1
|
Baizer JS. Functional and Neuropathological Evidence for a Role of the Brainstem in Autism. Front Integr Neurosci 2021; 15:748977. [PMID: 34744648 PMCID: PMC8565487 DOI: 10.3389/fnint.2021.748977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The brainstem includes many nuclei and fiber tracts that mediate a wide range of functions. Data from two parallel approaches to the study of autistic spectrum disorder (ASD) implicate many brainstem structures. The first approach is to identify the functions affected in ASD and then trace the neural systems mediating those functions. While not included as core symptoms, three areas of function are frequently impaired in ASD: (1) Motor control both of the limbs and body and the control of eye movements; (2) Sensory information processing in vestibular and auditory systems; (3) Control of affect. There are critical brainstem nuclei mediating each of those functions. There are many nuclei critical for eye movement control including the superior colliculus. Vestibular information is first processed in the four nuclei of the vestibular nuclear complex. Auditory information is relayed to the dorsal and ventral cochlear nuclei and subsequently processed in multiple other brainstem nuclei. Critical structures in affect regulation are the brainstem sources of serotonin and norepinephrine, the raphe nuclei and the locus ceruleus. The second approach is the analysis of abnormalities from direct study of ASD brains. The structure most commonly identified as abnormal in neuropathological studies is the cerebellum. It is classically a major component of the motor system, critical for coordination. It has also been implicated in cognitive and language functions, among the core symptoms of ASD. This structure works very closely with the cerebral cortex; the cortex and the cerebellum show parallel enlargement over evolution. The cerebellum receives input from cortex via relays in the pontine nuclei. In addition, climbing fiber input to cerebellum comes from the inferior olive of the medulla. Mossy fiber input comes from the arcuate nucleus of the medulla as well as the pontine nuclei. The cerebellum projects to several brainstem nuclei including the vestibular nuclear complex and the red nucleus. There are thus multiple brainstem nuclei distributed at all levels of the brainstem, medulla, pons, and midbrain, that participate in functions affected in ASD. There is direct evidence that the cerebellum may be abnormal in ASD. The evidence strongly indicates that analysis of these structures could add to our understanding of the neural basis of ASD.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Baizer JS. Unique features of the human brainstem and cerebellum. Front Hum Neurosci 2014; 8:202. [PMID: 24778611 PMCID: PMC3985031 DOI: 10.3389/fnhum.2014.00202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022] Open
Abstract
The cerebral cortex is greatly expanded in the human brain. There is a parallel expansion of the cerebellum, which is interconnected with the cerebral cortex. We have asked if there are accompanying changes in the organization of pre-cerebellar brainstem structures. We have examined the cytoarchitectonic and neurochemical organization of the human medulla and pons. We studied human cases from the Witelson Normal Brain Collection, analyzing Nissl sections and sections processed for immunohistochemistry for multiple markers including the calcium-binding proteins calbindin, calretinin, and parvalbumin, non-phosphorylated neurofilament protein, and the synthetic enzyme for nitric oxide, nitric oxide synthase. We have also compared the neurochemical organization of the human brainstem to that of several other species including the chimpanzee, macaque and squirrel monkey, cat, and rodent, again using Nissl staining and immunohistochemistry. We found that there are major differences in the human brainstem, ranging from relatively subtle differences in the neurochemical organization of structures found in each of the species studied to the emergence of altogether new structures in the human brainstem. Two aspects of human cortical organization, individual differences and left–right asymmetry, are also seen in the brainstem (principal nucleus of the inferior olive) and the cerebellum (the dentate nucleus). We suggest that uniquely human motor and cognitive abilities derive from changes at all levels of the central nervous system, including the cerebellum and brainstem, and not just the cerebral cortex.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, NY , USA
| |
Collapse
|
3
|
Baizer JS, Paolone NA, Witelson SF. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 2011; 1382:45-56. [DOI: 10.1016/j.brainres.2011.01.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 12/25/2022]
|
4
|
Hogie M, Guerbet M, Reber A. The toxic effects of toluene on the optokinetic nystagmus in pigmented rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:872-878. [PMID: 18397809 DOI: 10.1016/j.ecoenv.2008.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 02/18/2008] [Accepted: 02/24/2008] [Indexed: 05/26/2023]
Abstract
The effects of 375 mgm(-3) (100 ppm) toluene in air inhalation were evaluated on pigmented rats during either repeated exposures over five consecutive days 3h a day or during a single 4-h exposure. At the end of the inhalation period, the animals were returned to fresh air to evaluate their ability to recover optokinetic performance. The optokinetic responses were analyzed using a magnetic search coil technique previously described. After repeated toluene exposure, the eye position at rest of all the rats was unsteady. In response to visual stimulation, the eye velocity was slower and more irregular than in the control state. At the end of the stimulation, the environment of the animals became stationary, but the eye did not immediately return to a fixed stable position. A similar effect was observed after a single exposure. An increase of the optokinetic deficit was observed after single or repeated 375 mgm(-3) toluene exposures. No recovery was observed even after a single exposure. In view of the fact that toluene is a widely used solvent, these results show that inhalation of low concentrations, even for short single exposures, must be taken into account, because gaze destabilization could cause vertigo symptoms.
Collapse
Affiliation(s)
- Manuela Hogie
- Faculty of Sciences, Laboratory of Neurosciences and Environment, Rouen University, 76821 Mont Saint Aignan Cedex, France
| | | | | |
Collapse
|
5
|
Baizer JS, Baker JF, Haas K, Lima R. Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 2007; 1176:45-52. [PMID: 17869228 PMCID: PMC2078602 DOI: 10.1016/j.brainres.2007.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/26/2022]
Abstract
We have characterized the neurochemical organization of a small brainstem nucleus in the human brain, the nucleus paramedianus dorsalis (PMD). PMD is located adjacent and medial to the nucleus prepositus hypoglossi (PH) in the dorsal medulla and is distinguished by the pattern of immunoreactivity of cells and fibers to several markers including calcium-binding proteins, a synthetic enzyme for nitric oxide (neuronal nitric oxide synthase, nNOS) and a nonphosphorylated neurofilament protein (antibody SMI-32). In transverse sections, PMD is oval with its long axis aligned with the dorsal border of the brainstem. We identified PMD in eight human brainstems, but found some variability both in its cross-sectional area and in its A-P extent among cases. It includes calretinin immunoreactive large cells with oval or polygonal cell bodies. Cells in PMD are not immunoreactive for either calbindin or parvalbumin, but a few fibers immunoreactive to each protein are found within its central region. Cells in PMD are also immunoreactive to nNOS, and immunoreactivity to a neurofilament protein shows many labeled cells and fibers. No similar region is identified in atlases of the cat, mouse, rat or monkey brain, nor does immunoreactivity to any of the markers that delineate it in the human reveal a comparable region in those species. The territory that PMD occupies is included in PH in other species. Since anatomical and physiological data in animals suggest that PH may have multiple subregions, we suggest that the PMD in human may be a further differentiation of PH and may have functions related to the vestibular control of eye movements.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo New York, 14214, phone: 716-829-3096, FAX: 716-829-2344,
| | - James F. Baker
- Department of Physiology, Institute for Neuroscience, Physiology/Medical, Ward 5-071, M211, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, ILL 60611-3008
| | - Kristin Haas
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo New York, 14214, phone: 716-829-3096, FAX: 716-829-2344,
| | - Raquel Lima
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo New York, 14214, phone: 716-829-3096, FAX: 716-829-2344,
| |
Collapse
|
6
|
Baizer JS, Baker JF. Neurochemically defined cell columns in the nucleus prepositus hypoglossi of the cat and monkey. Brain Res 2006; 1094:127-37. [PMID: 16701575 DOI: 10.1016/j.brainres.2006.03.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
Many studies have shown that the nucleus prepositus hypoglossi (PH) participates with the vestibular nuclear complex, the cerebellum and the oculomotor nuclei in the control of eye movements. We have looked at the neurochemical organization of PH in the cat and monkey using a recently developed antibody, 8B3, that recognizes a chondroitin sulfate proteoglycan. In the cat, immunoreactivity to 8B3 labels a set of cells in PH. On frontal sections, these cells form a cluster that is seen over the entire anterior-posterior (A-P) extent of PH, but the number of cells in the cluster changes with A-P level. Earlier studies have identified an A-P cell column in PH of the cat whose neurons synthesize nitric oxide. We have used both single- and double-label protocols to investigate the relation between the two cell groups. Single-label studies show spatial overlap but that the cells immunoreactive to nitric oxide synthase (nNOS) are more numerous than cells immunoreactive to 8B3. Double-label studies show that all cells immunoreactive to 8B3 were also immunoreactive to nNOS, but, as suggested by the single-label data, there are many nNOS-immunoreactive cells not immunoreactive to 8B3. Populations of 8B3 and nNOS-immunoreactive cells are also found in PH of squirrel and macaque monkeys. The results suggest that nNOS-immunoreactive cells in PH may consist of two functionally different populations.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214-3078, USA.
| | | |
Collapse
|
7
|
Abstract
Nitric oxide (NO) production by neurons in the prepositus hypoglossi (PH) nucleus is necessary for the normal performance of eye movements in alert animals. In this study, the mechanism(s) of action of NO in the oculomotor system has been investigated. Spontaneous and vestibularly induced eye movements were recorded in alert cats before and after microinjections in the PH nucleus of drugs affecting the NO-cGMP pathway. The cellular sources and targets of NO were also studied by immunohistochemical detection of neuronal NO synthase (NOS) and NO-sensitive guanylyl cyclase, respectively. Injections of NOS inhibitors produced alterations of eye velocity, but not of eye position, for both spontaneous and vestibularly induced eye movements, suggesting that NO produced by PH neurons is involved in the processing of velocity signals but not in the eye position generation. The effect of neuronal NO is probably exerted on a rich cGMP-producing neuropil dorsal to the nitrergic somas in the PH nucleus. On the other hand, local injections of NO donors or 8-Br-cGMP produced alterations of eye velocity during both spontaneous eye movements and vestibulo-ocular reflex (VOR), as well as changes in eye position generation exclusively during spontaneous eye movements. The target of this additional effect of exogenous NO is probably a well defined group of NO-sensitive cGMP-producing neurons located between the PH and the medial vestibular nuclei. These cells could be involved in the generation of eye position signals during spontaneous eye movements but not during the VOR.
Collapse
|
8
|
Kaneko CR. Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 1999; 81:668-81. [PMID: 10036269 DOI: 10.1152/jn.1999.81.2.668] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The eyes are moved by a combination of neural commands that code eye velocity and eye position. The eye position signal is supposed to be derived from velocity-coded command signals by mathematical integration via a single oculomotor neural integrator. For horizontal eye movements, the neural integrator is thought to reside in the rostral nucleus prepositus hypoglossi (nph) and project directly to the abducens nuclei. In a previous study, permanent, serial ibotenic acid lesions of the nph in three rhesus macaques compromised the neural integrator for fixation but saccades were not affected. In the present study, to determine further whether the nph is the neural substrate for a single oculomotor neural integrator, the effects of those lesions on smooth pursuit, the vestibulo-ocular reflex (VOR), vestibular nystagmus (VN), and optokinetic nystagmus (OKN) are documented. The lesions were correlated with long-lasting deficits in eye movements, indicated most clearly by the animals' inability to maintain steady gaze in the dark. However, smooth pursuit and sinusoidal VOR in the dark, like the saccades in the previous study, were affected minimally. The gain of horizontal smooth pursuit (eye movement/target movement) decreased slightly (<25%) and phase lead increased slightly for all frequencies (0.3-1.0 Hz, +/-10 degrees target tracking), most noticeably for higher frequencies (0.8-0.7 and approximately 20 degrees for 1.0-Hz tracking). Vertical smooth pursuit was not affected significantly. Surprisingly, horizontal sinusoidal VOR gain and phase also were not affected significantly. Lesions had complex effects on both VN and OKN. The plateau of per- and postrotatory VN was shortened substantially ( approximately 50%), whereas the initial response and the time constant of decay decreased slightly. The initial OKN response also decreased slightly, and the charging phase was prolonged transiently then recovered to below normal levels like the VN time constant. Maximum steady-state, slow eye velocity of OKN decreased progressively by approximately 30% over the course of the lesions. These results support the previous conclusion that the oculomotor neural integrator is not a single neural entity and that the mathematical integrative function for different oculomotor subsystems is most likely distributed among a number of nuclei. They also show that the nph apparently is not involved in integrating smooth pursuit signals and that lesions of the nph can fractionate the VOR and nystagmic responses to adequate stimuli.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Excitatory Amino Acid Agonists/pharmacology
- Eye Movements/drug effects
- Fixation, Ocular/drug effects
- Fixation, Ocular/physiology
- Ibotenic Acid/pharmacology
- Macaca mulatta
- Male
- Medulla Oblongata/drug effects
- Nystagmus, Optokinetic/drug effects
- Nystagmus, Optokinetic/physiology
- Photic Stimulation
- Pursuit, Smooth/drug effects
- Pursuit, Smooth/physiology
- Reflex, Vestibulo-Ocular/drug effects
- Reflex, Vestibulo-Ocular/physiology
- Vestibular Nuclei/drug effects
- Vestibular Nuclei/physiology
Collapse
Affiliation(s)
- C R Kaneko
- Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
Kaneko CR. Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 1997; 78:1753-68. [PMID: 9325345 DOI: 10.1152/jn.1997.78.4.1753] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been suggested that the function of the nucleus prepositus hypoglossi (nph) is the mathematical integration of velocity-coded signals to produce position-coded commands that drive abducens motoneurons and generate horizontal eye movements. In early models of the saccadic system, a single integrator provided not only the signal that maintained steady gaze after a saccade but also an efference copy of eye position, which provided a feedback signal to control the dynamics of the saccade. In this study, permanent, serial ibotenic acid lesions were made in the nph of three rhesus macaques, and their effects were studied while the alert monkeys performed a visual tracking task. Localized damage to the nph was confirmed in both Nissl and immunohistochemically stained material. The lesions clearly were correlated with long-lasting deficits in eye movement. The animals' ability to fixate in the dark was compromised quickly and uniformly so that saccades to peripheral locations were followed by postsaccadic centripetal drift. The time constant of the drift decreased to approximately one-tenth of its normal values but remained 10 times longer than that attributable to the mechanics of the eye. In contrast, saccades were affected minimally. The results are more consistent with models of the neural saccade generator that use separate feedback and position integrators than with the classical models, which use a single multipurpose element. Likewise, the data contradict models that rely on feedback from the nph. In addition, they show that the oculomotor neural integrator is not a single neural entity but is most likely distributed among a number of nuclei.
Collapse
Affiliation(s)
- C R Kaneko
- Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Kato I, Watanabe S, Sato S, Norita M. Pretectofugal fibers from the nucleus of the optic tract in monkeys. Brain Res 1995; 705:109-17. [PMID: 8821741 DOI: 10.1016/0006-8993(95)01145-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nucleus of the optic tract (NOT) is the visuo-motor relay between the retina and preoculomotor structures in the pathway mediating optokinetic nystagmus (OKN). NOT lesions in monkeys produce no OKN toward the lesioned side. Then, efferent fibers from the NOT course through the brainstem and may reach the vestibular nucleus, which is proposed to be the final nucleus to the motor nucleus. In the present study, the tracer was injected through a micropipette in the NOT in four monkeys. Labeled terminals were observed ipsilaterally in the parabigeminal nucleus, superficial layers of the superior colliculus, dorsal and lateral terminal nuclei of the accessory optic system and pretectal nuclei and contralaterally in the NOT and superficial layers of the superior colliculus. Descending fibers from the NOT consisted of two major pathways: (1) fibers descended medially from the injection site through the reticularis pontis oralis to reach the lateral part of the ipsilateral nucleus reticularis tegmenti pontis; (2) fibers projecting into the dorsal cap of inferior olive, by far the greatest number of labeled fibers, descended ventrally along the lateral border of the reticularis pontis oralis and reached the medial lemniscus where they descended further and branched into the dorsolateral pontine nucleus, the lateral part of the nucleus reticularis tegmenti pontis, the peduncular pontine nucleus, the lateral pontine nucleus, the nucleus prepositus hypoglossi, the medial vestibular nucleus and finally the dorsal cap of the inferior olive. Consistent with the physiological data, the direct terminals to the medial vestibular nucleus could serve to drive the storage mechanisms and to produce OKN in the monkey.
Collapse
Affiliation(s)
- I Kato
- Department of Otolaryngology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
The interstitial nucleus of Cajal (INC) and the nucleus prepositus hypoglossi (nph) are key elements in the vertical and horizontal oculomotor neural integrators, respectively. In this article, we attempt to develop possible circuits for these vestibular integrators by synthesizing recent information on the properties and connections of neurons involved in the integration process. We also examine how the cerebellar flocculus could play a role in the vertical integrator and vestibulo-ocular reflex (VOR) as well as in the modulation and plasticity of the VOR. We suggest that the circuitry for the vertical integrator involves the cerebellar flocculus in addition to the already proposed circuits distributed between the INC and the vestibular nuclei. The horizontal vestibular integrator is also distributed and seems to be characterized by functional compartmentalization. Both integrators play a wider role than simply transforming velocity-coded signals into position commands and may be pivotal in the short- and long-term modulation of the various oculomotor subsystems.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Japan
| | | |
Collapse
|
12
|
Mustari MJ, Fuchs AF, Kaneko CR, Robinson FR. Anatomical connections of the primate pretectal nucleus of the optic tract. J Comp Neurol 1994; 349:111-28. [PMID: 7852621 DOI: 10.1002/cne.903490108] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pretectal nucleus of the optic tract (NOT) plays an essential role in optokinetic nystagmus, the reflexive movements of the eyes to motion of the entire visual scene. To determine how the NOT can influence structures that move the eyes, we injected it with lectin-conjugated horseradish peroxidase and characterized its afferent and efferent connections. The NOT sent its heaviest projection to the caudal half of the ipsilateral dorsal cap of Kooy in the inferior olive. The rostral dorsal cap was free of labeling. The NOT sent lighter, but consistent, projections to other visual and oculomotor-related areas including, from rostral to caudal, the ipsilateral pregeniculate nucleus, the contralateral NOT, the lateral and medial terminal nuclei of the accessory optic system bilaterally, the ipsilateral dorsolateral pontine nucleus, the ipsilateral nucleus prepositus hypoglossi, and the ipsilateral medial vestibular nucleus. The NOT received input from the contralateral NOT, the lateral terminal nuclei bilaterally, and the ipsilateral pregeniculate nucleus. Although our injections involved the pretectal olivary nucleus (PON), there was neither orthograde nor retrograde labeling in the contralateral PON. Our results indicate that the NOT can influence brainstem preoculomotor pathways both directly through the medial vestibular nucleus and nucleus prepositus hypoglossi and indirectly through both climbing and mossy fiber pathways to the cerebellar flocculus. In addition, the NOT communicates strongly with other retino-recipient zones, whose neurons are driven by either horizontal (contralateral NOT) or vertical (medial and lateral terminal nuclei) fullfield image motion.
Collapse
Affiliation(s)
- M J Mustari
- Department of Anatomy, University of Texas Medical Branch, Galveston 77555
| | | | | | | |
Collapse
|
13
|
Robinson FR, Phillips JO, Fuchs AF. Coordination of gaze shifts in primates: brainstem inputs to neck and extraocular motoneuron pools. J Comp Neurol 1994; 346:43-62. [PMID: 7962711 DOI: 10.1002/cne.903460104] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To determine whether there are brainstem regions that provide common input to the motoneurons that move both the head and the eyes, we injected wheat germ agglutinin-horseradish peroxidase complex (WGA-HRP) into neck motoneuron pools at spinal level C2 (N = 3) and extraocular motoneuron pools in the abducens (N = 1) and oculomotor/trochlear (N = 1) nuclei of rhesus and fascicularis macaques. We also injected WGA-HRP into spinal level C5-7 (N = 1) of a fascicularis macaque for comparison. After injections into C2, we observed retrogradely labeled cells in the ventral reticular formation (NRV), the gigantocellular reticular formation (NRG), and both the oral (NRPO) and the caudal (NRPC) divisions of the paramedian pontine reticular formation (PPRF). There was also a column of labeled cells in the cuneate reticular nucleus (NCUN) just lateral to the ipsilateral periaqueductal gray (PAG). This column extended rostrally into the central mesencephalic reticular formation (CMRF). In addition, there were labeled cells in the region ventral and caudal to the rostral interstitial nucleus of the MLF (riMLF), the area lateral to the interstitial nucleus of Cajal (INC), and the ventral part of the lateral vestibular nucleus (LVN) and lateral part of the medial vestibular nucleus (MVN). There were also a few labeled cells in the fastigial (FN) and interposed (IN) nuclei of the cerebellum but very few in the superior colliculus (SC). In contrast, the injection into C5-7 labeled many cells in the lateral vestibular nucleus (LVN) and very few in FN or IN. Injecting WGA-HRP into the abducens nucleus and the surrounding tissue labeled many cells in SC, PPRF, MVN, FN, and nucleus prepositus hypoglossi (NPH). Injecting into the oculomotor/trochlear nuclei and nearby tissue labeled cells in SC, INC, riMLF, FN, IN, MVN, and superior vestibular nucleus (SVN). Structures that project to both neck and eye motoneuron pools, and therefore probably participate in both head and eye movements, include the lateral part of the MVN and both NRPO and NRPC in the PPRF. Those that project primarily to neck motoneurons in C2 include the NRV, the NRG, and the NCUN-CMRF column. Those projecting exclusively to extraocular nuclei include the NPH, INC, riMLF, NRPD, and SC. We use these data to propose a scheme for control of combined eye-head movements in monkeys.
Collapse
Affiliation(s)
- F R Robinson
- Department of Physiology and Biophysics, University of Washington, Seattle 98195
| | | | | |
Collapse
|
14
|
Pastor AM, De la Cruz RR, Baker R. Eye position and eye velocity integrators reside in separate brainstem nuclei. Proc Natl Acad Sci U S A 1994; 91:807-11. [PMID: 8290604 PMCID: PMC43038 DOI: 10.1073/pnas.91.2.807] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two types of central nervous system integrators are critical for oculomotor performance. The first integrates velocity commands to create position signals that hold fixation of the eye. The second stores relative velocity of the head and visual surround to stabilize gaze both during and after the occurrence of continuous self and world motion. We have used recordings from single neurons to establish that the "position" and "velocity" integrators for horizontal eye movement occupy adjacent, but nonoverlapping, locations in the goldfish medulla. Lidocaine inactivation of each integrator results in the eye movement deficits expected if horizontal eye position and velocity signals are processed separately. These observations also indicate that each brainstem compartment generates and stores these signals. Consequently, each integrator exhibits functional autonomy. Therefore, we propose that the intrinsic electrophysiological properties of the constituent neurons in each brainstem subnucleus may be sufficient for producing integrator rhythmicity.
Collapse
Affiliation(s)
- A M Pastor
- Department of Physiology and Biology, University of Seville, Spain
| | | | | |
Collapse
|
15
|
Godaux E, Mettens P, Cheron G. Differential effect of injections of kainic acid into the prepositus and the vestibular nuclei of the cat. J Physiol 1993; 472:459-82. [PMID: 8145154 PMCID: PMC1160496 DOI: 10.1113/jphysiol.1993.sp019956] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. In order adequately to control eye movements, oculomotoneurones have to be supplied with both an eye-velocity signal and an eye-position signal. However, all the command signals of the oculomotor system are velocity signals. Nowadays, there is general agreement about the existence of a brainstem network that would convert velocity command-signals into an eye-position signal. This circuit, because of its function, is called the oculomotor neural integrator. The most obvious symptom of its eventual failure is a gaze-holding deficit: in this case, saccades are followed by a centripetal post-saccadic drift. Although the oculomotor neural integrator is central in oculomotor theory, its precise location is still a matter for debate. 2. Previously, microinjections of kainic acid (KA) into the region of the nucleus prepositus hypoglossi (NPH) and of the medial vestibular nucleus (MVN) were found to induce a horizontal gaze-holding failure both in the cat and in the monkey. However, the relatively large volumes (1-3 microliters) and concentrations (2-4 micrograms microliters-1) used in these injections made it difficult to know if the observed deficit was due to a disturbance of the NPH or of the nearby MVN. These considerations led us to inject very small amounts of kainic acid (50 nl, 0.1 microgram microliter-1) either into the rostral part of the MVN or into different sites along the NPH of the cat. 3. The search coil technique was used to record (1) spontaneous eye movements (2) the vestibulo-ocular reflex (VOR) induced by a constant-velocity rotation (50 deg s-1 for 40 s) and the optokinetic nystagmus (OKN) elicited by rotating an optokinetic drum at 30 deg s-1 for 40 s. 4. In each injection experiment, the location of the abducens nucleus of the alert cat was mapped out by recording the antidromic field potentials evoked by the stimulation of the abducens nerve. Two micropipettes were then glued together in such a way that when the tip of the recording micropipette was in the centre of the abducens nucleus the tip of the injection micropipette was in a target area. The twin pipettes were then lowered in the brainstem until the recording micropipette reached the centre of the abducens nucleus. Kainic acid was then injected into the brainstem of the alert cat through the injection micropipette by an air pressure system. 5. Carried out according to such a protocol, KA injections into the NPH or the rostral part of the MVN consistently led to specific eye-movement changes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Godaux
- Laboratory of Neurophysiology, University of Mons-Hainaut, Faculty of Medicine, Belgium
| | | | | |
Collapse
|
16
|
Watanabe S, Kato I, Sato S, Norita M. Direct projection from the nucleus of the optic tract to the medial vestibular nucleus in the cat. Neurosci Res 1993; 17:325-9. [PMID: 8264993 DOI: 10.1016/0168-0102(93)90116-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleus of the optic tract (NOT) serves as an important visuo-motor relay between the retina and preoculomotor structures that mediate optokinetic nystagmus. In the present study, the efferent targets of NOT were investigated using biocytin as an anterograde tracer. Following biocytin injections into NOT, labeled fibers were observed in each of the following efferent pathways: (1) those that project to the contralateral NOT via the posterior commissure; (2) those that course through the nucleus reticularis pontis oralis to terminate in the nucleus reticularis tegmenti pontis; and (3) those that descend via the medial lemniscus to the level of the medulla to terminate in the dorsolateral pontine nucleus, nucleus prepositus hypoglossi, medial vestibular nucleus and the inferior olive. Direct projections from the NOT to the medial vestibular nucleus may contribute to the residual optokinetic responses of the vestibular nucleus neurons following cerebellar or inferior olivary lesions.
Collapse
Affiliation(s)
- S Watanabe
- Department of Otolaryngology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
17
|
Fukushima K, Kaneko CR, Fuchs AF. The neuronal substrate of integration in the oculomotor system. Prog Neurobiol 1992; 39:609-39. [PMID: 1410443 DOI: 10.1016/0301-0082(92)90016-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|