1
|
Type I Interferon Counters or Promotes Coxiella burnetii Replication Dependent on Tissue. Infect Immun 2016; 84:1815-1825. [PMID: 27068091 DOI: 10.1128/iai.01540-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen and the cause of Q fever. Gamma interferon (IFN-γ) is critical for host protection from infection, but a role for type I IFN in C. burnetii infection has not been determined. Type I IFN supports host protection from a related pathogen, Legionella pneumophila, and we hypothesized that it would be similarly protective in C. burnetii infection. In contrast to our prediction, IFN-α receptor-deficient (IFNAR(-/-)) mice were protected from C. burnetii-induced infection. Therefore, the role of type I IFN in C. burnetii infection was distinct from that in L. pneumophila Mice treated with a double-stranded-RNA mimetic were protected from C. burnetii-induced weight loss through an IFNAR-independent pathway. We next treated mice with recombinant IFN-α (rIFN-α). When rIFN-α was injected by the intraperitoneal route during infection, disease-induced weight loss was exacerbated. Mice that received rIFN-α by this route had dampened interleukin 1β (IL-1β) expression in bronchoalveolar lavage fluids. However, when rIFN-α was delivered to the lung, bacterial replication was decreased in all tissues. Thus, the presence of type I IFN in the lung protected from infection, but when delivered to the periphery, type I IFN enhanced disease, potentially by dampening inflammatory cytokines. To better characterize the capacity for type I IFN induction by C. burnetii, we assessed expression of IFN-β transcripts by human macrophages following stimulation with lipopolysaccharide (LPS) from C. burnetii Understanding innate responses in C. burnetii infection will support the discovery of novel therapies that may be alternative or complementary to the current antibiotic treatment.
Collapse
|
2
|
Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice. PLoS One 2015; 10:e0124664. [PMID: 25909586 PMCID: PMC4409375 DOI: 10.1371/journal.pone.0124664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR) extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.
Collapse
|
3
|
Abstract
Selected bacteria, viruses, parasites and nonliving, immunologically active microbial substances prevent autoimmune diabetes in animal models. Such agents might also have a protective effect in humans by providing immune stimuli critical during childhood development. The 'hygiene hypothesis' proposes that reduced exposure to environmental stimuli, including microbes, underlies the rising incidence of childhood autoimmune diseases, including type 1 diabetes mellitus (T1DM). This hypothesis is supported by data that highlight the importance of infant exposure to environmental microbes for appropriate development of the immune system, which might explain the observation that administration of microbes or their components inhibits autoimmune disease in animals. This finding raises the possibility of using live, nonpathogenic microbes (for example, probiotics) or microbial components to modulate or 're-educate' the immune system and thereby vaccinate against T1DM. Progress has been assisted by the identification of receptors and pathways through which gut microbes influence development of the immune system. Such mechanistic data have moved a field that was once regarded as being on the scientific fringe to the mainstream, and support increased funding to advance this promising area of research in the hope that it might deliver the long awaited answer of how to safely prevent T1DM.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, SA 5042, Australia.
| |
Collapse
|
4
|
Shannon JG, Heinzen RA. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 2009; 43:138-48. [PMID: 18813881 DOI: 10.1007/s12026-008-8059-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that causes the zoonosis Q fever. While an effective whole-cell vaccine (WCV) against Q fever exists, the vaccine has limitations in being highly reactogenic in sensitized individuals. Thus, a safe and effective vaccine based on recombinant protein antigen (Ag) is desirable. To achieve this goal, a better understanding of the host response to primary infection and the precise mechanisms involved in protective immunity to C. burnetii are needed. This review summarizes our current understanding of adaptive immunity to C. burnetii with a focus on recent developments in the field.
Collapse
Affiliation(s)
- Jeffrey G Shannon
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, 903 S 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
5
|
Waag DM. Coxiella burnetii: host and bacterial responses to infection. Vaccine 2007; 25:7288-95. [PMID: 17825460 DOI: 10.1016/j.vaccine.2007.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/23/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Designation as a Category B biothreat agent has propelled Coxiella burnetii from a relatively obscure, underappreciated, "niche" microorganism on the periphery of bacteriology, to one of possibly great consequence if actually used in acts of bioterrorism. Advances in the study of this microorganism proceeded slowly, primarily because of the difficulty in studying this obligate intracellular pathogen that must be manipulated under biosafety level-3 conditions. The dogged determination of past and current C. burnetii researchers and the application of modern immunological and molecular techniques have more clearly defined the host and bacterial response to infection. This review is intended to provide a basic introduction to C. burnetii and Q fever, while emphasizing immunomodulatory properties, both positive and negative, of Q fever vaccines and C. burnetii infections.
Collapse
Affiliation(s)
- David M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
6
|
Pierce CY, Barr JR, Woolfitt AR, Moura H, Shaw EI, Thompson HA, Massung RF, Fernandez FM. Strain and phase identification of the U.S. category B agent Coxiella burnetii by matrix assisted laser desorption/ionization time-of-flight mass spectrometry and multivariate pattern recognition. Anal Chim Acta 2007; 583:23-31. [PMID: 17386522 DOI: 10.1016/j.aca.2006.09.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
Accurate bacterial identification is important in diagnosing disease and in microbial forensics. Coxiella burnetii, a highly infective microorganism causative of the human disease Q fever, is now considered a U.S. category B potential bioterrorism agent. We report here an approach for the confirmatory identification of C. burnetii at the strain level which involves the combined use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and supervised pattern recognition via Partial Least Squares-Discriminant Analysis (PLS-DA). C. burnetii isolates investigated in this study included the following prototype strains from different geographical and/or historical origins and with different antigenic properties: Nine Mile I, Australian QD, M44, KAV, PAV, Henzerling, and Ohio. After culture and purification following standard protocols, linear MALDI-TOF mass spectra of pure bacterial cultures were acquired in positive ion mode. Mass spectral data were normalized, baseline-corrected, denoised, binarized and modeled by PLS-DA under crossvalidation conditions. Robustness with respect to uncontrolled variations in the sample preparation and MALDI analysis protocol was assessed by repeating the experiment on five different days spanning a period of 6 months. The method was validated by the prediction of unknown C. burnetii samples in an independent test set with 100% sensitivity and specificity for five out of six strain classes.
Collapse
Affiliation(s)
- Carrie Y Pierce
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rolph MS, Mahalingam S, Cowden WB. Nonspecific antiviral immunity by formalin-fixed Coxiella burnetii is enhanced in the absence of nitric oxide. Virology 2004; 326:1-5. [PMID: 15262489 DOI: 10.1016/j.virol.2004.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/09/2004] [Accepted: 04/30/2004] [Indexed: 11/16/2022]
Abstract
Mice treated with a single injection of formalin-fixed Coxiella burnetii showed a significant increase in resistance to vaccinia virus (VV) infection compared to untreated mice. C. burnetii stimulated dramatically high levels of nitric oxide (NO) in the serum of treated mice, suggesting that NO might play a role in resistance to virus infection. To test this hypothesis, the effect of C. burnetii treatment on VV replication was examined in NOS2-/- and wild-type mice. C. burnetii treatment inhibited VV replication in both the knockout and wild-type mice but the effect was significantly greater in the NOS2-/- mice. Experiments in IFNgamma receptor knockout mice indicated that the nonspecific antiviral immunity induced by C. burnetii was dependent on IFNgamma and not NO. In the absence of NO, indoleamine 2,3-dioxygenase (IDO) was increased in C. burnetii-treated mice and this may contribute to the accelerated virus clearance in NOS2-/- mice.
Collapse
Affiliation(s)
- Michael S Rolph
- Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
8
|
Zhang G, Kiss K, Seshadri R, Hendrix LR, Samuel JE. Identification and cloning of immunodominant antigens of Coxiella burnetii. Infect Immun 2004; 72:844-52. [PMID: 14742528 PMCID: PMC321626 DOI: 10.1128/iai.72.2.844-852.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A sublethal-challenge model was established in BALB/c mice by using protection from the development of severe splenomegaly as an indicator of vaccinogenic activity for evaluation of the protective efficacies of vaccine candidates. To determine the immunodominant antigens as defined by reaction to an infection-derived antibody, mouse sera from different stages of experimental infection with various doses of Coxiella burnetii were tested by immunoblotting. Proteins with molecular masses of 14, 16, 21, 28, 32, 45 to 50, 57, and 60 kDa were recognized as immunodominant antigens. Antibody responses in whole-cell antigen (WCA)-vaccinated mice were compared with those in unvaccinated mice by immunoblotting using two-dimensional gel-separated C. burnetii antigens. The results indicated that there were significantly different antibody responses during different stages of vaccination and challenge, suggesting that several specific immunogenic antigens may play critical roles in the protection of mice against challenge. To clone these immunogenic antigens, a genomic DNA library of Nine Mile phase I was screened with convalescent-phase antisera from mice. Eighteen novel immunoreactive proteins with molecular masses ranging from approximately 14 to 67 kDa were cloned and identified. Interestingly, several recombinant proteins reacted with sera from both early-stage infected and WCA-vaccinated prechallenged mice. These results suggest that these proteins may play critical roles in the development of protective immunity and that they are logical candidates for vaccine and serodiagnostic reagents.
Collapse
Affiliation(s)
- Guoquan Zhang
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | | | |
Collapse
|
9
|
Silva DG, Charlton B, Cowden W, Petrovsky N. Prevention of Autoimmune Diabetes through Immunostimulation with Q Fever Complement-Fixing Antigen. Ann N Y Acad Sci 2003; 1005:423-30. [PMID: 14679105 DOI: 10.1196/annals.1288.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The most promising strategies for prevention of type 1 diabetes seem to be in the categories of immunomodulation (e.g., nondepleting anti-CD3, Diapep, linomide) and/or immunostimulation (e.g., QFA, BCG). We are currently undertaking a research program directed toward better understanding of immunostimulants to help maximize the likelihood of success of future human clinical trials for diabetes prevention. This program is focused on the key areas of optimization of vaccine dose and route of administration, development of surrogate immune markers, and elucidation of the mechanism of protection. The mechanism whereby QFA protects against diabetes currently is not known. The elucidation of the mechanism should help identify the optimal way in which to administer QFA to provide diabetes protection. It may also assist the development of even more potent immunostimulatory vaccines.
Collapse
Affiliation(s)
- D G Silva
- Autoimmunity Research Unit, The Canberra Hospital, Canberra, Australia
| | | | | | | |
Collapse
|
10
|
Zhang GQ, Samuel JE. Identification and cloning potentially protective antigens of Coxiella burnetii using sera from mice experimentally infected with Nine Mile phase I. Ann N Y Acad Sci 2003; 990:510-20. [PMID: 12860683 DOI: 10.1111/j.1749-6632.2003.tb07420.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coxiella burnetii is an obligate intracellular bacterium that causes acute Q fever and occasional chronic infections in humans. To determine the immunodominant antigens during infection with C. burnetii, sera from mice experimentally infected with Nine Mile phase I were tested by immunoblotting. The mouse sera recognized antigens with a variety of molecular weights, including proteins of 14, 22, 28, 34, and 60 kDa as immunodominant antigens. In order to clone potential protective antigens, a genomic DNA library of Nine Mile phase I was constructed in the expression vector Lambda ZAP Express and screened with sera from mice that recovered from C. burnetii infection. A total of 102 immunoreactive clones with various signal intensities were identified from about 8,000 plaques. These clones were purified and expressed in the excised plasmid pBK-CMV. The proteins expressed by these recombinant plasmids were analyzed by SDS-PAGE and immunoblotting. Fifty-four clones expressed immunoreactive proteins of molecular masses ranging from approximately 14 to 60 kDa. Sequence analysis and BLAST search of the recently completed genome sequence identified a variety of novel immunoreactive proteins. These proteins are logical vaccine candidates for testing protective activity against C. burnetii challenge. We established a sublethal challenge model in BALB/c mice with protection from the development of severe splenomegaly as an indicator of vaccinogenic activity. Further characterization of these proteins will provide essential information for developing novel, specific diagnostic reagents and potential subunit vaccine candidates against C. burnetii infection.
Collapse
Affiliation(s)
- G Q Zhang
- Department of Medical Microbiology and Immunology, Texas A M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
11
|
Abstract
Unmethylated CpG motifs are prevalent in bacterial but not vertebrate genomic DNAs. Oligodeoxynucleotides (ODN) containing CpG motifs activate host defense mechanisms leading to innate and acquired immune responses. The recognition of CpG motifs requires Toll-like receptor (TLR) 9, which triggers alterations in cellular redox balance and the induction of cell signaling pathways including the mitogen activated protein kinases (MAPKs) and NF kappa B. Cells that express TLR-9, which include plasmacytoid dendritic cells (PDCs) and B cells, produce Th1-like proinflammatory cytokines, interferons, and chemokines. Certain CpG motifs (CpG-A) are especially potent at activating NK cells and inducing IFN-alpha production by PDCs, while other motifs (CpG-B) are especially potent B cell activators. CpG-induced activation of innate immunity protects against lethal challenge with a wide variety of pathogens, and has therapeutic activity in murine models of cancer and allergy. CpG ODN also enhance the development of acquired immune responses for prophylactic and therapeutic vaccination.
Collapse
Affiliation(s)
- Arthur M Krieg
- Department of Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA.
| |
Collapse
|
12
|
Kafetzis DA, Maltezou HC, Constantopoulou I, Antonaki G, Liapi G, Mathioudakis I. Lack of association between Kawasaki syndrome and infection with Rickettsia conorii, Rickettsia typhi, Coxiella burnetii or Ehrlichia phagocytophila group. Pediatr Infect Dis J 2001; 20:703-6. [PMID: 11465844 DOI: 10.1097/00006454-200107000-00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The etiology of Kawasaki syndrome (KS) is unknown. Rickettsiae, intracellular microorganisms that invade the vascular endothelium, might cause KS. OBJECTIVES To investigate whether there is an association between KS and infection with Rickettsia conorii, Rickettsia typhi, Coxiella burnetii or Ehrlichia phagocytophila group. METHODS All children who were diagnosed with KS at the University of Athens Second Department of Pediatrics from December, 1999, through November, 2000, were prospectively studied. Paired serum specimens were obtained from all patients and antibody titers against R. conorii, R. typhi, C. burnetii and E. phagocytophila group were assessed by microimmunofluorescence assay. RESULTS Eleven children with a median age of 2.5 years were included in the study. A 15-month-old child had a 4-fold rise of antibody titers against C. burnetii, which is indicative of acute Q fever. The patient had a history of recent exposure to possible sources of C. burnetii. The remaining patients tested negative for the presence of antibodies against R. conorii, R. typhi, C. burnetii and E. phagocytophila group. CONCLUSIONS Our study does not provide serologic evidence that KS is the result of infection with R. conorii, R. typhi, C. burnetii or E. phagocytophila group. It is suggested that C. burnetii may cause a KS-like illness in young children.
Collapse
Affiliation(s)
- D A Kafetzis
- Second Department of Pediatrics, University of Athens, P&A Kyriakou Children's Hospital, Greece.
| | | | | | | | | | | |
Collapse
|
13
|
Zvilich M, Williams JC, Waag D, Rill WR, Malli RJ, Bell P, Kende M. Characterization of the non-specific humoral and cellular antiviral immunity stimulated by the chloroform-methanol residue (CMR) fraction of Coxiella burnetii. Antiviral Res 1995; 27:389-404. [PMID: 8540758 DOI: 10.1016/0166-3542(95)00022-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Modulation of the immune response by the chloroform-methanol residue (CMR) of phase I Coxiella burnetii whole cell was studied in Rift Valley fever virus-infected, or in naive endotoxin-non-responder C3H/HeJ mice. A single dose of CMR completely protected the mice from viral infection. Treating virus-infected mice with antibodies directed against interferons alpha/beta (IFN-alpha beta) and gamma (IFN-gamma) eliminated the CMR-induced protection. CMR stimulated the production of high levels of IFN-alpha/beta and 2'-5'-oligoadenylate synthetase activities in sera of the CMR-treated mice. IFN-gamma was present in supernatants of cultured spleen cells of CMR-treated, virus-infected mice, but not in their serum. Priming mice with CMR optimized the release of INF-gamma, interleukin-1 alpha (IL-1 alpha) and IL-6 from splenocytes in vitro. When stimulated in vitro, IL-2 and granulocyte-macrophage stimulating factor (GM-CSF) did not require in vivo priming for release from cultured spleen cells. Fluorescence-assisted cytometry of CMR-treated mouse spleen cells showed there was a CMR-dependent increase in the percentage of T-cells and Ia-positive T-cells. There also was a biphasic increase in the ratio between Th (L3T4) and Ts (Lyt2) cells. Biological activities stimulated by CMR indicate that CMR is a potent immunostimulant, which may modulate specific and non-specific antiviral responses.
Collapse
Affiliation(s)
- M Zvilich
- Department of Clinical Immunology, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | | | | | | | |
Collapse
|