1
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Reduction in vasopressin cells in the suprachiasmatic nucleus in mice increases anxiety and alters fluid intake. Horm Behav 2021; 133:104997. [PMID: 34062279 PMCID: PMC8529700 DOI: 10.1016/j.yhbeh.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Central vasopressin (AVP) has been implicated in the control of multiple behaviors, including social behavior, anxiety-like behavior, and sickness behavior. The extent to which the different AVP-producing cell groups contribute to regulating these behaviors has not been extensively investigated. Here we test the role of AVP cells in the suprachiasmatic nucleus (SCN) in these behaviors by ablating these cells using viral-mediated, Cre-dependent caspase in male and female AVP-Cre + mice and Cre-controls. We compared anxiety and social behaviors, as well as sickness behaviors (lethargy, anhedonia (indexed by sucrose consumption), and changes in anxiety-like- and social behavior) induced via injection of bacterial lipopolysaccharide (LPS). We found that SCN AVP cell ablation increased anxiety-like behavior and sucrose consumption in both sexes, as well as increased urine marking by males in a non-social context, but did not alter behavioral responses to sickness. Our data suggest that SCN AVP does not strongly affect LPS-induced behavioral changes, but may contribute to anxiety-like behavior, and may play a role in ingestive reward/motivation and fluid intake.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Removal of vasopressin cells from the paraventricular nucleus of the hypothalamus enhances lipopolysaccharide-induced sickness behaviour in mice. J Neuroendocrinol 2021; 33:e12915. [PMID: 33617060 PMCID: PMC8543850 DOI: 10.1111/jne.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Vasopressin (AVP) cells in the paraventricular nucleus of the hypothalamus (PVN) are activated during sickness and project to multiple nuclei responsible for the anxiety, social and motivated behaviours affected during sickness, suggesting that these cells may play a role in sickness behaviours, typically expressed as reduced mobility, increased anxiety, anhedonia and social withdrawal. In the present study, we selectively ablated AVP neurones in the PVN of male and female mice (Mus musculus) and induced sickness behaviour via injection of bacterial lipopolysaccharide (LPS). We found that PVN AVP ablation increased the effects of LPS, specifically by further decreasing sucrose preference in males and females and decreasing the social preference of males, monitored within 24 hours of LPS injection. These results suggest that PVN AVP contributes to the change in motivated behaviours during sickness and may help promote recovery from infection..
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Whylings J, Rigney N, Peters NV, de Vries GJ, Petrulis A. Sexually dimorphic role of BNST vasopressin cells in sickness and social behavior in male and female mice. Brain Behav Immun 2020; 83:68-77. [PMID: 31550501 PMCID: PMC6906230 DOI: 10.1016/j.bbi.2019.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Circumstantial evidence supports the hypothesis that the sexually dimorphic vasopressin (AVP) innervation of the brain tempers sickness behavior in males. Here we test this hypothesis directly, by comparing sickness behavior in animals with or without ablations of BNST AVP cells, a major source of sexually dimorphic AVP in the brain. We treated male and female AVP-iCre+ and AVP-iCre- mice that had been injected with viral Cre-dependent caspase-3 executioner construct into the BNST with lipopolysaccharide (LPS) or sterile saline, followed by behavioral analysis. In all groups, LPS treatment reliably reduced motor behavior, increased anxiety-related behavior, and reduced sucrose preference and consumption. Male mice, whose BNST AVP cells had been ablated (AVP-iCre+), displayed only minor reductions in LPS-induced sickness behavior, whereas their female counterparts displayed, if anything, an increase in sickness behaviors. All saline-treated mice with BNST AVP cell ablations consumed more sucrose than did control mice, and males, but not females, with BNST AVP cell ablations showed reduced preference for novel conspecifics compared to control mice. These data confirm that BNST AVP cells control social behavior in a sexually dimorphic way, but do not play a critical role in altering sickness behavior.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole V Peters
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
4
|
Mouihate A. Long-lasting impact of early life immune stress on neuroimmune functions. Med Princ Pract 2013; 22 Suppl 1:3-7. [PMID: 23949239 PMCID: PMC5586809 DOI: 10.1159/000354199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/09/2012] [Indexed: 01/12/2023] Open
Abstract
Fever is one major cardinal sign of disease. It results from an intricate interplay between the immune system and the central nervous system. Bacterial or viral infections activate peripheral immune competent organs which send inflammatory signals to the brain and lead to an increase in body temperature. The increased body temperature creates a conducive environment to optimize the body's fight against the infection. A large body of experimental evidence suggests that early life bacterial or viral infections can lead to a long-lasting impact on this natural febrile response. The early life pathogenic encounter heightens the hypothalamic-pituitary-adrenal axis response, dampens the innate immune system, and consequently reduces the febrile response to a subsequent immune challenge during adulthood. This 'programming' effect operates only when such early life immune challenges occur during a critical window of either prenatal or postnatal development. In this review, the mechanisms underlying the long-lasting impact of perinatal immune challenge on adult fever are addressed.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- *Abdeslam Mouihate, Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
5
|
Viljoen H, Bennett NC, Lutermann H. Life‐history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole‐rats. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00833.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Viljoen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - H. Lutermann
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
6
|
Begg DP, Kent S, McKinley MJ, Mathai ML. Suppression of endotoxin-induced fever in near-term pregnant rats is mediated by brain nitric oxide. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2174-8. [PMID: 17332165 DOI: 10.1152/ajpregu.00032.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over the last three decades, experiments in several mammalian species have shown that the febrile response to bacterial endotoxin is attenuated late in pregnancy. More recent evidence has established that the expression of nitric oxide synthase (NOS) enzymes is increased in the brain late in pregnancy. The current study investigated the possible role of brain nitric oxide in mediating the phenomenon of fever suppression. Core body temperature (Tb) of near-term pregnant rats ( day 19 and 20) was measured following inhibition of brain NOS and intraperitoneal injection of LPS (50 μg/kg); they were compared with both day 15 pregnant and virgin animals. Intracerebroventricular injection with an inhibitor of NOS, NG-monomethyl-l-arginine citrate (l-NMMA; 280 μg), in near-term pregnant rats restored the febrile response to LPS. As expected, near-term dams that received intracerebroventricular vehicle + IP LPS did not increase Tb, in contrast to the 1.0 ± 0.2°C rise in Tb in dams treated with ICV l-NMMA + IP LPS ( P < 0.01). In virgin females and day 15 pregnant controls receiving this treatment, the increases in Tb were 1.5 ± 0.3°C and 1.6 ± 0.4°C, respectively. Thus, blockade of brain NOS restored the febrile response to LPS in near-term dams; at 5 h postinjection, Tb was 60–70% of that observed in virgins and day 15 pregnant animals. Intracerebroventricular l-NMMA alone did not induce a significant change in Tb in any group. These results suggest that the mechanism underlying the suppression of the febrile response in near-term pregnancy is mediated by nitric oxide signaling in the brain.
Collapse
Affiliation(s)
- Denovan P Begg
- School of Psychological Science, La Trobe University, Bundoora, Victoria, 3086 Australia.
| | | | | | | |
Collapse
|
7
|
|
8
|
De Vries GJ, Panzica GC. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience 2005; 138:947-55. [PMID: 16310321 PMCID: PMC1457099 DOI: 10.1016/j.neuroscience.2005.07.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Vasopressin neurons in the bed nucleus of the stria terminalis and amygdala and vasotocin neurons in homologous areas in non-mammalian vertebrates show some of the most consistently found neural sex differences, with males having more cells and denser projections than females. These projections have been implicated in social and reproductive behaviors but also in autonomic functions. The sex differences in these projections may cause as well as prevent sex differences in these functions. This paper discusses the anatomy, steroid dependency, and sexual differentiation of these neurons. Although the final steps in sexual differentiation of vasopressin/vasotocin expression may be similar across vertebrate species, what triggers differentiation may vary dramatically. For example, during development, estrogen masculinizes vasopressin expression in rats but feminizes its counterpart in Japanese quail. Apparently, nature consistently finds a way of maintaining sex differences in vasopressin and vasotocin pathways, suggesting that the function of these differences is important enough that it was conserved during evolution.
Collapse
Affiliation(s)
- G J De Vries
- Center for Neuroendocrine Studies, Department of Psychology, University of Massachusetts, Amherst, 01003, USA.
| | | |
Collapse
|
9
|
Mouihate A, Boissé L, Pittman QJ. A novel antipyretic action of 15-deoxy-Delta12,14-prostaglandin J2 in the rat brain. J Neurosci 2004; 24:1312-8. [PMID: 14960602 PMCID: PMC6730345 DOI: 10.1523/jneurosci.3145-03.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fever is an important part of the host defense response, yet fever can be detrimental if it is uncontrolled. We provide the first evidence that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), can attenuate the febrile response to lipopolysaccharide (LPS) in rats via an action on the brain. Furthermore, we show that PPARgamma is expressed in the hypothalamus, an important locus in the brain for fever generation. In addition, 15d-PGJ2 and its synthesizing enzyme (PGD2 synthase) were present in rat cerebrospinal fluid, and their levels were enhanced in response to systemic injection of LPS. The antipyretic effect of 15d-PGJ2 was associated with reduction in LPS-stimulated cyclooxygenase-2 expression in the hypothalamus but not in p44/p42 mitogen-activated protein kinase phosphorylation or in the expression of the PPARgamma. Thus it is likely that there is a parallel induction of an endogenous prostanoid pathway in the brain capable of limiting deleterious actions of the proinflammatory prostaglandin E2-dependent pathway.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Neuroscience Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alberta, T2N 4N1 Canada.
| | | | | |
Collapse
|
10
|
Ivanov AI, Romanovsky AA. Near-term suppression of fever: inhibited synthesis or accelerated catabolism of prostaglandin E2? Am J Physiol Regul Integr Comp Physiol 2003; 284:R860-1; author reply R861-5. [PMID: 12571081 DOI: 10.1152/ajpregu.00618.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Neuroimmune biology—An introduction. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1567-7443(01)80005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Abstract
Fever is the hallmark of the stereotyped host response to microbial infection, although it is just one of a number of high-risk strategies employed by the infected host to clear itself of invading pathogens. The febrile response is accompanied by activation of multiple endogenous antipyretic systems that serve to suppress its magnitude or duration. These include neuroactive substances of neural and humoral origin, some of which (e.g., glucocorticoids, melanocortins, and IL-10) have broad-ranging anti-inflammatory actions. Glucocorticoids, vasopressin, and melanocortins appear to exert their antipyretic effects by acting on receptors within the brain, but beyond this the mechanisms involved are unknown. It is hypothesized, but not proven, that endogenous antipyretic systems protect the host against the destructive consequences of unchecked fever. Importantly, pharmacological blockade of the actions of endogenous antipyretic systems increases fevers of even low to moderate intensity. Therefore, in addition to protecting against catastrophic consequences of high fever, endogenous antipyretic systems seem to play a fundamental physiological role in determining the normal course of fever. Elucidating the neural and biochemical mechanisms involved in suppression of fever by physiological antipyretic systems will yield a rich benefit, both by advancing the basic understanding of host defense strategies, and by permitting the design of novel antipyretic and anti-inflammatory strategies for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- J B Tatro
- Division of Endocrinology, Diabetes, Metabolism and Molecular Medicine, Department of Medicine, Tupper Research Institute, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
13
|
Monda M, Viggiano A, De Luca V. Intracerebroventricular injection of prostaglandin E(1) changes concentrations of biogenic amines in the posterior hypothalamus of the rat. Brain Res 2000; 873:197-202. [PMID: 10930544 DOI: 10.1016/s0006-8993(00)02349-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the posterior hypothalamus (PH) plays a key role in the control of body temperature, the aim of this study was to evaluate the changes in adrenaline, noradrenaline and dopamine levels in the PH during the hyperthermia induced by prostaglandin E(1) (PGE(1)). The concentration of adrenaline, noradrenaline and dopamine in the PH, the firing rate of the sympathetic nerves innervating interscapular brown adipose tissue (IBAT), IBAT and colonic temperatures (T(IBAT) and T(C)) were monitored in 12 urethane-anaesthetized male Sprague-Dawley rats before and after an intracerebroventricular injection of 500 ng PGE(1) dissolved in 2 microl of 0.9% NaCl saline solution or only saline. The catecholamines were collected using a microdialysis probe and quantified by HPLC. The results showed that PGE(1) caused a significant increment in the concentration of adrenaline from 15. 83+/-2.69 to 34.95+/-3.9 ng ml(-1) and of dopamine from 35.15+/-4.48 to 55.68+/-6.21 ng ml(-1). A significant decrease in the level of noradrenaline from 18.75+/-2.05 to 8.56+/-2.26 ng ml(-1) was registered. The firing rate of sympathetic nerves to IBAT was increased from 100+/-0% to 204.83+/-15.22% by PGE(1). T(IBAT) and T(C) rose respectively from 36.91+/-0.15 degrees C to 38.88+/-0.29 degrees C, and from 36.7+/-0.15 degrees C to 38.13+/-0.36 degrees C after the injection of PGE(1). The changes in adrenaline and noradrenaline occurred during the first 20 min as did the changes in temperature and firing rate, while the change in dopamine was delayed until 21-60 min after the PGE(1) injection. No significant change of analyzed variables was found in the control rats. These findings suggest that these biogenic amines of the PH are involved in the control of the sympathetic and thermogenic changes induced by PGE(1).
Collapse
Affiliation(s)
- M Monda
- Department of Human Physiology and Integrated Biological Functions 'F. Bottazzi', Second University of Naples, Via Costantinopoli 16, I-80138, Naples, Italy.
| | | | | |
Collapse
|
14
|
Chen X, Pittman QJ. Vasopressin and amastatin induce V(1)-receptor-mediated suppression of excitatory transmission in the rat parabrachial nucleus. J Neurophysiol 1999; 82:1689-96. [PMID: 10515959 DOI: 10.1152/jn.1999.82.4.1689] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined actions of arginine vasopressin (AVP) and amastatin (an inhibitor of the aminopeptidase that cleaves AVP) on synaptic currents in slices of rat parabrachial nucleus using the nystatin-perforated patch recording technique. AVP reversibly decreased the amplitude of the evoked, glutamate-mediated, excitatory postsynaptic current (EPSC) with an increase in paired-pulse ratio. No apparent changes in postsynaptic membrane properties were revealed by ramp protocols, and the inward current induced by a brief application of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid was unchanged after AVP. The reduction induced by 1 microM AVP could be blocked by a V(1) AVP receptor antagonist, [d(CH(2))(5)(1)-O-Me-Tyr(2)-Arg(8)]-vasopressin (Manning compound, 10 microM). Bath application of an aminopeptidase inhibitor, amastatin (10 microM), reduced the evoked EPSC, and AVP induced further synaptic depression in the presence of amastatin. Amastatin's effects also could be antagonized by the Manning compound. Corticotropin-releasing hormone slightly increased the EPSC at 1 microM, and coapplication with AVP attenuated the AVP response. Pretreatment of slices with 1 microg/ml cholera toxin or 0.5 microg/ml pertussis toxin for 20 h did not significantly affect AVP's synaptic action. The results suggest that AVP has suppressant effects on glutamatergic transmission by acting at V(1) AVP receptors, possibly through a presynaptic mechanism involving a pertussis-toxin- and cholera-toxin-resistant pathway.
Collapse
Affiliation(s)
- X Chen
- Neuroscience Research Group and Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|