1
|
Park J, Lee EG, Yi HJ, Kim NH, Rhee SG, Woo HA. Ablation of Peroxiredoxin V Exacerbates Ischemia/Reperfusion-Induced Kidney Injury in Mice. Antioxidants (Basel) 2020; 9:antiox9080769. [PMID: 32824836 PMCID: PMC7464645 DOI: 10.3390/antiox9080769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) is one of the major causes of acute kidney injury (AKI) and associated with increased mortality and progression to chronic kidney injury (CKI). Molecular mechanisms underlying I/R injury involve the production and excessive accumulation of reactive oxygen species (ROS). Peroxiredoxin (Prx) V, a cysteine-dependent peroxidase, is located in the cytosol, mitochondria, and peroxisome and has an intensive ROS scavenging activity. Therefore, we focused on the role of Prx V during I/R-induced AKI using Prx V knockout (KO) mice. Ablation of Prx V augmented tubular damage, apoptosis, and declined renal function. Prx V deletion also showed higher susceptibility to I/R injury with increased markers for oxidative stress, ER stress, and inflammation in the kidney. Overall, these results demonstrate that Prx V protects the kidneys against I/R-induced injury.
Collapse
Affiliation(s)
- Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
| | - Eun Gyeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
| | - Ho Jin Yi
- College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul 120-750, Korea;
| | - Nam Hee Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea;
- Biochemistryand Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea; (J.P.); (E.G.L.); (N.H.K.)
- College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: ; Tel.: +82-2-3277-4654
| |
Collapse
|
2
|
Capitanio G, Palese LL, Papa F, Papa S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. J Mol Biol 2019; 432:534-551. [PMID: 31626808 DOI: 10.1016/j.jmb.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome c oxidase (CcO), the CuA, heme a, heme a3, CuB enzyme of respiratory chain, converts the free energy released by aerobic cytochrome c oxidation into a membrane electrochemical proton gradient (ΔμH+). ΔμH+ derives from the membrane anisotropic arrangement of dioxygen reduction to two water molecules and transmembrane proton pumping from a negative (N) space to a positive (P) space separated by the membrane. Spectroscopic, potentiometric, and X-ray crystallographic analyses characterize allosteric cooperativity of dioxygen binding and reduction with protonmotive conformational states of CcO. These studies show that allosteric cooperativity stabilizes the favorable conformational state for conversion of redox energy into a transmembrane ΔμH+.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
3
|
Kopcova K, Blascakova L, Kozar T, Jancura D, Fabian M. Response of Heme Symmetry to the Redox State of Bovine Cytochrome c Oxidase. Biochemistry 2018; 57:4105-4113. [PMID: 29901388 DOI: 10.1021/acs.biochem.8b00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Second-derivative absorption spectroscopy was employed to monitor the response of effective symmetry of cytochromes a and a3 to the redox and ligation states of bovine cytochrome c oxidase (CcO). The Soret band π → π* electronic transitions were used to display the changes in symmetry of these chromophores induced by the reduction of CcO inhibited by the exogenous ligands and during catalytic turnover. The second derivative of the difference absorption spectra revealed only a single Soret band for the oxidized cytochromes a and a3 and cyanide-ligated oxidized cytochrome a3. In contrast, two absorption bands were resolved in ferrous cytochrome a and ferrous cytochrome a3 ligated with cyanide. A transition from one-band spectrum to two-band spectrum indicates the lowering of symmetry of these hemes due to the alteration of their immediate surroundings. It is suggested that the changes in polarity occurring in the vicinity of these cofactors are main reason for the split of the Soret band of both ferrous cytochrome a and cyanide-bound ferrous cytochrome a3.
Collapse
Affiliation(s)
- Katarina Kopcova
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Ludmila Blascakova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Tibor Kozar
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic.,Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| |
Collapse
|
4
|
Papa S, Capitanio G, Papa F. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (BMSNSO), Section of Medical Biochemistry; University of Bari ‘Aldo Moro’; Piazza G. Cesare 11 70124 Bari Italy
- Institute of Biomembranes and Bioenergetics; National Research Council at BMSNSO; Piazza G. Cesare 11 70124 Bari Italy
| | - Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (BMSNSO), Section of Medical Biochemistry; University of Bari ‘Aldo Moro’; Piazza G. Cesare 11 70124 Bari Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs (BMSNSO), Section of Medical Biochemistry; University of Bari ‘Aldo Moro’; Piazza G. Cesare 11 70124 Bari Italy
| |
Collapse
|
5
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Capitanio G, Martino PL, Capitanio N, Papa S. Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1287-94. [PMID: 21320464 DOI: 10.1016/j.bbabio.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/25/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
Abstract
Structural and functional observations are reviewed which provide evidence for a central role of redox Bohr effect linked to the low-spin heme a in the proton pump of bovine heart cytochrome c oxidase. Data on the membrane sidedness of Bohr protons linked to anaerobic oxido-reduction of the individual metal centers in the liposome reconstituted oxidase are analysed. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a (and Cu(A)) and Cu(B) exhibit membrane vectoriality, i.e. protons are taken up from the inner space upon reduction of these centers and released in the outer space upon their oxidation. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a(3) do not, on the contrary, exhibit vectorial nature: protons are exchanged only with the outer space. A model of the proton pump of the oxidase, in which redox Bohr protons linked to the low-spin heme a play a central role, is described. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
|
7
|
Shimokata K, Katayama Y, Murayama H, Suematsu M, Tsukihara T, Muramoto K, Aoyama H, Yoshikawa S, Shimada H. The proton pumping pathway of bovine heart cytochrome c oxidase. Proc Natl Acad Sci U S A 2007; 104:4200-5. [PMID: 17360500 PMCID: PMC1820732 DOI: 10.1073/pnas.0611627104] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
X-ray structures of bovine heart cytochrome c oxidase have suggested that the enzyme, which reduces O(2) in a process coupled with a proton pumping process, contains a proton pumping pathway (H-pathway) composed of a hydrogen bond network and a water channel located in tandem across the enzyme. The hydrogen bond network includes the peptide bond between Tyr-440 and Ser-441, which could facilitate unidirectional proton transfer. Replacement of a possible proton-ejecting aspartate (Asp-51) at one end of the H-pathway with asparagine, using a stable bovine gene expression system, abolishes the proton pumping activity without influencing the O(2) reduction function. Blockage of either the water channel by a double mutation (Val386Leu and Met390Trp) or proton transfer through the peptide by a Ser441Pro mutation was found to abolish the proton pumping activity without impairment of the O(2) reduction activity. These results significantly strengthen the proposal that H-pathway is involved in proton pumping.
Collapse
Affiliation(s)
- Kunitoshi Shimokata
- *Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Japan Biological Informatics Consortium, 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Yukie Katayama
- *Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Japan Biological Informatics Consortium, 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Haruka Murayama
- *Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- *Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Muramoto
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297, Japan; and
| | | | - Shinya Yoshikawa
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297, Japan; and
- To whom correspondence may be addressed. E-mail:
or
| | - Hideo Shimada
- *Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
8
|
Papa S, Capitanio G, Luca Martino P. Concerted involvement of cooperative proton–electron linkage and water production in the proton pump of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1133-43. [PMID: 16945321 DOI: 10.1016/j.bbabio.2006.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 11/25/2022]
Abstract
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Policlinico, P zza G Cesare, 70124 Bari, Italy.
| | | | | |
Collapse
|
9
|
Papa S, Lorusso M, Di Paola M. Cooperativity and flexibility of the protonmotive activity of mitochondrial respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:428-36. [PMID: 16730640 DOI: 10.1016/j.bbabio.2006.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Functional and structural data are reviewed which provide evidence that proton pumping in cytochrome c oxidase is associated with extended allosteric cooperativity involving the four redox centers in the enzyme . Data are also summarized showing that the H+/e- stoichiometry for proton pumping in the cytochrome span of the mitochondrial respiratory chain is flexible. The DeltapH component of the bulk-phase membrane electrochemical proton gradient exerts a decoupling effect on the proton pump of both the bc1 complex and cytochrome c oxidase. A slip in the pumping efficiency of the latter is also caused by high electron pressure. The mechanistic and physiological implications of proton-pump slips are examined. The easiness with which bulk phase DeltapH causes, at least above a threshold level, decoupling of proton pumping indicates that for active oxidative phosphorylation efficient protonic coupling between redox complexes and ATP synthase takes place at the membrane surface, likely in cristae, without significant formation of delocalized DeltamuH+. A role of slips in modulating oxygen free radical production by the respiratory chain and the mitochondrial pathway of apoptosis is discussed.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Policlinico, P.zza G. Cesare, 70124 Bari, Italy.
| | | | | |
Collapse
|
10
|
Papa S. Role of cooperative H(+)/e(-) linkage (redox bohr effect) at heme a/Cu(A) and heme a(3)/Cu(B) in the proton pump of cytochrome c oxidase. BIOCHEMISTRY (MOSCOW) 2005; 70:178-86. [PMID: 15807657 DOI: 10.1007/s10541-005-0099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is a pleasure to contribute to the special issue published in honor of Vladimir Skulachev, a distinguished scientist who greatly contributes to maintain a high standard of biochemical research in Russia. A more particular reason can be found in his work, where observations anticipating some ideas presented in my article were reported. Cytochrome c oxidase exhibits protonmotive, redox linked allosteric cooperativity. Experimental observations on soluble bovine cytochrome c oxidase are presented showing that oxido-reduction of heme a/Cu(A) and heme a(3)/Cu(B) is linked to deprotonation/protonation of two clusters of protolytic groups, A(1) and A(2), respectively. This cooperative linkage (redox Bohr effect) results in the translocation of 1 H(+)/oxidase molecule upon oxido-reduction of heme a/Cu(A) and heme a(3)/Cu(B), respectively. Results on liposome-reconstituted oxidase show that upon oxidation of heme a/Cu(A) and heme a(3)/Cu(B) protons from A(1) and A(2) are released in the outer aqueous phase. A(1) but not A(2) appears to take up protons from the inner aqueous space upon reduction of the respective redox center. A cooperative model is presented in which the A(1) and A(2) clusters, operating in close sequence, constitute together the gate of the proton pump in cytochrome c oxidase.
Collapse
Affiliation(s)
- S Papa
- Institute of Bioenergetics and Biomembranes, Department of Medical Biochemistry and Biology, University of Bari, Bari, 70124, Italy.
| |
Collapse
|
11
|
Hwang HJ, Lu Y. pH-dependent transition between delocalized and trapped valence states of a CuA center and its possible role in proton-coupled electron transfer. Proc Natl Acad Sci U S A 2004; 101:12842-7. [PMID: 15326290 PMCID: PMC516483 DOI: 10.1073/pnas.0403473101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Indexed: 11/18/2022] Open
Abstract
A pH-dependent transition between delocalized and trapped mixed valence states of an engineered CuA center in azurin has been investigated by UV-visible absorption and electron paramagnetic resonance spectroscopic techniques. At pH 7.0, the CuA azurin displays a typical delocalized mixed valence dinuclear [Cu(1.5)....Cu(1.5)] spectra with optical absorptions at 485, 530, and 760 nm, and with a seven-line EPR hyperfine. Upon lowering of the pH from 7.0 to 4.0, the absorption at 760 nm shifted to lower energy toward 810 nm, and a four-line EPR hyperfine, typical of a trapped valence, was observed. The pH-dependent transition is reversible because increasing the pH restores all delocalized spectral features. Lowering the pH resulted in not only a trapped valence state, but also a dramatically increased reduction potential of the Cu center (from 160 mV to 340 mV). Mutation of the titratable residues around the metal-binding site ruled out Glu-114 and identified the C-terminal histidine ligand (His-120) as a site of protonation, because the His120Ala mutation abolished the above pH-dependent transition. The corresponding histidine in cytochrome c oxidases is along a major electron transfer pathway from CuA center to heme a. Because the protonation of this histidine can result in an increased reduction potential that will prevent electron flow from the CuA to heme a, the CuA and the histidine may play an important role in regulating proton-coupled electron transfer.
Collapse
Affiliation(s)
- Hee Jung Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
12
|
Papa S, Capitanio N, Capitanio G. A cooperative model for proton pumping in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:353-64. [PMID: 15100051 DOI: 10.1016/j.bbabio.2003.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 06/13/2003] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Medical Science, Faculty of Medicine, University of Foggia, Foggia, Italy.
| | | | | |
Collapse
|
13
|
Papa S, Capitanio N, Villani G. A cooperative model for protonmotive heme-copper oxidases. The role of heme a in the proton pump of cytochrome c oxidase. FEBS Lett 1998; 439:1-8. [PMID: 9849866 DOI: 10.1016/s0014-5793(98)01305-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oxido-reductions of metal centers in cytochrome c oxidase are linked to pK shifts of acidic groups in the enzyme (redox Bohr effects). The linkage at heme a results in proton uptake from the inner space upon reduction and proton release in the external space upon oxidation of the metal. The relationship of this process to the features of the proton pump in cytochrome c oxidase and its atomic structure revealed by X-ray crystallography to 2.8-2.3 A resolution is examined. A mechanism for the proton pump of cytochrome c oxidase, based on cooperative coupling at heme a, is proposed.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Policlinico, Italy.
| | | | | |
Collapse
|
14
|
Papa S, Capitanio N, Villani G, Capitanio G, Bizzoca A, Palese LL, Carlino V, De Nitto E. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases. Biochimie 1998; 80:821-36. [PMID: 9893941 DOI: 10.1016/s0300-9084(00)88877-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the last few years, evidence has accumulated supporting the applicability of the cooperative model of proton pumps in cytochrome systems, vectorial Bohr mechanisms, to heme-copper oxidases. The vectorial Bohr mechanism is based on short- and long-range protonmotive cooperative effects linked to redox transitions of the metal centers. The crystal structure of oxidized and reduced bovine-heart cytochrome c oxidase reveals, upon reduction, the occurrence of long-range conformational changes in subunit I of the oxidase. Analysis of the crystal structure of cytochrome c oxidase shows the existence of hydrogen-bonded networks of amino acid residues which could undergo redox-linked pK shifts resulting in transmembrane proton translocation. Our group has identified four proteolytic groups undergoing reversible redox-linked pK shifts. Two groups result in being linked to redox transitions of heme a3. One group is apparently linked to CuB. The fourth group is linked to oxido-reduction of heme a. We have shown that the proton transfer resulting from the redox Bohr effects linked to heme a and CuB in the bovine oxidase displays membrane vectorial asymmetry, i.e., protons are taken up from the inner aqueous space (N), upon reduction, and released in the external space (P), upon oxidation of the metals. This direction of proton uptake and release is just what is expected from the vectorial Bohr mechanism. The group linked to heme a, which can transfer up to 0.9 H+/e- at pHs around neutrality, can provide the major contribution to the proton pump. It is proposed that translocation of pumped protons, linked to electron flow through heme a, utilizes a channel (channel D) which extends from a conserved aspartate at the N entrance to a conserved glutamate located between heme a and the binuclear center. The carboxylic group of this glutamic acid, after having delivered, upon electron flow through heme a, pumped protons towards the P phase, once reprotonated from the N phase, moves to deliver, subsequently, to the binuclear center chemical protons consumed in the conversion of the peroxy to ferryl and of the latter to the oxy intermediate in the redox cycle. Site-directed mutagenesis of protolytic residues in subunit I of the aa3-600 quinol oxidase of Bacillus subtilis to non-polar residues revealed that the conserved Lys 304 is critical for the proton pumping activity of the oxidase. Crystal structures of cytochrome c oxidase show that this lysine is at the N entrance of a channel which translocates the protons consumed for the production of the peroxy intermediate. Inhibition of this pathway, by replacement of the lysine, short-circuits protons from channel D to the binuclear center, where they are utilized in the chemistry of oxygen reduction.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rottenberg H. The generation of proton electrochemical potential gradient by cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:1-16. [PMID: 9554930 DOI: 10.1016/s0005-2728(98)00007-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome c oxidase, the terminal oxidase of mitochondria and some bacteria, catalyzes the four electron reduction of oxygen, and generates a proton electrochemical potential gradient (Delta microH). The recently determined structures of the bacterial and the bovine enzymes, together with studies of site directed mutants of a bacterial cytochrome c oxidase and a closely related ubiquinol oxidase, have greatly advanced our understanding of the mechanism by which oxygen reduction is coupled to the generation of Delta microH. Two different mechanisms contribute to the generation of Delta microH: protons that are consumed by the reduction of oxygen, are taken exclusively from the mitochondrial matrix ('consumed' protons), while other protons are translocated by the enzyme across the membrane ('pumped' protons). It is suggested that both proton consumption and proton pumping are driven by the electrostatic charging of the enzyme reaction center by the reducing electrons. Proton consumption is suggested to result from the electrostatically driven ejection of hydroxyls into the matrix that is catalyzed by a tyrosine residue in the reaction center. Proton pumping is suggested to result from the electrostatically driven translocation of a glutamate residue near the reaction center, and is assisted by secondary acceptors that release the translocated protons.
Collapse
Affiliation(s)
- H Rottenberg
- Allegheny University of the Health Sciences, MCP/Hahnemann School of Medicine, Pathology Department, Philadelphia, PA 19102, USA.
| |
Collapse
|
16
|
Papa S, Capitanio N. Redox Bohr effects (cooperative coupling) and the role of heme a in the proton pump of cytochrome c oxidase. J Bioenerg Biomembr 1998; 30:109-19. [PMID: 9623812 DOI: 10.1023/a:1020519914011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | |
Collapse
|
17
|
Capitanio N, Capitanio G, De Nitto E, Papa S. Vectorial nature of redox Bohr effects in bovine heart cytochrome c oxidase. FEBS Lett 1997; 414:414-8. [PMID: 9315731 DOI: 10.1016/s0014-5793(97)01043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The vectorial nature of redox Bohr effects (redox-linked pK shifts) in cytochrome c oxidase from bovine heart incorporated in liposomes has been analyzed. The Bohr effects linked to oxido-reduction of heme a and CuB display membrane vectorial asymmetry. This provides evidence for involvement of redox Bohr effects in the proton pump of the oxidase.
Collapse
Affiliation(s)
- N Capitanio
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | |
Collapse
|
18
|
Zaslavsky D, Kaulen AD, Smirnova IA, Vygodina T, Konstantinov AA. Flash-induced membrane potential generation by cytochrome c oxidase. FEBS Lett 1993; 336:389-93. [PMID: 8282099 DOI: 10.1016/0014-5793(93)80843-j] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Flash-induced single-electron reduction of cytochrome c oxidase. Compound F (oxoferryl state) by RuII(2,2'-bipyridyl)3(2+) [Nilsson (1992) Proc. Natl. Acad. Sci. USA 89, 6497-6501] gives rise to three phases of membrane potential generation in proteoliposomes with tau values and contributions of ca. 45 microsecond (20%), 1 ms (20%) and 5 ms (60%). The rapid phase is not sensitive to the binuclear centre ligands, such as cyanide or peroxide, and is assigned to vectorial electron transfer from CuA to heme a. The two slow phases kinetically match reoxidation of heme a, require added H2O2 or methyl peroxide for full development, and are completely inhibited by cyanide; evidently, they are associated with the reduction of Compound F to the Ox state by heme a. The charge transfer steps associated with the F to Ox conversion are likely to comprise (i) electrogenic uptake of a 'chemical' proton from the N phase required for protonation of the reduced oxygen atom and (ii) electrogenic H+ pumping across the membrane linked to the F to Ox transition. Assuming heme a 'electrical location' in the middle of the dielectric barrier, the ratio of the rapid to slow electrogenic phase amplitudes indicates that the F to Ox transition is linked to transmembrane translocation of 1.5 charges (protons) in addition to an electrogenic uptake of one 'chemical' proton required to form Fe(3+)-OH- from Fe4+ = O2-. The shortfall in the number of pumped protons and the biphasic kinetics of the millisecond part of the electric response matching biphasic reoxidation of heme a may indicate the presence of 2 forms of Compound F, reduction of only one of which being linked to full proton pumping.
Collapse
Affiliation(s)
- D Zaslavsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russian Federation
| | | | | | | | | |
Collapse
|
19
|
Larsen RW, Pan LP, Musser SM, Li ZY, Chan SI. Could CuB be the site of redox linkage in cytochrome c oxidase? Proc Natl Acad Sci U S A 1992; 89:723-7. [PMID: 1309955 PMCID: PMC48311 DOI: 10.1073/pnas.89.2.723] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This paper explores the proton pumping function of cytochrome c oxidase [ferrocytochrome-c:oxygen oxidoreductase (EC 1.9.3.1)] based upon redox linkage at the "high-potential" CuB center. A model is proposed that is derived from a redox-linked ligand exchange mechanism previously described for the CuA site. Qualitative analysis of this mechanism indicates that such a mechanism is feasible. However, the relatively short distance between CuB and cytochrome a3 implies that the uncoupling electron transfers are quite facile. In addition, the position of the CuB center with respect to the inner mitochondrial membrane argues against redox linkage at the CuB site.
Collapse
Affiliation(s)
- R W Larsen
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125
| | | | | | | | | |
Collapse
|