in pericorneal tissue until embryonic day (E)9, then penetrate the anterior corneal stroma, invade the epithelium, and branch over the corneal surface through E20. Adult corneal nerves, cut during transplantation or LASIK, never fully regenerate. Schwann cells (SCs) protect nerve fibers and augment nerve repair. This study evaluates SC differentiation in embryonic chick corneas. METHODS Fertile chicken eggs were incubated from E0 at 38 degrees C, 45% humidity. Dissected permeabilized corneas plus pericorneal tissue were immunostained for SC marker proteins. Other corneas were paraffin embedded, sectioned, and processed by in situ hybridization for corneal-, nerve-related, and SC marker gene expression. E9 to E20 corneas, dissected from pericorneal tissue, were assessed by real-time PCR (QPCR) for mRNA expression. RESULTS QPCR revealed unchanging low to moderate SLIT2/ROBO and NTN/UNC5 family, BACE1, and CADM3/CADM4 expressions, but high NEO1 expression. EGR2 and POU3F1 expressions never surpassed PAX3 expression. ITGNA6/ITGNB4 expressions increased 20-fold; ITGNB1 expression was high. SC marker S100 and MBP expressions increased; MAG, GFAP, and SCMP expressions were very low. Antibodies against the MPZ, MAG, S100, and SCMP proteins immunostained along pericorneal nerves, but not along corneal nerves. In the cornea, SLIT2 and SOX10 mRNAs were expressed in anterior stroma and epithelium, whereas PAX3, S100, MBP, and MPZL1 mRNAs were expressed only in corneal epithelium. CONCLUSIONS Embryonic chick corneas contain SCs, as defined by SOX10 and PAX3 transcription, which remain immature, at least in part because of stromal transcriptional and epithelial translational regulation of some SC marker gene expression.
Collapse
Affiliation(s)
- Abigail H Conrad
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA.
| | | | | | | |
Collapse
|
3
|
Shimeld C, Efstathiou S, Hill T. Tracking the spread of a lacZ-tagged herpes simplex virus type 1 between the eye and the nervous system of the mouse: comparison of primary and recurrent infection. J Virol 2001; 75:5252-62. [PMID: 11333907 PMCID: PMC114931 DOI: 10.1128/jvi.75.11.5252-5262.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 03/02/2001] [Indexed: 11/20/2022] Open
Abstract
The spread of herpes simplex virus type 1 (HSV-1) during primary ocular infection and after reactivation of latent infection in the trigeminal ganglion (TG) was examined in the mouse using a genetically modified virus containing the lacZ reporter gene under the control of the immediate-early 110 promoter. Whole tissue mounts of the eye and lids, their sensory nerves, and TG with the attached dorsal root entry zone (DRE) into the central nervous system (CNS) were stained for beta-galactosidase. Sixteen hours after inoculation of the cornea by scarification, staining was found in the scarified epithelium of the cornea and in the unscarified conjunctiva. By 24 h, staining was also seen in a few TG neurons and by 96 h their number had greatly increased and their distribution was more widespread. Stained cells (identified as Schwann cells by their staining for glial fibrillary acidic protein [GFAP] or S-100) in the TG were first seen close to stained neurons at 40 h, and by 48 h lines of such cells extended partway toward the periphery and toward the DRE. By 72 h, these lines had reached the periphery and the DRE where the adjacent CNS was also stained. In the cornea, stained cells with the morphology and arrangement of Schwann cells were seen from 40 to 120 h. After reactivation of latent infection, 10 of 22 samples had positively stained neurons. In eight samples, corneal and lid epithelial cells were stained. No stained Schwann cells were seen in the TG; however, branched networks of such cells were present in the cornea and the lids. This detailed sequential analysis has provided new information on the involvement of Schwann cells in the pathogenesis of primary and recurrent HSV-1 disease in the TG and the cornea.
Collapse
Affiliation(s)
- C Shimeld
- Division of Ophthalmology, University of Bristol, United Kingdom.
| | | | | |
Collapse
|
4
|
He K, Nukada H, McMorran PD, Murphy MP. Protein carbonyl formation and tyrosine nitration as markers of oxidative damage during ischaemia-reperfusion injury to rat sciatic nerve. Neuroscience 1999; 94:909-16. [PMID: 10579583 DOI: 10.1016/s0306-4522(99)00350-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the role of oxidative damage in peripheral nerve ischaemia-reperfusion injury using a rat sciatic nerve model. After 5 h ischaemia blood flow to the sciatic nerve was restarted and markers of oxidative damage measured after various times of reperfusion. As a marker of protein oxidative damage, protein carbonyl formation was measured using a sensitive enzyme-linked immunosorbent assay. Protein carbonyl content was unaffected by ischaemia alone, but increased by 55% after 12-18 h reperfusion, correlating with the onset of nerve pathology. Pretreatment with the xanthine oxidase inhibitor allopurinol prevented these abnormalities, suggesting that xanthine oxidase activity is proximal to oxidative damage during reperfusion injury. To determine whether formation of the potent oxidant peroxynitrite from nitric oxide and superoxide contributed to ischaemia-reperfusion injury, we measured the accumulation of 3-nitrotyrosine residues in proteins. Only one protein of 49,000 mol. wt contained significant amounts of 3-nitrotyrosine residues which was shown to be glial fibrillary acidic protein, an abundant cytoskeletal protein in Schwann cells. However glial fibrillary acidic protein contained 3-nitrotyrosine residues prior to ischaemia-reperfusion, and the amount of nitrated tyrosine residues in total glial fibrillary acidic protein did not increase significantly during reperfusion, therefore it was not possible to draw conclusions about the role of peroxynitrite in nerve reperfusion injury.
Collapse
Affiliation(s)
- K He
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
5
|
Görtzen A, Schlüter S, Veh RW. Schmidt-Lanterman's incisures--the principal target of autoimmune attack in demyelinating Guillain-Barré syndrome? J Neuroimmunol 1999; 94:58-65. [PMID: 10376936 DOI: 10.1016/s0165-5728(98)00215-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used immunocytochemical staining of peripheral (trigeminal) nerve to screen sera of patients with Guillain-Barré syndrome (GBS) for the presence of autoantibodies, using sera from patients with other neurological diseases and healthy volunteers as controls. Most sera mildly reacted with axons, myelin sheaths, or sensory neurons without correlation to a specific disease. A characteristic staining, however, was found in 23 demyelinating cases (89%) out of 26 investigated GBS sera. With these sera, dark, oval and often paired small blobs were observed throughout the sections. A similar picture was rarely observed with sera from patients with other disorders or healthy controls. Using immunocytochemical marker proteins and high light microscopic resolution, the blobs were identified as Schmidt-Lanterman's incisures (SLIs). Further investigations will be necessary to identify the corresponding antigen and to answer the question, whether these antibodies represent an epiphenomenon or play a role in the causative mechanism of the disease.
Collapse
Affiliation(s)
- A Görtzen
- Neurologische Klinik, St. Josef-Hospital, Oberhausen, Germany.
| | | | | |
Collapse
|
6
|
Wewetzer K, Grothe C, Christ B, Seilheimer B. Identification and characterization of differentiation-dependent Schwann cell surface antigens by novel monoclonal antibodies: introduction of a marker common to the non-myelin-forming phenotype. Glia 1997; 19:213-26. [PMID: 9063728 DOI: 10.1002/(sici)1098-1136(199703)19:3<213::aid-glia4>3.0.co;2-#] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In an attempt to identify and characterize novel Schwann cell surface molecules with putative functions during development, maintenance, and regeneration of the peripheral nervous system (PNS), we have produced monoclonal antibodies against viable neonatal rat Schwann cells. Using a sensitive live cell ELISA protocol, three monoclonal antibodies reactive with cultured Schwann cells, designated 27B10, 26F2, and 27C7 were isolated. The 27B10 and 26F2 antibodies specifically labelled forskolin-stimulated secondary Schwann cells in vitro as determined by live cell ELISA implying that the expression of the antigens in situ is regulated by axonal contact. The observation that the antigens seemed to be associated with both Schwann cell phenotypes clearly discriminated them from the well characterized myelin proteins as well as from molecules known to be confined to the non-myelin-forming phenotype. Interestingly, both antigens were found to be concentrated at the nodes of Ranvier. Further studies therefore have to show whether the identified antigens share structural or functional homology with adhesion or channel molecules, which display a similar distribution. Following transection of the adult sciatic nerve, the 26F2 antigen was rapidly down-regulated in the distal nerve stump. The 27C7 antibody reacted with an 80 kDa cell surface molecule common to non-myelin-forming Schwann cells. No differences in expression of the antigen between forskolin-treated and untreated Schwann cells in vitro were found, suggesting that the antigen is expressed independently from axonal contact. Two weeks after nerve transection in the absence of myelinating Schwann cells, the antigen was associated with S-100-positive Schwann cells of the distal nerve stump. The antigen was found to be expressed also by non-neuronal tissues, the level of the protein declined towards the adult stage. Comparison of the 27C7 antigen with previously described marker molecules suggests that we have identified a novel Schwann cell surface antigen of the non-myelin-forming phenotype.
Collapse
Affiliation(s)
- K Wewetzer
- University of Freiburg, Institute of Anatomy II, Germany
| | | | | | | |
Collapse
|
7
|
Abstract
After injury, either as a result of trauma or degenerating/demyelinating diseases, axons of the central nervous system (CNS) normally fail to regenerate. Transplantation of glial cells, particularly Schwann cells, into areas of injury or demyelination has been considered a promising approach to promote recovery. However, the extent of Schwann cell interaction with CNS axons is greatly influenced by the presence of astrocytes which redefine the CNS-PNS (peripheral nervous system) boundary in a lesioned CNS, thereby preventing invasion of Schwann cells. The molecular basis for this restrictive effect of astrocytes on Schwann cells is not known. In the present study, we have cocultured astrocytes and Schwann cells to develop an in vitro model to characterize this interaction. Astrocytes in contact with Schwann cells appeared hypertrophied and showed increased staining for glial fibrillary acidic protein (GFAP). In cocultures maintained for 2-3 weeks, segregation of the two cell types was observed, Schwann cells appeared in groups, and each group was surrounded and separated from one another by astrocytic processes. Since the behavior of these two cell types observed in culture is very similar to their interaction seen in vivo, this coculture model may be useful in further studying the relationship between astrocytes and Schwann cells.
Collapse
Affiliation(s)
- R S Ghirnikar
- Department of Pathology, Stanford University School of Medicine, California
| | | |
Collapse
|
8
|
Holash JA, Stewart PA. The relationship of astrocyte-like cells to the vessels that contribute to the blood-ocular barriers. Brain Res 1993; 629:218-24. [PMID: 7906600 DOI: 10.1016/0006-8993(93)91323-k] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brain capillaries form a selective interface, the blood-brain barrier (BBB), between the neural parenchyma and the blood. The factors which regulate this interface are poorly understood. Both the iris and retina possess vascular beds that express some BBB characteristics; therefore, they provide attractive models to further our understanding of how blood-tissue interfaces are regulated. We have determined whether three BBB markers: the transferrin receptor, P-glycoprotein, and gamma-glutamyl transpeptidase (gamma-GTP), can be localized in the capillaries of the rat retina and iris. We have also compared, in retina and iris, the relationship which GFAP-positive cells have with the blood vessels to the expression of the three BBB markers by the vessels. Immunocytochemistry revealed that capillaries throughout the retina express P-glycoprotein and the transferrin receptor. Retinal vessels do not show detectable gamma-GTP activity. GFAP-positive cells ensheath capillaries in the nerve fibre layer of the retina. Of the three BBB characteristics we examined, iridial vessels expressed only one of them: P-glycoprotein. In the iris, GFAP-positive cells do not ensheath capillaries. From our results we conclude that all BBB characteristics do not have to be expressed and regulated in capillaries as a unit. Our results, in combination with those of earlier studies, suggest that the expression of some BBB features does not require intimate contact between capillaries and astrocytes or astrocyte-like cells. Barrier maintenance appears to be a complex process which involves the integration of several factors.
Collapse
Affiliation(s)
- J A Holash
- Department of Anatomy and Cell Biology, University of Toronto, Ont., Canada
| | | |
Collapse
|
9
|
Obremski VJ, Johnson MI, Bunge MB. Fibroblasts are required for Schwann cell basal lamina deposition and ensheathment of unmyelinated sympathetic neurites in culture. JOURNAL OF NEUROCYTOLOGY 1993; 22:102-17. [PMID: 8445407 DOI: 10.1007/bf01181574] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to purify and recombine populations of peripheral neurons, Schwann cells and fibroblasts in tissue culture has enabled us to examine the contribution of fibroblasts to Schwann cell basal lamina assembly and ensheathment of unmyelinated rat superior cervical ganglion neurites in vitro. Purified perinatal superior cervical ganglion neurons were grown in culture either with Schwann cells or with Schwann cells plus fibroblasts derived from either superior cervical ganglion capsule or cranial periosteum. The cultures were maintained for 2-8 weeks on a collagen substratum in a medium known to promote Schwann cell differentiation (myelin, basal lamina formation) in the presence of dorsal root ganglion neurons. The extent of Schwann cell differentiation (ensheathment, basal lamina formation) in the presence of superior cervical ganglion neurons was evaluated in this study using electron microscopy. In superior cervical ganglion neuron plus Schwann cell cultures (without fibroblasts), Schwann cells achieved only a moderate degree of ensheathment; also, Schwann cell basal lamina was discontinuous and extracellular collagen fibrils were sparse. Although only discontinuous basal lamina was demonstrable by electron microscopy in these cultures, surprisingly, Schwann cell/neurite fascicles were uniformly immunostained for laminin, type IV collagen, and heparan sulfate proteoglycan. The addition of fibroblasts to superior cervical ganglion neuron plus Schwann cell cultures increased the deposition of basal lamina around the Schwann cell/neurite units, the number of collagen fibrils, and the extent of neurite ensheathment. We propose that the presence of basal lamina increases the Schwann cell's ability to ensheathe superior cervical ganglion neurites, possibly through an augmentation of specific extracellular matrix components or by increasing in some way the capacity of these components to become organized into basal lamina. We conclude that, unlike dorsal root ganglion neurons, superior cervical ganglion neurons are unable to stimulate full Schwann cell extracellular matrix expression with the result that these Schwann cells require the extraneuronal influence of fibroblasts to deposit basal lamina and attain their mature phenotype in culture.
Collapse
Affiliation(s)
- V J Obremski
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|
10
|
Bianchini D, De Martini I, Cadoni A, Zicca A, Tabaton M, Schenone A, Anfosso S, Akkad Wattar AS, Zaccheo D, Mancardi GL. GFAP expression of human Schwann cells in tissue culture. Brain Res 1992; 570:209-17. [PMID: 1617413 DOI: 10.1016/0006-8993(92)90583-u] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have studied the expression of the intermediate filament (IF) proteins, vimentin and glial fibrillary acidic protein (GFAP), in cultured human Schwann cells (SC) from patients with different neuropathies and normal control cases. SC cultures from sural nerve biopsies of 8 subjects with axonal neuropathies, 8 with demyelinating neuropathies and 3 normal controls were included in this study and processed with double immunofluorescence technique, using anti-vimentin and anti-GFAP antibodies, during the 2nd, 4th and 6th week of culture. Five cultures incubated with anti-GFAP antibodies were also processed for immunoelectron microscopy. Specificity tests of the used antibodies were performed. We have found that: (1) cultured human SC constantly express vimentin; (2) SC from normal controls are GFAP-negative in the first period of culture; (3) SC from pathologic nerves can contain GFAP-immunoreactive IF and the percentage of GFAP-positive SC is higher in axonal than in demyelinating neuropathies; (4) during the permanence in culture human SC from both normal and pathologic cases acquire the ability to synthesize GFAP. The obtained data suggest that the removal from axonal contact and the resulting loss of myelinating function induce a cytoskeletal cellular response in human SC characterized by the cytoplasmic accumulation of GFAP-immunoreactive IF.
Collapse
Affiliation(s)
- D Bianchini
- Institute of Clinical Neurology, University of Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The peripheral olfactory nervous system exhibits, uniquely, neuronal cell body replacement and reestablishment of central connections in adult mammals. The role of the olfactory nerve glia in these phenomena is unknown, but information might be provided by in vitro systems. This paper reports on the characterization of olfactory nerve glia in dissociated cell cultures of newborn rat nasal mucosal tissues. The predominant type of glial cell resembled Schwann cells and immunostained for the S-100 protein, found in all glial cell types; glial fibrillary acidic protein (GFAP), found in astrocytes and nonmyelinating Schwann cells; and showed binding of 217C, a monoclonal Schwann-cell marker that binds to the low-affinity NGF receptor in glioma cells. They were negative for A2B5. The Schwann-cell-like olfactory glia changed morphology upon culturing in serum-free medium, with further shape changes after plating on laminin. Plating on laminin increased cell numbers. A second population, found only after GFAP-immunostaining, was astrocyte-like in morphology and represented approximately 10 percent of all glial cells. These were S-100-, A2B5-, and 217C-negative, a unique glial cell immunological profile. At low dilutions of anti-GFAP (1/10,000), or with weak fluorescent secondary antibodies, astrocyte-like glia were immunostained but Schwann-cell-like glia were not detectable. Astrocyte-like glia were not an artifact of the dissection, since they were detectable in tissue sections of newborn-rat olfactory nerves immunostained with a low dilution of anti-GFAP. The presence of two types of glial cells in culture suggests similarities between olfactory glia and enteric glia.
Collapse
Affiliation(s)
- S K Pixley
- Department of Anatomy and Cell Biology, University of Cincinnati College of Medicine, Ohio 45267-0521
| |
Collapse
|
12
|
Abstract
This study examined the ultrastructure of the region of transition where fascicles of olfactory axons leave the peripheral nervous system (PNS) to enter the central nervous system (CNS), the so-called PNS-CNS transitional zone. Adult rats were transcardially perfused with a solution of 1% glutaraldehyde and 1% paraformaldehyde, decapitated, and the heads decalcified over a period of several weeks in a solution of 1% glutaraldehyde in 0.1 M tetrasodium ethylenediamine tetraacetic acid; the latter solution was changed daily. It was found that astrocytes did not form the glia limitans at the nerve entry zone, unlike the situation that exists in other cranial and spinal nerves. Rather, the glia limitans in this region of the olfactory bulb was formed by a special type of glial cell, referred to as an ensheathing cell. Ensheathing cells are found only in the nerve fiber layer of the olfactory bulb. They possess a mixture of Schwann cell and astrocytic features and are more likely to be of placodal than of CNS origin. The meningeal coverings of the olfactory nerve rootlets and of the olfactory bulb are also described and the functional implications of the findings discussed.
Collapse
Affiliation(s)
- R Doucette
- Department of Anatomy, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
13
|
Yoshino JE, Neuberger TJ, Cornbrooks CJ, Tennekoon GI, Eng LF, DeVries GH. Proliferation and differentiation of a transfected Schwann cell line is altered by an artificial basement membrane. Glia 1990; 3:315-21. [PMID: 2146222 DOI: 10.1002/glia.440030502] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rapidly dividing transfected Schwann cells were grown on Matrigel, a reconstituted basement membrane gel. Matrigel decreased the proliferation of the cells by 75% when compared to sister cultures that were grown on an untreated plastic substrate. Some transfected cells plated onto a Matrigel substrate formed colonies similar to that observed when the cells were plated on a plastic substrate. Additionally, many cells on Matrigel assembled themselves into fascicles projecting away from the colonies. These fascicles were composed of transfected Schwann cells that had assumed a bipolar appearance reminiscent of quiescent secondary Schwann cells in culture. Transfected cells grown on Matrigel contained approximately 10-fold less glial fibrillary acidic protein when compared to sister cultures grown on an untreated plastic substrate. By indirect immunofluorescence laminin immunoreactivity appeared as globules within the cytoplasm of the cells which were cultured on a plastic substrate. However, cells that were grown on the Matrigel substrate appear to organize laminin in a linear array around themselves. These results demonstrate that the presence of an artificial basement membrane alters the morphology, rate of proliferation, and state of differentiation of a transfected Schwann cell line.
Collapse
Affiliation(s)
- J E Yoshino
- Department of Psychology, Colgate University, Hamilton, New York 13346
| | | | | | | | | | | |
Collapse
|
14
|
De Martini I, Bianchini D, Schenone A, Cadoni A, Zicca A, Zaccheo D, Mancardi GL. Class II antigen expression on human cultured Schwann cells from patients with Charcot-Marie-Tooth disease. Neurosci Lett 1989; 100:331-4. [PMID: 2761783 DOI: 10.1016/0304-3940(89)90708-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
T lymphocytes control the extent of the immune reaction by recognizing the antigen in connection with class II histocompatibility surface molecules, coded by genes located on the HLA-D locus. The expression of HLA-DR antigens is confined to a few antigen presenting cells, like lymphocytes and macrophages, which can therefore induce the initial phase of the immune reaction. We report that also Schwann cells (SC) from patients with Charcot-Marie-Tooth disease (CMT), an hereditary disorder of the peripheral nervous system, are able to express HLA-DR antigens. Human SC cultures were carried out from sural nerve biopsies of CMT and normal control cases. Cultures were tested on day 7, 14, 21 and 28, with double immunofluorescence technique using rabbit antiserum anti-S-100 and mouse anti-HLA-DR monoclonal antibody. SC from CMT were HLA-DR positive since the first few days, continuing to express class II antigens for all the duration of the culture. The presence of class II antigens on cultured SC from CMT disease suggests that immune-mediated mechanisms may be relevant in the pathogenesis of this degenerative disorder of the peripheral nervous system.
Collapse
Affiliation(s)
- I De Martini
- Institute of Clinical Neurology, University of Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
DiCicco-Bloom E, Black IB. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proc Natl Acad Sci U S A 1988; 85:4066-70. [PMID: 2897692 PMCID: PMC280362 DOI: 10.1073/pnas.85.11.4066] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. We have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase [L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [3H]thymidine into their nuclei. We used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [3H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis, revealing a 4-fold insulin stimulation with an ED50 of 100 ng/ml. Insulin-like growth factor I was 100-fold more potent than insulin, whereas insulin-like growth factor II was less potent, suggesting that insulin growth factor type I receptors mediated the mitogenic responses. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. Our observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain.
Collapse
Affiliation(s)
- E DiCicco-Bloom
- Department of Neurology, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|