1
|
Duan X, Song N, Ma K, Tong Y, Yang L. The effects of protein-rich extract from Rhizoma Gastrodiae against cerebral ischemia/reperfusion injury via regulating MAPK and PI3K/AKT signaling pathway. Brain Res Bull 2023; 203:110772. [PMID: 37793596 DOI: 10.1016/j.brainresbull.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Rhizoma Gastrodiae is a highly valuable traditional Chinese medicine and functional health food that has been used in China to treat neurological disorders for thousands of years. Rhizoma Gastrodiae contains various of biological activities, such as antioxidative, neuroprotective, learning improvement, anxiolytic, and antidepressant effects. However, no studies have been conducted to explore the effects of the protein components in Rhizoma Gastrodiae (GEPS) and its potential protective effects against ischemic stroke.Our main goal was to investigate the effects of GEPS on ischemia/reperfusion (I/R) injury and its possible mechanisms. METHODS A middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia mouse model and an oxygen-glucose deprivation (OGD/R) injury model in HT22 cells were established. A neurobehavioral test was performed 24 h after MCAO, and brain infarction was measured. A Morris water maze experiment was conducted on Day 14 after reperfusion in mice. Hematoxylin and eosin (HE) and TUNEL staining were performed to assess apoptotic neuronal death. Immunohistochemical analysis was used to detect BDNF and GAP43 expression. The content of SOD, MDA, GSH-PX and ROS were detected. The protein expression was analyzed using Western blotting. Cell viability was determined by MTT assay. Cell apoptosis was examined by flow cytometry. RESULTS GEPS reduced apoptosis, decreased cerebral infarction, improved neurological defects, and ameliorated oxidative stress in the ischemic penumbra. In addition, GEPS increased the expression of BDNF and GA43 in the penumbra. Mechanistically, GEPS counteracted MCAO-induced PI3K/AKT inhibition and activation of MAPK signaling pathways. CONCLUSION GEPS has a clear neuroprotective effect on I/R injury, and its mechanism may be linked to the PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Nali Song
- Yunnan Institute of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Kejian Ma
- Yunnan Institute of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ying Tong
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
2
|
Abstract
OBJECTIVES To investigate the effect of adding melatonin to hypothermia treatment on neurodevelopmental outcomes in asphyctic newborns. DESIGN Pilot multicenter, randomized, controlled, double-blind clinical trial. Statistical comparison of results obtained in two intervention arms: hypothermia plus placebo and hypothermia plus melatonin. SETTING Level 3 neonatal ICU. PATIENTS Twenty-five newborns were recruited. INTERVENTIONS The hypothermia plus melatonin patients received a daily dose of IV melatonin, 5 mg per kg body weight, for 3 days. General laboratory variables were measured both at neonatal ICU admission and after intervention. All infants were studied with amplitude-integrated electroencephalography and brain MRI within the first week of life. The neurodevelopmental Bayley III test, the Gross Motor Function Classification System, and the Tardieu scale were applied at the ages of 6 and 18 months. MEASUREMENTS AND MAIN RESULTS Clinical characteristics, laboratory evaluations, MRI findings, and amplitude-integrated electroencephalography background did not differ between the treatment groups. The newborns in the hypothermia plus melatonin group achieved a significantly higher composite score for the cognitive section of the Bayley III test at 18 months old, with respect to the hypothermia plus placebo group (p = 0.05). There were no differences between the groups according to the Gross Motor Function Classification System and Tardieu motor assessment scales. CONCLUSIONS The early addition of IV melatonin to asphyctic neonates is feasible and may improve long-term neurodevelopment. To our knowledge, this is the first clinical trial to analyze the administration of IV melatonin as an adjuvant therapy to therapeutic hypothermia.
Collapse
|
3
|
Effect of Electroacupuncture on Cell Apoptosis and ERK Signal Pathway in the Hippocampus of Adult Rats with Cerebral Ischemia-Reperfusion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:414965. [PMID: 26633985 PMCID: PMC4655048 DOI: 10.1155/2015/414965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 12/28/2022]
Abstract
Background. EA therapy is a traditional therapeutic approach for alleviation of cerebral I/R-induced brain injury. We investigated the effect of EA on MCAO rat model to examine the mechanism of apoptosis in the rat hippocampus. Methods. 200 male Sprague-Dawley rats were randomly divided into sham, I/R, EA, ERK inhibitor (PD), and ERK inhibitor+EA (PD+EA) groups. Each group was subdivided into 5 groups according to different time points. Locomotor behaviors were evaluated using neurological scales and morphological examination was performed using HE staining. Apoptosis index of neural cells in local infarcted area was measured by TUNEL and p-ERK expression was detected using immunohistochemistry technique and western blot analysis. Results. Neurological deficit scores and neural apoptosis in the EA group were lower than I/R group at the same time points, respectively. At different time points, p-ERK level was increased in the ischemic hippocampal CA1 in the EA group as compared to I/R group; the increased level was increased most at 1 day, 3 days, and 1 week (p < 0.01). Conclusion. EA alleviates neurological deficit, reduces apoptosis index, and simultaneously upregulates the expression of p-ERK signal pathway in rats subjected to I/R injury.
Collapse
|
4
|
Antioxidant and protective mechanisms against hypoxia and hypoglycaemia in cortical neurons in vitro. Int J Mol Sci 2014; 15:2475-93. [PMID: 24526229 PMCID: PMC3958863 DOI: 10.3390/ijms15022475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 01/07/2023] Open
Abstract
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.
Collapse
|
5
|
Tao T, Liu Y, Zhang J, Xu Y, Li W, Zhao M. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model. Brain Res 2013; 1533:52-62. [PMID: 23939225 DOI: 10.1016/j.brainres.2013.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated neuroprotective effects of therapeutic hypercapnia for different forms of brain injury. However, few studies have assessed the neuroprotective and neurobehavioral effects of hypercapnia in focal cerebral ischemia, and the underlying mechanisms are still unclear. Here, we investigated the effects of therapeutic hypercapnia in focal cerebral ischemia in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model. Adult male Sprague Dawley rats were subjected to 90 min of MCAO/R and subsequently exposed to increased carbon dioxide (CO2) levels to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 2h. Neurological deficits were evaluated with the corner test at days 1, 7, 14, and 28. Infarction volume and apoptotic changes were assessed by 2, 3, 7-triphenyltetrazolium chloride (TTC) staining, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining at 24h after reperfusion. Apoptosis-related proteins (Bcl-2, Bax, cytochrome c, and caspase-3) were investigated by western blotting. The results of this study showed that therapeutic hypercapnia significantly reduced infarct volume and improved neurological scores after MCAO/R. Moreover, hypercapnia treatment increased the survival rate at 28 days after reperfusion. The TUNEL-positive neurons in the ipsilateral cortex were significantly decreased in the hypercapnia group. Mitochondrial Bcl-2 and Bax cortical expression levels were significantly higher and lower, respectively, in hypercapnia-treated rats. In addition, hypercapnia treatment decreased cytosolic cytochrome c and cleaved caspase-3 expression and increased cytosolic Bax expression. These findings indicate that therapeutic hypercapnia preserves brain tissue and promotes functional neurological recovery through antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Tao Tao
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, the Hei Long Jiang Province key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150081, China.
| | | | | | | | | | | |
Collapse
|
6
|
Pujari RR, Vyawahare NS, Thakurdesai PA. Protective effects of Phoenix dactylifera against oxidative stress and neuronal damage induced by global cerebral ischemia in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.biomag.2013.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Hu HH, Li SJ, Wang P, Yan HC, Cao X, Hou FQ, Fang YY, Zhu XH, Gao TM. An L-Type Calcium Channel Agonist, Bay K8644, Extends the Window of Intervention Against Ischemic Neuronal Injury. Mol Neurobiol 2012; 47:280-9. [DOI: 10.1007/s12035-012-8362-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/01/2012] [Indexed: 01/04/2023]
|
8
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 465] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
9
|
Choi SY, Kim YO, Son D, Lee J, Kim S, Kim H, Kim S, Hur J. 3-[2-(3,5-Dimethoxyphenyl)vinyl]furan protects hippocampal neurons against ischemic damage. Brain Res 2012; 1472:32-7. [PMID: 22800808 DOI: 10.1016/j.brainres.2012.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022]
Abstract
Resveratrol, an ingredient in grapes, has been reported to exhibit anti-cancer activity, anti-inflammatory activity, and cardiovascular protection property. Interestingly, resveratrol has been recently reported to have neuroprotective effect. This study reports the neuroprotective effect of a resveratrol derivative, 3-[2-(3,5-dimethoxyphenyl)vinyl]furan (DPVF). This synthetic DPVF conferred more protection than resveratrol against neuronal cell damage induced by oxygen and glucose deprivation in a rat hippocampal slice culture. In addition, DPVF inhibited ATP depletion following oxygen and glucose deprivation in the adult hippocampal slice. Moreover, we found that DPVF is neuroprotective against ischemic damage in rats. DPVF showed potent neuroprotection on a 4-velssel-occusion model and inhibited iron-induced malondialdehyde (MDA) formation in the rat brain tissue. These results demonstrate that DPVF might be a useful agent in reducing ischemic neuronal damage.
Collapse
Affiliation(s)
- Sang Yoon Choi
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cerebral palsy is caused by injury or developmental disturbances to the immature brain and leads to substantial motor, cognitive, and learning deficits. In addition to developmental disruption associated with the initial insult to the immature brain, injury processes can persist for many months or years. We suggest that these tertiary mechanisms of damage might include persistent inflammation and epigenetic changes. We propose that these processes are implicit in prevention of endogenous repair and regeneration and predispose patients to development of future cognitive dysfunction and sensitisation to further injury. We suggest that treatment of tertiary mechanisms of damage might be possible by various means, including preventing the repressive effects of microglia and astrocyte over-activation, recapitulating developmentally permissive epigenetic conditions, and using cell therapies to stimulate repair and regeneration Recognition of tertiary mechanisms of damage might be the first step in a complex translational task to tailor safe and effective therapies that can be used to treat the already developmentally disrupted brain long after an insult.
Collapse
|
11
|
Kamiya T, Abe K. [Future neuroprotective strategies in the post-thrombolysis era--neurovascular unit protection and vascular endothelial protection]. Rinsho Shinkeigaku 2011; 51:305-15. [PMID: 21706826 DOI: 10.5692/clinicalneurol.51.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
From an appearance of recombinant tissue plasminogen activator (rt-PA) in the clinical therapy on 2005 in Japan, the therapeutic strategy of ischemic stroke therapy is now changing dramatically. Many experimental data from animal stroke and clinical trials of neuroprotective agents failed to clinical useful therapeutic strategy. A free radical scavenger, edaravone is the first clinical drug for neuroprotection in the world which has been used in almost all ischemic stroke patients in Japan from 2001. Now, it is especially useful in thrombolytic therapy with rtPA, whereas we still need the newly more effective neuroprotective drugs which can be applied to many ischemic stroke patients. Therefore, we review and describe the future neuroprotective strategies in the post-thrombolysis era.
Collapse
|
12
|
Lee DH, Lee YJ, Kwon KH. Neuroprotective Effects of Astaxanthin in Oxygen-Glucose Deprivation in SH-SY5Y Cells and Global Cerebral Ischemia in Rat. J Clin Biochem Nutr 2010; 47:121-9. [PMID: 20838567 PMCID: PMC2935152 DOI: 10.3164/jcbn.10-29] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/27/2010] [Indexed: 11/22/2022] Open
Abstract
Astaxanthin (ATX), a naturally occurring carotenoid pigment, is a powerful biological antioxidant. In the present study, we investigated whether ATX pharmacologically offers neuroprotection against oxidative stress by cerebral ischemia. We found that the neuroprotective efficacy of ATX at the dose of 30 mg/kg (n = 8) was 59.5% compared with the control group (n = 3). In order to make clear the mechanism of ATX neuroprotection, the up-regulation inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) together with the oxygen glucose deprivation (OGD) in SH-SY5Y cells were also investigated. The induction of various factors involved in oxidative stress processes such as iNOS was suppressed by the treatment of ATX at 25 and 50 µM after OGD-induced oxidative stress. In addition, Western blots showed that ATX elevated of heme oxygenase-1 (HO-1; Hsp32) and Hsp70 protein levels in in vitro. These results suggest that the neuroprotective effects of ATX were related to anti-oxidant activities in global ischemia.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Departments of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
13
|
Park SH, Ryu SN, Bu Y, Kim H, Simon JE, Kim KS. Antioxidant Components as Potential Neuroprotective Agents in Sesame (Sesamum indicumL.). FOOD REVIEWS INTERNATIONAL 2010. [DOI: 10.1080/87559120903564464] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Cellular and molecular neurobiology of brain preconditioning. Mol Neurobiol 2009; 39:50-61. [PMID: 19153843 DOI: 10.1007/s12035-009-8051-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 01/08/2009] [Indexed: 12/11/2022]
Abstract
The tolerant brain which is a consequence of adaptation to repeated nonlethal insults is accompanied by the upregulation of protective mechanisms and the downregulation of prodegenerative pathways. During the past 20 years, evidence has accumulated to suggest that protective mechanisms include increased production of chaperones, trophic factors, and other antiapoptotic proteins. In contrast, preconditioning can cause substantial dampening of the organism's metabolic state and decreased expression of proapoptotic proteins. Recent microarray analyses have also helped to document a role of several molecular pathways in the induction of the brain refractory state. The present review highlights some of these findings and suggests that a better understanding of these mechanisms will inform treatment of a number of neuropsychiatric disorders.
Collapse
|
15
|
Humar M, Graetz C, Roesslein M, Goebel U, Geiger KK, Heimrich B, Pannen BHJ. Heterocyclic thioureylenes protect from calcium-dependent neuronal cell death. Mol Pharmacol 2008; 75:667-76. [PMID: 19103761 DOI: 10.1124/mol.108.052183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium-dependent cell death occurs in neurodegenerative diseases and ischemic or traumatic brain injury. We analyzed whether thioureylenes can act in a neuroprotective manner by pharmacological suppression of calcium-dependent pathological pathways. In human neuroblastoma (SK-N-SH) cells, thioureylenes (thiopental, carbimazole) inhibited the calcium-dependent neuronal protein phosphatase (PP)-2B, the activation of the proapoptotic transcription factor nuclear factor of activated T-cells, BAD-induced initiation of caspase-3, and poly-(ADP-ribose)-polymerase cleavage. Caspase-3-independent cell death was attenuated by carbimazole and the protein kinase C (PKC) delta inhibitor rottlerin by a PP-2B-independent mechanism. Neuroprotective effects were mediated by the redox-active sulfur of thioureylenes. Furthermore, we observed that the route of calcium mobilization was differentially linked to caspase-dependent or independent cell death and that BAD dephosphorylation did not necessarily induce intrinsic caspase activation. In addition, a new 30- to 35-kDa caspase-3 fragment with an unknown function was identified. In organotypic hippocampal slice cultures, thioureylenes inhibited caspase-3 activation or reduced N-methyl-d-aspartate and kainic acid receptor-mediated cell death that was independent of caspase-3. Because prolonged inhibition of caspase-3 resulted in caspase-independent cellular damage, different types of cell death must be taken under therapeutic consideration. Here we show that thioureylenes in combination with PKCdelta inhibitors might represent a promising therapeutic approach to attenuate neuronal damage.
Collapse
Affiliation(s)
- Matjaz Humar
- Department of Anesthesiology and Critical Care Medicine, Center for Clinical Research, University Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
This review summarizes the reports that have documented the neuroprotective effects of melatonin against ischemia/reperfusion brain injury. The studies were carried out on several species, using models of acute focal or global cerebral ischemia under different treatment schedules. The neuroprotective actions of melatonin were observed during critical evolving periods for cell processes of immediate or delayed neuronal death and brain injury, early after the ischemia/reperfusion episode. Late neural phenomena accounting either for brain damage or neuronal repair, plasticity and functional recovery taking place after ischemia/reperfusion have been rarely examined for the protective actions of melatonin. Special attention has been paid to the advantageous characteristics of melatonin as a neuroprotective drug: bioavailability into brain cells and cellular organelles targeted by morpho-functional derangement; effectiveness in exerting several neuroprotective actions, which can be amplified and prolonged by its metabolites, through direct and indirect antioxidant activity; prevention and reversal of mitochondrial malfunction, reducing inflammation, derangement of cytoskeleton organization, and pro-apoptotic cell signaling; lack of interference with thrombolytic and neuroprotective actions of other drugs; and an adequate safety profile. Thus, the immediate results of melatonin actions in reducing infarct volume, necrotic and apoptotic neuronal death, neurologic deficits, and in increasing the number of surviving neurons, may improve brain tissue preservation. The potential use of melatonin as a neuroprotective drug in clinical trials aimed to improve the outcome of patients suffering acute focal or global cerebral ischemia should be seriously considered.
Collapse
Affiliation(s)
- Miguel Cervantes
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
| | | | | |
Collapse
|
17
|
Zheng M, Qu L, Lou Y. Effects of icariin combined with Panax notoginseng saponins on ischemia reperfusion-induced cognitive impairments related with oxidative stress and CA1 of hippocampal neurons in rat. Phytother Res 2008; 22:597-604. [PMID: 18398927 DOI: 10.1002/ptr.2276] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies suggest that treatment with icariin (ICA) combined with Panax notoginseng saponins (PNS) improved behavior and cholinergic system disorders followed by amyloid beta-peptide(25-35) lateral ventricle injection in rats. The present study investigated whether administration of ICA + PNS had preventive and therapeutic effects on bilateral common carotid arteries (CCA) occlusion-induced cerebral ischemia-reperfusion (IR) injury in rats. Male Sprague-Dawley rats were divided randomly as follows: sham-operated, i.g. vehicle, ICA (5 mg/kg), PNS (40 mg/kg), ICA + PNS (2.5 + 20, 5 + 40 or 10 + 80 mg/kg), and ergoloid mesylate as a positive control (0.45 mg/kg) in model rats. Treatment was performed once a day for 7 days prior to ischemia. The rats were subjected to transient global IR induced by CCA occlusion in combination with intraperitoneal injection of sodium nitroprusside (2.0 mg/kg), then treated with ICA + PNS for another 14 days continuously. ICA + PNS significantly improved the rat passive avoidance task in step-down paradigms, and spatial cognition in the eight-arm radial maze, concomitant with an improvement of blood viscosity. Increased lipid peroxidation in brain after IR injury was observed, MDA being 0.56 +/- 0.10 nmol/mg prot vs 0.48 +/- 0.06 nmol/mg prot in the vehicle control (p < 0.05). Treatment with ICA + PNS 2.5 + 10, 5 + 40, 10 + 80 mg/kg produced a marked reduction in the MDA level to 0.46 +/- 0.06, 0.42 +/- 0.09 and 0.45 +/- 0.08 nmol/mg prot, respectively vs 0.56 +/- 0.10 nmol/mg prot in IR injury only control (p < 0.05, p < 0.01). A decrease in superoxide dismutase activity was observed in the brain of IR rats (the SOD activity being 72.75 +/- 4.62 U/mg prot vs 80.97 +/- 6.06 U/mg prot in control, p < 0.05). ICA + PNS 5 + 40 mg/kg prevented the IR injury mediated fall in superoxide dismutase activity being 78.90 +/- 6.61 U/mg prot versus 72.75 +/- 4.62 U/mg prot (p < 0.05). ICA + PNS tended to attenuate apoptosis in hippocampal CA1 pyramidal neurons. Either ICA or PNS treatment alone did not obviously improve cognitive impairment (except that lipid peroxidation was reduced by PNS-treatment). The results indicated that ICA + PNS may ameliorate learning and memory deficit and blood viscosity by protecting neurons from oxidative stress in ischemic brain.
Collapse
Affiliation(s)
- Ming Zheng
- Institute of Pharmacology and Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
18
|
Sanderson TH, Kumar R, Sullivan JM, Krause GS. Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding. J Neurochem 2008; 106:1248-58. [PMID: 18518905 DOI: 10.1111/j.1471-4159.2008.05473.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The critical event of the intrinsic pathway of apoptosis following transient global brain ischemia is the release of cytochrome c from the mitochondria. In vitro studies have shown that insulin can signal specifically via phosphatidylinositol-3-OH-kinase (PI3-K) and Akt to prevent cytochrome c release. Therefore, insulin may exert its neuroprotective effects during brain reperfusion by blocking cytochrome c release. We hypothesized that insulin acts through PI3-K, Akt, and Bcl-2 family proteins to inhibit cytochrome c release following transient global brain ischemia. We found that a single bolus of insulin given immediately upon reperfusion inhibited cytochrome c release for at least 24 h, and produced a fivefold improvement in neuronal survival at 14 days. Moreover, insulin's ability to inhibit cytochrome c release was completely dependent on PI3-K signaling and insulin induces phosphorylation of Akt through PI3-K. In untreated animals, there was an increase in mitochondrial Bax at 6 h of reperfusion, and Bax binding to Bcl-X(L) was disrupted at the mitochondria. Insulin prevented both these events in a PI3-K-dependent manner. In summary, insulin regulates cytochrome c release through PI3-K likely by activating Akt, promoting the binding between Bax and Bcl-X(L), and by preventing Bax translocation to the mitochondria.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
19
|
Hassan EV, Abbas S, Vahid S, Mehdi A, Reza M, Behzad B, Abedin V. Neuroprotective Effect of Post Ischemic Treatment of Acetylsalicylic Acid on CA1 Hippocampus Neuron and Spatial Learning in Transient MCA Occlusion in Rat. JOURNAL OF MEDICAL SCIENCES 2008. [DOI: 10.3923/jms.2008.357.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
20
|
Chen DM, Xiao L, Cai X, Zeng R, Zhu XZ. Involvement of multitargets in paeoniflorin-induced preconditioning. J Pharmacol Exp Ther 2006; 319:165-80. [PMID: 16840647 DOI: 10.1124/jpet.106.104380] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paeoniflorin (PF) is the principal component of Paeoniae radix prescribed in traditional Chinese medicine. The delayed neuroprotection induced by PF preconditioning and its underlying mechanisms were investigated in rat middle cerebral artery occlusion (MCAO) and reperfusion model. At a dosage of 20 or 40 mg/kg, PF preconditioning 48 h before MCAO followed by 24-h reperfusion significantly reduced the mortality and infarct volume and reversed the neurological deficits caused by ischemia. Likewise, the ameliorative effects on mortality, infarct size, and neurological impairment induced by MCAO emerged as well when PF was administered 24 h, 48 h, or 5 days before MCAO at the dose of 20 mg/kg. Furthermore, comparative proteomics analysis was adopted to identify the differentially expressed proteins induced by PF preconditioning itself. The relative levels of 42 proteins were altered after PF preconditioning, among which 20 were elevated and 22 reduced. In summary, A(1) receptor-regulator of G protein signaling-K(ATP) signaling, arachidonic acid cascade, nitric oxide system, markers of neuronal damage, mitochondrial damage-related molecules, and the mitogen-activated protein kinase and nuclear factor-kappaB pathway are associated with the mechanisms of PF preconditioning.
Collapse
Affiliation(s)
- Dong-Mei Chen
- Department of Pharmacology, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong Shanghai 201203, China
| | | | | | | | | |
Collapse
|
21
|
Borlongan CV, Sumaya IC, Moss DE. Methanesulfonyl fluoride, an acetylcholinesterase inhibitor, attenuates simple learning and memory deficits in ischemic rats. Brain Res 2005; 1038:50-8. [PMID: 15748872 DOI: 10.1016/j.brainres.2005.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 11/17/2004] [Accepted: 01/01/2005] [Indexed: 11/15/2022]
Abstract
Methanesulfonyl fluoride (MSF), a highly selective CNS inhibitor of acetylcholinesterase, has been recently demonstrated to promote improvement in cognitive performance in patients with senile dementia of Alzheimer type. Because a similar cognitive impairment may accompany stroke, we investigated in the present study whether treatment with MSF could produce beneficial effects in adult rats subjected to an experimental stroke model. Sprague-Dawley rats received transient 60 min intraluminal occlusion of the right middle cerebral artery (MCAo) and were given i.p. injections of either MSF (1 mg/kg at 24 and 48 h post-MCAo and 0.3 mg/kg thereafter every other day) or the vehicle, peanut oil, for 4 weeks. Behavioral tests and biochemical assays were performed at 28 days post-surgery. MSF treatment produced about 90% inhibition of acetylcholinesterase in the brain. Ischemic animals that received the vehicle displayed significant elevated body swing biased activity (84.8 +/- 10%) and significantly prolonged acquisition (398 +/- 62 s) and shortened retention (79 +/- 26 s) of the passive avoidance task. Interestingly, while the ischemic animals that received the MSF exhibited elevated body swing biased activity (87.7 +/- 8%), they performed significantly better in the passive avoidance task (255 +/- 36 s and 145 +/- 18 s in acquisition and retention) than the vehicle-treated animals. Moreover, whereas brains from both groups of animals revealed similar extent and degree of cerebral infarction, the MSF-treated ischemic animals showed more intense immunoreactivity, as well as a significantly higher number (10-15% increase) of septal choline acetyltransferase-positive cells than the vehicle-treated ischemic animals. These results show that MSF, possibly by preserving a functional cholinergic system, attenuated stroke-induced deficits in a simple learning and memory task.
Collapse
Affiliation(s)
- Cesario V Borlongan
- National Institutes of Health, National Institute on Drug Abuse, Intramural, Research Program, Cellular Neurophysiology, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
22
|
Hwang IK, Yoo KY, Kim DS, Jeong YK, Kim JD, Shin HK, Lim SS, Yoo ID, Kang TC, Kim DW, Moon WK, Won MH. Neuroprotective effects of grape seed extract on neuronal injury by inhibiting DNA damage in the gerbil hippocampus after transient forebrain ischemia. Life Sci 2004; 75:1989-2001. [PMID: 15306166 DOI: 10.1016/j.lfs.2004.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 05/18/2004] [Indexed: 11/27/2022]
Abstract
Grape seed extract (GSE) possess cardioprotective abilities by functioning as in vivo antioxidants and by virtue of their ability to directly scavenge ROS including hydroxyl and peroxyl radicals. In the present study, we investigated the neuroprotective effects of grape seed extract (GSE) in the gerbil hippocampus after 5 min transient forebrain ischemia. Neuronal cell density in GSE-treated ischemic animals was significantly increased as compared with vehicle-treated ischemic animals 4 days after ischemic insult. In the GSE-treated groups, about 60% of pyramidal cells of the sham-operated group were stained with cresyl violet 4 days after ischemic insult. In this study, we found that GSE had neuroprotective effects on neuronal injury by inhibiting DNA damage in the CA1 region after ischemia. In vehicle-treated groups, 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunoreactivity was significantly changed time-dependently, whereas the immunoreactivity in the GSE-treated group was similar to the sham-operated group. In addition, we confirmed that astrocytes and microglia did not show significant activation in the CA1 region 4 days after ischemia-reperfusion, because many CA1 pyramidal cells were not damaged. Therefore, these results suggest that GSE can protect ischemic neuronal damage by inhibiting DNA damage after transient forebrain ischemia.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Szentirmai O, Carter BS. Genetic and Cellular Therapies for Cerebral Infarction. Neurosurgery 2004; 55:283-6; discussion 296-7. [PMID: 15271234 DOI: 10.1227/01.neu.0000129681.85731.00] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 03/04/2004] [Indexed: 12/28/2022] Open
Abstract
Neurosurgeons, working as surgical scientists, can have a prominent role in developing and implementing genetic and cellular therapies for cerebral ischemia. The rapid emergence of both genetic and cellular therapies for neural regeneration warrants a careful analysis before implementation of human studies to understand the pitfalls and promises of this strategy. In this article, we review the topic of genetic and cellular therapy for stroke to provide a foundation for practicing neurosurgeons and clinical scientists who may become involved in this type of work. In Part 1, we review preclinical approaches with gene transfer, such as 1) improved energy delivery, 2) reduction of intracellular calcium availability, 3) abrogation of effects of reactive oxygen species, 4) reduction of proinflammatory cytokine signaling, 5) inhibition of apoptosis mediators, and 6) restorative gene therapy, that are paving the way to develop new strategies to treat cerebral infarction. In Part 2, we discuss the results of studies that address the possibility of using cellular therapies for stroke in animal models and in human trials by reviewing 1) the basics of stem cell biology, 2) exogenous and 3) and endogenous cell sources for therapy, and 4) clinical considerations in cell therapy applications. These emerging technologies based on the advancements made in recent years in the fields of genetics, therapeutic cloning, neuroscience, stem cell biology, and gene therapy provide significant potential for new therapies for stroke.
Collapse
Affiliation(s)
- Oszkar Szentirmai
- Laboratory of Genetic and Cellular Engineering, and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
24
|
Yin D, Zhou C, Kusaka I, Calvert JW, Parent AD, Nanda A, Zhang JH. Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab 2003; 23:855-64. [PMID: 12843789 DOI: 10.1097/01.wcb.0000073946.29308.55] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hypothesis was tested that hyperbaric oxygen therapy (HBO) reduced brain infarction by preventing apoptotic death in ischemic cortex in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and subsequently were exposed to HBO (2.5 atmospheres absolute) for 2 h, at 6 h after reperfusion. Rats were killed and brain samples were collected at 24, 48, 72 h, and 7 days after reperfusion. Neurologic deficits, infarction area, and apoptotic changes were evaluated by clinical scores, 2,3,7-triphenyltetrazolium chloride staining, caspase-3 expression, DNA fragmentation assay, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL)-hematoxylin and eosin (H&E) costaining. In MCAO/R without HBO treatment animals, DNA fragmentation was observed in injured cortex at 24, 48, and 72 h but not in samples at 7 days after reperfusion. Double labeling of brain slides with NeuN and caspase-3 demonstrated neurons in the injured cortex labeled with caspase-3. TUNEL+H&E costaining revealed morphologic apoptotic changes at 24, 48, and 72 h after reperfusion. Hyperbaric oxygen therapy abolished DNA fragmentation and reduced the number of TUNEL-positive cells. Hyperbaric oxygen therapy reduced infarct area and improved neurologic scores at 7 days after reperfusion. One of the molecular mechanisms of HBO-induced brain protection is to prevent apoptosis, and this effect of HBO might preserve more brain tissues and promote neurologic functional recovery.
Collapse
Affiliation(s)
- Dali Yin
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Anderson MF, Blomstrand F, Blomstrand C, Eriksson PS, Nilsson M. Astrocytes and stroke: networking for survival? Neurochem Res 2003; 28:293-305. [PMID: 12608702 DOI: 10.1023/a:1022385402197] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Astrocytes are now known to be involved in the most integrated functions of the central nervous system. These functions are not only necessary for the normally working brain but are also critically involved in many pathological conditions, including stroke. Astrocytes may contribute to damage by propagating spreading depression or by sending proapoptotic signals to otherwise healthy tissue via gap junction channels. Astrocytes may also inhibit regeneration by participating in formation of the glial scar. On the other hand, astrocytes are important in neuronal antioxidant defense and secrete growth factors, which probably provide neuroprotection in the acute phase, as well as promoting neurogenesis and regeneration in the chronic phase after injury. A detailed understanding of the astrocytic response, as well as the timing and location of the changes, is necessary to develop effective treatment strategies for stroke patients.
Collapse
|
26
|
Suzuki M, Tabuchi M, Ikeda M, Tomita T. Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats. Brain Res 2002; 951:113-20. [PMID: 12231464 DOI: 10.1016/s0006-8993(02)03145-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxynitrite is assumed to play a crucial role in brain damage associated with the overproduction of nitric oxide (NO). The purpose of this study is to examine time-dependent changes of nitrite and nitrate (NOx) concentration in the circulation, and peroxynitrite formation as well as the expression of inducible nitric oxide synthase (iNOS) in the penumbra of rat brains during transient middle cerebral artery occlusion (MCAO) of Wistar rat for 2 h and reperfusion for 4-70 h. NOx concentration in the circulation was continuously monitored at the right jugular vein by microdialysis. The expression of iNOS was detected at 22-70 h after reperfusion in vascular walls and the cortex. Nitrotyrosine, a marker of peroxynitrite, appeared 4 h after reperfusion in the cortex, increasing substantially at 22-46 h in vascular walls. NOx level in dialysate increased immediately after MCAO. After a gradual decrease, the level increased again 4 h after reperfusion, reaching a maximum at 46 h. Brain myeloperoxidase activity, a marker of neutrophil infiltration, was not detected 4 h after reperfusion, but greatly increased at 22 h and then decreased. These results suggest that a marked increase of NOx level in the circulation might reflect the expression of iNOS, while neuronal NOS may contribute to peroxynitrite formation in the cortex observed at an earlier phase of reperfusion. This study indicates that monitoring NOx level in the circulation serves to assess the progress of stroke, and to determine appropriate therapeutic measures.
Collapse
Affiliation(s)
- Motohisa Suzuki
- Graduate School of Health Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
27
|
Valentim LM, Geyer AB, Tavares A, Cimarosti H, Worm PV, Rodnight R, Netto CA, Salbego CG. Effects of global cerebral ischemia and preconditioning on heat shock protein 27 immunocontent and phosphorylation in rat hippocampus. Neuroscience 2002; 107:43-9. [PMID: 11744245 DOI: 10.1016/s0306-4522(01)00325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Global cerebral ischemia, with or without preconditioning, leads to an increase in heat shock protein 27 (HSP27) immunocontent and alterations in HSP27 phosphorylation in CA1 and dentate gyrus areas of the hippocampus. We studied different times of reperfusion (1, 4, 7, 14, 21 and 30 days) using 2 min, 10 min or 2+10 min of ischemia. The results showed an increase in HSP27 immunocontent of about 300% after 10 min of ischemia in CA1 and dentate gyrus. CA1, a hippocampal vulnerable area, showed an increase in HSP27 phosphorylation, parallel with immunocontent. In dentate gyrus, a resistant area, the increase in HSP phosphorylation was lower than immunocontent. After preconditioned ischemia (2+10 min), when CA1 neurons are protected to a lethal, 10 min insult, we observed an increase in HSP immunocontent and a decrease in phosphorylation in both regions of the hippocampus, suggesting that, when there is no neuronal death, HSP27 in a vulnerable area responds similarly to the resistant area.When dephosphorylated, HSP27 acts as a chaperone, protecting other proteins from denaturation. As it is markedly expressed in astrocytes, we suggest that HSP27 could be protecting hippocampal astrocytes, which could then be helping neurons to resist to the insult, maintaining tissue normal homeostasis.
Collapse
Affiliation(s)
- L M Valentim
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, 90035-003, RS, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim YO, Leem K, Park J, Lee P, Ahn DK, Lee BC, Park HK, Suk K, Kim SY, Kim H. Cytoprotective effect of Scutellaria baicalensis in CA1 hippocampal neurons of rats after global cerebral ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2001; 77:183-188. [PMID: 11535362 DOI: 10.1016/s0378-8741(01)00283-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Based on the use of Scutellaria baicalensis for the treatment of stroke in traditional Oriental medicine, the current study was carried out to evaluate neuroprotective effects of S. baicalensis after transient global ischemia using rat 4-vessel occlusion model. Methanol extracts from the dried roots of S. baicalensis (0.1-10 mg/kg) administered intra-peritoneally significantly protected CA1 neurons against 10 min transient forebrain ischemia as demonstrated by measuring the density of neuronal cells stained with Cresyl violet. Methanol extract of S. baicalensis inhibited microglial tumor necrosis factor-alpha (TNF-alpha) and nitric oxide production, and protected PC12 cells from hydrogen peroxide-induced toxicity in vitro.
Collapse
Affiliation(s)
- Y O Kim
- Department of Herbal Pharmacology, Graduate School of East-West Medical Science, Kyunghee University, 1 Hoegi-dong, Tongdaemun-ku, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Horikawa N, Kuribayashi Y, Matsui K, Ohashi N. Relationship between the neuroprotective effect of Na+/H+ exchanger inhibitor SM-20220 and the timing of its administration in a transient middle cerebral artery occlusion model of rats. Biol Pharm Bull 2001; 24:767-71. [PMID: 11456115 DOI: 10.1248/bpb.24.767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the relationship between the neuroprotective effect of SM-20220 (N(aminoiminomethyl)-1-methyl-1H-indole-2-carboxamide methanesulfonate) and the timing of its administration in an experimental stroke model. Two hours of occlusion followed by 22 h of perfusion of the left middle cerebral artery (MCA) was performed by inserting a nylon thread into the MCA to occlude it, and pulling the thread to initiate reperfusion. Intravenous infusion of SM-20220 for 1 h reduced the infarct volume at doses of 0.2-0.8 mg/kg in a dose-dependent manner without causing changes in the systemic arterial blood pressure or blood gases, when SM-20220 administration was started 1 h after the onset of occlusion. Administration of SM-20220 at a dose of 0.4 mg/kg also reduced the edema formation induced by ischemia. In contrast, SM-20220 failed to reduce the infarction, even at 1.6 mg/kg, when administration was started 2 h after the onset of occlusion. Thus, the therapeutic time window of SM-20220 for this transient MCA occlusion model is 1 h. Daily administration of SM-20220 (0.4 mg/kg) for the 7 d following 1.5 h of middle cerebral artery occlusion reduced the infarct volume with statistical significance (p<0.05), showing that SM-20220 did not merely delay but prevented ischemic damage.
Collapse
Affiliation(s)
- N Horikawa
- Research Division, Sumitomo Pharmaceuticals Co, Ltd, Osaka, Japan.
| | | | | | | |
Collapse
|
30
|
Omar AI, Senatorov VV, Hu B. Sodium-potassium adenosine triphosphatase inhibition enhances membrane accumulation of DiI in rat hippocampus in vivo. Neuroscience 2001; 102:353-9. [PMID: 11166121 DOI: 10.1016/s0306-4522(00)00488-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transient brain ischemia induces significant alterations in lipid structures of neuronal membranes, which are believed to result from lipid peroxidation and free radical attack. Such a membrane structural change may serve as an important histological marker of cell injury. In the present study, we examined how the dynamics of DiI/membrane incorporation may reflect early membrane metabolism and dynamic changes following sodium-potassium pump inhibition. Ouabain (1mM) was stereotactically co-administered with either 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate DiI (50 microg/ml) or ethidium homodimer (4 microM) into the granule cell layer of the adult rat hippocampus. Tissue was cryosectioned and examined with epifluorescence microscopy at 1, 2, 3, 4, 6, 8 and 72h post-injection. Alternate sections were stained with thionine or haematoxylin and eosin to evaluate morphological changes. Ouabain-induced pump inhibition resulted in a dramatic increase in DiI fluorescence in granule cell layer neurons as early as 4h post-injection. This increase in DiI incorporation coincided both spatially and temporally with the appearance of reactive changes characterizing early neuronal injury. However, the fluorescence increase was not a result of membrane breakdown because ethidium homodimer, a membrane-impermeable nucleic acid probe used for labeling cells with compromised membranes, when applied in a similar fashion, failed to show any fluorescence changes. The results of this study suggest that pump inhibition results in a specific increase in membrane lipophilicity possibly due to altered lipid structure.
Collapse
Affiliation(s)
- A I Omar
- Loeb Health Research Institute, 1053 Carling Avenue, Ottawa Hospital-Civic Campus, University of Ottawa, Ontario, K1Y 4E9, Ottawa, Canada
| | | | | |
Collapse
|
31
|
Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. PROGRESS IN BRAIN RESEARCH 2001; 127:461-76. [PMID: 11142041 DOI: 10.1016/s0079-6123(00)27022-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke remains a major brain disorder that often renders patients severely impaired and permanently disabled. There is no available treatment for reversing these deficits. Hippocampal, striatal and cortical grafting studies demonstrate that fetal cells/tissues, immortalized cells, and engineered cell lines can survive grafting into the ischemic adult brain, correct neurotransmitter release, establish both afferent and efferent connections with the host brain, and restore functional and cognitive deficits in specific models of stroke. The success of neural transplantation depends on several factors: the stroke model (location, extent, and degree of infarction), the donor cell viability and survival at pre- and post-transplantation, and the surgical technique, among others. Further exploitation of knowledge of neural transplantation therapy already available from our experience in treating Parkinson's disease needs to be critically considered for stroke therapy. While the consensus is to create a functional neuronal circuitry in the damaged host brain, there is growing evidence that trophic action of the grafts and host, as well as exogenous application of trophic factors may facilitate functional recovery in stroke. Current treatment modules, specifically that of rehabilitative medicine, should also be explored with neural transplantation therapy. However, validation of neural transplantation and any other treatment for stroke should be critically assessed in laboratory experiments and limited clinical trials. No direct treatment is recognized as safe and effective for reversing the stroke-induced brain damage and functional/cognitive deficits. The first clinical trial of neural transplantation in stroke patients is a mile-stone in stroke therapy, but subsequent large-scale trials should be approached with caution.
Collapse
Affiliation(s)
- H Nishino
- Department of Physiology, Nagoya City University Medical School, Nagoya 467-8601, Japan.
| | | |
Collapse
|
32
|
Moretto MB, de Mattos-Dutra A, Arteni N, Meirelles R, de Freitas MS, Netto CA, Pessoa-Pureur R. Effects of neonatal cerebral hypoxia-ischemia on the in vitro phosphorylation of synapsin 1 in rat synaptosomes. Neurochem Res 1999; 24:1263-9. [PMID: 10492521 DOI: 10.1023/a:1020925107130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Synapsins are phosphoproteins related to the anchorage of synaptic vesicles to the actin skeleton. Hypoxia-ischemia causes an increased calcium influx into neurons through ionic channels gated by activation of glutamate receptors. In this work seven-day-old Wistar rats were submitted to hypoxia-ischemia and sacrificed after 21 hours, 7, 30, or 90 days. Synaptosomal fractions were obtained by Percoll gradients and incubated with 32P (10 microCi/g). Proteins were analysed by SDS-PAGE and radioactivity incorporated into synapsin 1 was counted by liquid scintillation. Twenty-one hours after hypoxia-ischemia we observed a reduction on the in vitro phosphorylation of synapsin 1, mainly due to hypoxia, rather than to ischemia; this effect was reversed at day 7 after the insult. There was another decrease in phosphorylation 30 days after the event interpreted as a late effect of hypoxia-ischemia. No changes were observed at day 90. Our results suggest that decreased phosphorylation of synapsin 1 could be related to neuronal death that follows hypoxia-ischemia.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|