1
|
Harris DF, Rucker HR, Garcia AK, Yang ZY, Chang SD, Feinsilber H, Kaçar B, Seefeldt LC. Ancient nitrogenases are ATP dependent. mBio 2024; 15:e0127124. [PMID: 38869277 PMCID: PMC11253609 DOI: 10.1128/mbio.01271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg2+, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N2-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in Azotobacter vinelandii. In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe2+, Co2+, and Mn2+) support activity with ATP but with diminished activities compared to Mg2+, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.
Collapse
Affiliation(s)
- Derek F. Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Holly R. Rucker
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Scott D. Chang
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hannah Feinsilber
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| |
Collapse
|
2
|
Rossi E, Ferrarini A, Sulpizi M. Modeling of minimal systems based on ATP-Zn coordination for chemically fueled self-assembly. Phys Chem Chem Phys 2023; 25:6102-6111. [PMID: 36752043 DOI: 10.1039/d2cp05516c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Following nature's example, there is currently strong interest in using adenosine 5'-triphosphate (ATP) as a fuel for the self-assembly of functional materials with transient/non-equilibrium behaviours. These hold great promise for applications, e.g. in catalysis and drug delivery. In a recent seminal work [Maiti et al., Nat. Chem., 2016, 8, 725], binding of ATP to the metallosurfactant zinc hexadecyl-1,4,7-triazacyclononane ([ZnC16 TACN]2+) was exploited to produce ATP-fueled transient vesicles. Crucial to the complex formation is the ability of ATP to bind to the metal ion. As a first step to unveil the key elements underlying this process, we investigate the interaction of ATP with Zn2+ and with methyl-1,4,7-triazacyclononane ([ZnCH3 TACN]2+), using all-atom molecular dynamics simulations. The free energy landscape of the complex formation is sampled using well-tempered metadynamics with three collective variables, corresponding to the coordination numbers of Zn2+ with the oxygen atoms of the three phosphate groups. We find that the structure of the ternary complex is controlled by direct triphosphate coordination to zinc, with a minor role played by the interactions between ATP and CH3 TACN which, however, may be important for the build-up of supramolecular assemblies.
Collapse
Affiliation(s)
- Emma Rossi
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo, 1, 35131, Padova, Italy.
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo, 1, 35131, Padova, Italy.
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany.
| |
Collapse
|
3
|
Studies of Mg2+/Ca2+ complexes of naturally occurring dinucleotides: potentiometric titrations, NMR, and molecular dynamics. J Biol Inorg Chem 2012; 17:861-79. [PMID: 22592972 DOI: 10.1007/s00775-012-0903-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
Dinucleotides (Np(n)N'; N and N' are A, U, G, or C, n = 2-7) are naturally occurring physiologically active compounds. Despite the interest in dinucleotides, the composition of their complexes with metal ions as well as their conformations and species distribution in living systems are understudied. Therefore, we investigated a series of Mg(2+) and Ca(2+) complexes of Np(n)N's. Potentiometric titrations indicated that a longer dinucleotide polyphosphate (N is A or G, n = 3-5) linker yields more stable complexes (e.g., log K of 2.70, 3.27, and 3.73 for Ap(n)A-Mg(2+), n = 3, 4, 5, respectively). The base (A or G) or ion (Mg(2+) or Ca(2+)) has a minor effect on K(M)(ML) values. In a physiological medium, the longer Ap(n)As (n = 4, 5) are predicted to occur mostly as the Mg(2+)/Ca(2+) complexes. (31)P NMR monitored titrations of Np(n)N's with Mg(2+)/Ca(2+) ions showed that the middle phosphates of the dinucleotides coordinate with Mg(2+)/Ca(2+). Multidimensional potential of mean force (PMF) molecular dynamics (MD) simulations suggest that Ap(2)A and Ap(4)A coordinate Mg(2+) and Ca(2+) ions in both inner-sphere and outer-sphere modes. The PMF MD simulations additionally provide a detailed picture of the possible coordination sites, as well as the cation binding process. Moreover, both NMR and MD simulations showed that the conformation of the nucleoside moieties in Np(n)N'-Mg(2+)/Ca(2+) complexes remains the same as that of free mononucleotides.
Collapse
|
4
|
Weinreb V, Carter CW. Mg2+-free Bacillus stearothermophilus tryptophanyl-tRNA synthetase retains a major fraction of the overall rate enhancement for tryptophan activation. J Am Chem Soc 2008; 130:1488-94. [PMID: 18173270 DOI: 10.1021/ja076557x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Few experimental data are available for rates of enzymatic phosphoryl-transfer reactions in the absence of the divalent metal ions associated with such reactions. Such data are of interest for amino acid activation by class Ic aminoacyl-tRNA synthetases, for which there is substantial evidence that binding energy of ATP may account for a major fraction of the overall rate enhancement, and it is crucial to know if these effects themselves depend on the divalent metal ion. We describe a nested, nonlinear model for the sum of metal-free and metal-catalyzed activities and its use in determining metal-free enzyme activity jointly with transition-state metal binding affinity, by fitting observed values obtained from Mg2+-depleted assays with increasing [EDTA] at known [Mg2+]total. Tryptophan activation by Bacillus stearothermophilus tryptophanyl-tRNA synthetase falls asymptotically to a plateau value 5 orders of magnitude below that observed for the Mg2+-supplemented enzyme at EDTA concentrations that reduce the free metal concentration to <1 pmolar. The fitted regression model parameters yield a relative rate acceleration of 9.3 x 10(4) attributable to the catalytic effect of Mg2+ and an enhanced (K(E)(double dagger) = 1.15 x 10(-7) M) transition-state binding of Mg2+. Factorial analysis indicates that 80% of the reduction in free energy of activation effected by TrpRS arises from protein-ligand interactions.
Collapse
Affiliation(s)
- Violetta Weinreb
- Department of Biochemistry and Biophysics, CB 7260, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | |
Collapse
|
5
|
Colomar A, Amédée T. ATP stimulation of P2X(7) receptors activates three different ionic conductances on cultured mouse Schwann cells. Eur J Neurosci 2001; 14:927-36. [PMID: 11595031 DOI: 10.1046/j.0953-816x.2001.01714.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular ATP, by acting on P2 purinergic receptors, is a potent mediator of cell-to-cell communication both within and between the nervous and the immune systems. We show here by patch-clamp recording, fluorescent dye uptake and immunocytochemistry that, in cultured mouse Schwann cells, ATP activates a P2X(7) receptor associated with three different ionic conductances. In control conditions, ATP activated an inward current (I(ATP)) with a low potency (EC(50), 7.2 mM). Replacing ATP either by the ATP analogue 2',3'-O-(4-benzoyl-4-benzoyl)-ATP (BzATP) or by the tetraacidic form ATP(4-) potentiated the inward current (ATP(4-) EC(50), 375 microM). ATP and BzATP currents were strongly reduced by periodate oxidized ATP (oATP), an antagonist of P2X(7) receptors. IATP was a mixed current composed of a nonselective cationic conductance, a cationic conductance selective for K(+) and an anionic conductance selective for Cl(-). The activation of the K(+) conductance was dependent on an influx of Ca(2+), and was blocked by charybdotoxin (ChTX) and tetraethylammonium (TEA), two potent antagonists of large conductance Ca(2+)-activated K(+) channels (BK channels). The activation of the Cl(-) conductance was insensitive to Ca(2+) but required the presence of K(+). Total removal of K(+) blocked both the Ca(2+)-activated K(+) conductance and the Cl(-) conductance, unveiling the P2X(7) nonselective cationic conductance. The P2X(7) receptor was localized by immunocytochemistry using a polyclonal antibody, anti-P2X(7), whilst its expression and functionality were both detected by the uptake of Lucifer Yellow. This receptor could regulate the synthesis and the release of cytokines by Schwann cells during pathophysiological events.
Collapse
Affiliation(s)
- A Colomar
- Institut National de la Santé et de la Recherche Médicale U394, Neurobiologie Intégrative, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
6
|
Pharmacologic properties of P2Z/P2X7receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood 2000. [DOI: 10.1182/blood.v96.3.996.015k02_996_1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the immune system, extracellular adenosine 5′-triphosphate (ATP) mediates a variety of effects mainly through activation of a particular receptor subtype, the pore-forming P2Z/P2X7 purinoceptor. This purinergic receptor has been described chiefly in cells of hemopoietic origin such as T cells, thymocytes, monocytes, macrophages, and phagocytic cells of thymic reticulum. In this study, we characterized the P2Z/P2X7 purinoceptor and the ATP-mediated apoptosis in murine spleen–derived dendritic cells (DCs). Dye uptake and apoptosis were evaluated by flow cytometry. ATP-treated DCs were permeable to different low-molecular-weight fluorescent probes such as ethidium bromide, YO-PRO 1, and lucifer yellow. Such an effect was dose-dependent (EC50: 721 μmol/L); mediated by the fully anionic agonist (ATP4−); and specifically stimulated by ATP, BzATP, and ATPγS. Additionally, an ATP-induced increase in intracellular calcium was detected by microfluorometry. Furthermore, ATP treatment induced a significant increase in apoptotic DCs (64.46% ± 3.8%) when compared with untreated control cells (34% ± 5.8%), as ascertained by the TdT-mediated dUTP nick end labeling technique. Both ATP-induced DC permeabilization and apoptosis were inhibited by oxidized ATP, a P2Z/P2X7-specific antagonist. In conclusion, we characterized the expression of the P2Z/P2X7purinoceptor in murine spleen–derived DCs and described its role on the induction of apoptosis.
Collapse
|
7
|
Nihei OK, de Carvalho AC, Savino W, Alves LA. Pharmacologic properties of P(2Z)/P2X(7 )receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood 2000. [PMID: 10910915 DOI: 10.1182/blood.v96.3.996] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the immune system, extracellular adenosine 5'-triphosphate (ATP) mediates a variety of effects mainly through activation of a particular receptor subtype, the pore-forming P(2Z)/P2X(7) purinoceptor. This purinergic receptor has been described chiefly in cells of hemopoietic origin such as T cells, thymocytes, monocytes, macrophages, and phagocytic cells of thymic reticulum. In this study, we characterized the P(2Z)/P2X(7) purinoceptor and the ATP-mediated apoptosis in murine spleen-derived dendritic cells (DCs). Dye uptake and apoptosis were evaluated by flow cytometry. ATP-treated DCs were permeable to different low-molecular-weight fluorescent probes such as ethidium bromide, YO-PRO 1, and lucifer yellow. Such an effect was dose-dependent (EC(50): 721 micromol/L); mediated by the fully anionic agonist (ATP(4-)); and specifically stimulated by ATP, BzATP, and ATPgammaS. Additionally, an ATP-induced increase in intracellular calcium was detected by microfluorometry. Furthermore, ATP treatment induced a significant increase in apoptotic DCs (64. 46% +/- 3.8%) when compared with untreated control cells (34% +/- 5. 8%), as ascertained by the TdT-mediated dUTP nick end labeling technique. Both ATP-induced DC permeabilization and apoptosis were inhibited by oxidized ATP, a P(2Z)/P2X(7)-specific antagonist. In conclusion, we characterized the expression of the P(2Z)/P2X(7) purinoceptor in murine spleen-derived DCs and described its role on the induction of apoptosis.
Collapse
Affiliation(s)
- O K Nihei
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, FIOCRUZ, Brazil
| | | | | | | |
Collapse
|
8
|
Yegutkin GG, Burnstock G. Inhibitory effects of some purinergic agents on ecto-ATPase activity and pattern of stepwise ATP hydrolysis in rat liver plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:234-44. [PMID: 10825445 DOI: 10.1016/s0005-2736(00)00165-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitory effects of various purinergic compounds on the Mg(2+)-dependent enzymatic hydrolysis of [(3)H]ATP in rat liver plasma membranes were evaluated. Rat liver enzyme ecto-ATPase has a broad nucleotide-hydrolyzing activity, displays Michaelis-Menten kinetics with K(m) for ATP of 368+/-56 microM and is not sensitive to classical inhibitors of the ion-exchange and intracellular ATPases. P2-antagonists and diadenosine tetraphosphate (Ap(4)A) progressively and non-competitively inhibited ecto-ATPase activity with the following rank order of inhibitory potency: suramin (pIC(50), 4.570)>Reactive blue 2 (4.297)&z.Gt;Ap(4)A (3. 268)>pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (2. 930). Slowly hydrolyzable P2 agonists ATPgammaS, ADPbetaS, alpha, beta-methylene ATP and beta,gamma-methylene ATP as well as the diadenosine polyphosphates Ap(3)A and Ap(5)A did not exert any inhibitory effects on the enzyme activity at concentration ranges of 10(-4)-10(-3) M. Thin-layer chromatography analysis of the formation of [(3)H]ATP metabolites indicated the presence of other enzyme activities on liver surface (ecto-ADPase and 5'-nucleotidase), participating in concert with ecto-ATPase in the nucleotide hydrolysis through the stepwise reactions ATP-->ADP-->AMP-->adenosine. A similar pattern of sequential [(3)H]ATP dephosphorylation still occurs in the presence of ecto-ATPase inhibitors suramin, Ap(4)A and PPADS, but the appearance of the ultimate reaction product, adenosine, was significantly delayed. In contrast, hydrolysis of [(3)H]ATP in the presence of Reactive blue 2 only followed the pattern ATP-->ADP, with formation of the subsequent metabolites AMP and adenosine being virtually eliminated. These data suggest that although nucleotide-binding sites of ecto-ATPase are distinct from those of P2 receptors, some purinergic agonists and antagonists can potentiate cellular responses to extracellular ATP through non-specific inhibition of the ensuing pathways of purine catabolism.
Collapse
Affiliation(s)
- G G Yegutkin
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK
| | | |
Collapse
|
9
|
Harrington MA, Gunderson KL, Kopito RR. Redox reagents and divalent cations alter the kinetics of cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 1999; 274:27536-44. [PMID: 10488089 DOI: 10.1074/jbc.274.39.27536] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gating of the cystic fibrosis Cl(-) channel requires hydrolysis of ATP by its nucleotide binding folds, but how this process controls the kinetics of channel gating is poorly understood. In the present work we show that the kinetics of channel gating and presumably the rate of ATP hydrolysis depends on the species of divalent cation present and the oxidation state of the protein. With Ca(2+) as the dominant divalent cation instead of Mg(2+), the open burst duration of the channel is increased approximately 20-fold, and this change is reversible upon washout of Ca(2+). In contrast, "soft" divalent cations such as Cd(2+) interact covalently with cystic fibrosis transmembrane conductance regulator (CFTR). These metals decrease both opening and closing rates of the channel, and the effects are not reversed by washout. Oxidation of CFTR channels with a variety of oxidants resulted in a similar slowing of channel gating. In contrast, reducing agents had the opposite effect, increasing both opening and closing rates of the channel. In cell-attached patches, CFTR channels exhibit both oxidized and reduced types of gating, raising the possibility that regulation of the redox state of the channel may be a physiological mode of control of CFTR channel activity.
Collapse
Affiliation(s)
- M A Harrington
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | | | |
Collapse
|
10
|
Yegutkin GG, Burnstock G. Steady-state binding of [3H]ATP to rat liver plasma membranes and competition by various purinergic agonists and antagonists. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:227-36. [PMID: 9733971 DOI: 10.1016/s0005-2736(98)00108-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steady-state analysis of nucleotide-binding sites on rat liver plasma membranes was carried out using 3H-labelled ATP as radioligand under complete inhibition of ecto-ATPase activity by excess EDTA. Binding of [3H]ATP to the membranes is saturable, reversible and apparently involves one population of specific binding sites with Kd of about 90 nM and binding capacity (Bmax) of 15 pmol/mg protein. A broad spectrum of purinergic agonists and antagonists was examined as potential inhibitors of the measured binding. The displacement studies showed the following rank order of inhibitory potency for [3H]ATP-binding sites (pIC50 values in parentheses): ATPgammaS (7.49)>2-MeSATP (7.18)>ATP (6.91)>ADPbetaS (6.64)>/=ADP (6.56)>>RB2 (6.14)>>suramin (5.40)>>Ap4A (4. 57)>alpha,beta-MeATP (4.19)>/=beta,gamma-MeATP (3.97). AMP, adenosine, Ap5A, PPADS, beta-glycerophosphate as well as non-adenine nucleoside triphosphates GTP, UTP and CTP did not exert any effect on the measured binding at concentration ranges of 10-6-10-4 M. In order to ascertain whether ATP and its analogues are capable of interacting with the same binding domain, 2-MeSATP and ADP were treated as alternative ligands that could compete with unlabelled ATP for its binding sites. A 2-fold increase of Kd value for ATP-receptor interaction was observed in the presence of 2-MeSATP (60 nM) or ADP (250 nM) without any modulation of Bmax value, confirming that inhibitory effects of these compounds are competitive in nature. These studies demonstrate that ATP and its analogues are able to interact with a single binding domain on liver plasma membranes, which may be identified as ligand-binding component of P2 purinoceptors of the P2Y1 subtype.
Collapse
Affiliation(s)
- G G Yegutkin
- Autonomic Neuroscience Institute, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, UK
| | | |
Collapse
|
11
|
Larsson G, Nyman PO, Kvassman JO. Kinetic characterization of dUTPase from Escherichia coli. J Biol Chem 1996; 271:24010-6. [PMID: 8798636 DOI: 10.1074/jbc.271.39.24010] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The enzyme dUTPase catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate, thereby preventing a deleterious incorporation of uracil into DNA. The best known dUTPase is that from Escherichia coli, which, like the human enzyme, consists of three identical subunits. In the present work, the catalytic properties of the E. coli dUTPase were investigated in the pH range 5-11. The enzyme was found to be highly specific for dUTP and discriminated both base and sugar as well as the phosphate moiety (bound dUDP was not hydrolyzed). The second best substrate among the nucleotides serving as building blocks for DNA was dCTP, which was hydrolyzed an astonishing 10(5) times less efficiently than dUTP, a decline largely accounted for by a higher Km for dCTP. With dUTP.Mg as substrate, kcat was found to vary little with pH and to range from 6 to 9 s-1. Km passed through a broad minimum in the neutral pH range with values approaching 10(-7) M. It increased with deprotonation of the uracil moiety of dUTP and showed dependence on two ionizations in the enzyme, exhibiting pKa values of 5.8 and 10.3. When excess dUTPase was reacted with dUTP middle dotMg at pH 8, the two protons transferred to the reaction medium were released in a concerted mode after the rate-limiting step. The Mg2+ ion enhances binding to dUTPase of dUTP by a factor of 100 and dUDP by a factor of 10. Only one enantiomer of the substrate analog 2'-deoxyuridine-5'-(alpha-thio)-triphosphate was hydrolyzed by the enzyme. These results are interpreted to favor a catalytic mechanism involving magnesium binding to the alpha-phosphate, rate-limiting hydrolysis by a shielded and activated water molecule and a fast ordered desorption of the products. The results are discussed with reference to recent data on the structure of the E. coli dUTPase.UDP complex.
Collapse
Affiliation(s)
- G Larsson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | |
Collapse
|
12
|
Aubert A, Norris CH, Guth PS. Influence of ATP and ATP agonists on the physiology of the isolated semicircular canal of the frog (Rana pipiens). Neuroscience 1994; 62:963-74. [PMID: 7870316 DOI: 10.1016/0306-4522(94)90487-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study, the influence of extracellular ATP and ATP agonists in the physiology of the vestibular organs was examined, using the in vitro model of the isolated semicircular canal of the frog (Rana pipiens). The firing activity of the afferent nerve, the d.c. nerve potential and the transepithelial potential were measured in the absence and presence of mechanical stimulation of the sensory epithelium. Administration of ATP into the perilymphatic compartment, from 10(-12) to 10(-3) M, increased the firing rate of the afferent fibers recorded in the absence of mechanical stimulation. Recordings of the d.c. nerve potential indicated that the afferent fibers were hyperpolarized. The presence of the purine also modified the transepithelial potential. During mechanical stimulation of the sensory epithelium, both the evoked afferent firing and the evoked variation of the d.c. nerve potential were reduced in the presence of ATP. However, ATP did not effect the evoked modulation of the transepithelial potential, evoked by the mechanical stimulation. Administration of the P2x purinoceptor agonists, alpha, beta-methylene-ATP and beta, gamma-methylene-ATP, at concentrations between 10(-12) and 10(-3) M, did not significantly modify the different bioelectrical activities investigated. In contrast, 2-methylthio-ATP, a P2y purinoceptor agonist, more potent and efficacious than ATP in its effect on the spontaneous firing. Concurrently, no modification of the d.c. nerve potential, the transepithelial potential and their variation during mechanical stimulation was observed. In opposition to the ATP effect, the total amplitude of the evoked firing was increased in the presence of 2-methylthio-ATP. These data suggest that extracellular ATP, present in the perilymphatic compartment, may act as a neuromodulator in the vestibular physiology. The effects of the purine appear to be mediated by the activation of a P2y subtype of purinoceptor. The absence of an effect of ATP and 2-methylthio-ATP on the evoked variation of the transepithelial potential suggest that the purine did not affect the processes responsible for the generation of the receptor potential but more likely modified the mechanisms involved in the release of the neurotransmitter from the hair cells and/or acted on the afferent endings.
Collapse
Affiliation(s)
- A Aubert
- Department of Otolaryngology, Head and Neck Surgery, Tulane University, School of Medicine, New Orleans, LA 70112-2699
| | | | | |
Collapse
|
13
|
Reimer WJ, Dixon SJ. Extracellular nucleotides elevate [Ca2+]i in rat osteoblastic cells by interaction with two receptor subtypes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C1040-8. [PMID: 1332491 DOI: 10.1152/ajpcell.1992.263.5.c1040] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, through interaction with specific cell-surface receptors, mediate a variety of biological responses, including elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in a number of cell types. The effects of nucleotides on [Ca2+]i in the rat osteoblastic cell line UMR-106 were studied by fluorescence spectrophotometry of indo-1-loaded cells. In response to ATP (100 microM), [Ca2+]i rose to peaks 228 +/- 16 nM (n = 59) above baseline (85 +/- 3 nM) before returning to near basal levels. Half-maximal elevation of [Ca2+]i was observed at an ATP concentration of 3 +/- 1 microM, consistent with a high-affinity interaction. The response arose primarily by release of Ca2+ from internal stores. UTP, ADP, and 2-methylthioadenosine 5'-triphosphate also induced Ca2+ transients, whereas adenosine, AMP, CTP, and TTP did not, demonstrating specificity. Responsiveness to adenosine 5'-O-(3-thiotriphosphate) and inhibition by Mg2+ of the response to ATP indicated that signaling was not dependent on nucleotide hydrolysis. Ca2+ responses to ADP, ATP, and UTP, added sequentially or simultaneously, were consistent with the presence of two distinct P2-purinoceptor subtypes, both linked to Ca2+ mobilization. ADP appeared to interact selectively with one receptor, whereas ATP and UTP interacted selectively with the other. After maximal stimulation with ATP, subsequent responses to ATP were abolished. However, removal of ATP from the extracellular medium rapidly restored responsiveness, suggesting that, with continued receptor occupation, there is time-dependent inactivation of the Ca2+ signaling pathway. Our findings indicate that extracellular nucleotides elevate [Ca2+]i in osteoblastic cells through interaction with two receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W J Reimer
- Department of Physiology, Faculty of Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|