1
|
Udagawa O. Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions. Results Probl Cell Differ 2024; 73:25-42. [PMID: 39242373 DOI: 10.1007/978-3-031-62036-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Braun JL, Messner HN, Cleverdon REG, Baranowski RW, Hamstra SI, Geromella MS, Stuart JA, Fajardo VA. Heterozygous SOD2 deletion selectively impairs SERCA function in the soleus of female mice. Physiol Rep 2022; 10:e15285. [PMID: 35581738 PMCID: PMC9114654 DOI: 10.14814/phy2.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) restores intracellular Ca2+ ([Ca2+ ]i ) to resting levels after muscle contraction, ultimately eliciting relaxation. SERCA pumps are highly susceptible to tyrosine (T)-nitration, impairing their ability to take up Ca2+ resulting in reduced muscle function and increased [Ca2+ ]i and cellular damage. The mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2), converts superoxide radicals into less reactive H2 O2 . Heterozygous deletion of SOD2 (Sod2+/- ) in mice increases mitochondrial oxidative stress; however, the consequences of reduced SOD2 expression in skeletal and cardiac muscle, specifically the effect on SERCA pumps, has yet to be investigated. We obtained soleus, extensor digitorum longus (EDL), and left ventricle (LV) muscles from 6 to 7 month-old wild-type (WT) and Sod2+/- female C57BL/6J mice. Ca2+ -dependent SERCA activity assays were performed to assess SERCA function. Western blotting was conducted to examine the protein content of SERCA, phospholamban, and sarcolipin; and immunoprecipitation experiments were done to assess SERCA2a- and SERCA1a-specific T-nitration. Heterozygous SOD2 deletion did not alter SERCA1a or SERCA2a expression in the soleus or LV but reduced SERCA2a in the EDL compared with WT, though this was not statistically significant. Soleus muscles from Sod2+/- mice showed a significant reduction in SERCA's apparent affinity for Ca2+ when compared to WT, corresponding with significantly elevated SERCA2a T-nitration in the soleus. No effect was seen in the EDL or the LV. This is the first study to investigate the effects of SOD2 deficiency on muscle SERCA function and shows that it selectively impairs SERCA function in the soleus.
Collapse
Affiliation(s)
- Jessica L. Braun
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Holt N. Messner
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Riley E. G. Cleverdon
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Ryan W. Baranowski
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Sophie I. Hamstra
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Mia S. Geromella
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Jeffrey A. Stuart
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Val A. Fajardo
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
3
|
Extracts of Cistanche deserticola Can Antagonize Immunosenescence and Extend Life Span in Senescence-Accelerated Mouse Prone 8 (SAM-P8) Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:601383. [PMID: 24523825 PMCID: PMC3913196 DOI: 10.1155/2014/601383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/23/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023]
Abstract
The senescence accelerated mouse prone 8 substrain (SAM-P8), widely accepted as an animal model for studying aging and antiaging drugs, was used to examine the effects of dietary supplementation with extracts of Cistanche deserticola (ECD) which has been used extensively in traditional Chinese medicine because of its perceived ability to promote immune function in the elderly. Eight-month-old male SAM-P8 mice were treated with ECD by daily oral administrations for 4 weeks. The results showed that dietary supplementation of 150 mg/kg and 450 mg/kg of ECD could extend the life span measured by Kaplan-Meier survival analysis in dose-dependent manner. Dietary supplementation of SAM-P8 mice for 4 weeks with 100, 500, and 2500 mg/kg of ECD was shown to result in significant increases in both naive T and natural killer cells in blood and spleen cell populations. In contrast, peripheral memory T cells and proinflammatory cytokine, IL-6 in serum, were substantially decreased in the mice that ingested 100 and 500 mg/kg of ECD daily. Additionally, Sca-1 positive cells, the recognized progenitors of peripheral naive T cells, were restored in parallel. Our results provide clear experimental support for long standing clinical observational studies showing that Cistanche deserticola possesses significant effects in extending life span and suggest this is achieved by antagonizing immunosenescence.
Collapse
|
4
|
Pallàs M. Senescence-Accelerated Mice P8: A Tool to Study Brain Aging and Alzheimer's Disease in a Mouse Model. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/917167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The causes of aging remain unknown, but they are probably intimately linked to a multifactorial process that affects cell networks to varying degrees. Although a growing number of aging and Alzheimer’s disease (AD) animal models are available, a more comprehensive and physiological mouse model is required. In this context, the senescence-accelerated mouse prone 8 (SAMP8) has a number of advantages, since its rapid physiological senescence means that it has about half the normal lifespan of a rodent. In addition, according to data gathered over the last five years, some of its behavioral traits and histopathology resemble AD human dementia. SAMP8 has remarkable pathological similarities to AD and may prove to be an excellent model for acquiring more in-depth knowledge of the age-related neurodegenerative processes behind brain senescence and AD in particular. We review these facts and particularly the data on parameters related to neurodegeneration. SAMP8 also shows signs of aging in the immune, vascular, and metabolic systems, among others.
Collapse
Affiliation(s)
- Mercè Pallàs
- Unitat de Farmacologia i Farmacognòosia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona y Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Park JS, Mathison BD, Hayek MG, Zhang J, Reinhart GA, Chew BP. Astaxanthin modulates age-associated mitochondrial dysfunction in healthy dogs. J Anim Sci 2012; 91:268-75. [PMID: 23100599 DOI: 10.2527/jas.2012-5341] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Young (2.97±0.01 yr; 8.16±0.15 kg BW) and geriatric (10.71±0.01 yr; 9.46±0.18 kg BW) healthy female Beagle dogs (n=14/age group) were fed 0 or 20 mg astaxanthin daily for 16 wk to examine modulation of mitochondrial function. Fasted blood was sampled on wk 0, 8, and 16. Mitochondria membrane permeability, ATP production, cytochrome c oxidase/reductase, and number were assessed in leukocytes whereas astaxanthin uptake, glutathione, superoxide dismutase, nitric oxide, 8-hydroxy-2'-deoxyguanosine, 8-isoprostane, and protein carbonyl were measured in plasma. Aging increased (P<0.05) complex III cytochrome c oxidoreductase but decreased (P<0.05) 8-hydroxy-2'-deoxyguanosine and protein carbonyl. Mitochondrial function improved in both young and geriatric dogs by increasing (P<0.05) ATP production, mitochondria mass, and cytochrome c oxidoreductase activity, especially in geriatric dogs compared with young dogs. Astaxanthin feeding also increased (P<0.05) the reduced glutathione to oxidized glutathione ratio in young dogs and decreased (P<0.05) nitric oxide in both young and geriatric dogs. Dietary astaxanthin improved mitochondrial function in blood leukocytes, most likely by alleviating oxidative damage to cellular DNA and protein.
Collapse
Affiliation(s)
- J S Park
- Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|
6
|
Dowling ALS, Head E. Antioxidants in the canine model of human aging. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:685-9. [PMID: 22005070 PMCID: PMC3291812 DOI: 10.1016/j.bbadis.2011.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/15/2023]
Abstract
Oxidative damage can lead to neuronal dysfunction in the brain due to modifications to proteins, lipids and DNA/RNA. In both human and canine brain, oxidative damage progressively increases with age. In the Alzheimer's disease (AD) brain, oxidative damage is further exacerbated, possibly due to increased deposition of beta-amyloid (Aβ) peptide in senile plaques. These observations have led to the hypothesis that antioxidants may be beneficial for brain aging and AD. Aged dogs naturally develop AD-like neuropathology (Aβ) and cognitive dysfunction and are a useful animal model in which to test antioxidants. In a longitudinal study of aging beagles, a diet rich in antioxidants improved cognition, maintained cognition and reduced oxidative damage and Aβ pathology in treated animals. These data suggest that antioxidants may be beneficial for human brain aging and for AD, particularly as a preventative intervention. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Amy L S Dowling
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
7
|
Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mech Ageing Dev 2011; 132:573-82. [DOI: 10.1016/j.mad.2011.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/04/2011] [Accepted: 10/08/2011] [Indexed: 12/30/2022]
|
8
|
Shimizu K, Kinouchi Shimizu N, Hakamata W, Unno K, Asai T, Oku N. Preventive effect of green tea catechins on experimental tumor metastasis in senescence-accelerated mice. Biol Pharm Bull 2010; 33:117-21. [PMID: 20045947 DOI: 10.1248/bpb.33.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Successful avoidance of the immune surveillance system is critical for the development of a blood-borne metastasis. Previous findings suggest that experimental tumor metastasis was enhanced in senescence-accelerated mice prone 10 (SAMP10) due to a reduction in immune surveillance potential with age. In the present study, water containing green tea (GT)-catechins was freely given to SAMP10 mice, and the chemopreventive effect of GT-catechin intake on tumor metastasis was examined. Natural killer cell activity, which is an indicator of immune surveillance potential and is reduced in control mice with age, was maintained by GT-catechin intake. The early accumulation of lung-metastatic K1735M2 melanoma cells in lungs after intravenous injection of the cells and subsequent experimental lung metastasis was investigated in mice given GT-catechins. The accumulation at 6 and 24 h after injection of K1735M2 cells was significantly suppressed, and the number of lung-metastatic colonies was significantly reduced, in comparison with those in control mice. The results suggest that GT-catechin intake prevented the experimental tumor metastasis in aged SAMP10 mice via its inhibition of a reduction in immune surveillance potential with age.
Collapse
Affiliation(s)
- Kosuke Shimizu
- Department of Medical Biochemistry and Global COE Program, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 2010; 56:107-13. [PMID: 14980007 DOI: 10.1211/0022357022449] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Among the various theories of the aging process, the free radical theory, which proposes that deleterious actions of free radicals are responsible for the functional deterioration associated with aging, has received widespread attention. The theory suggests that enhancement of the antioxidative defence system to attenuate free-radical-induced damage will counteract the aging process. We used senescence-accelerated mice (SAM) to investigate the relationship between aging and the antioxidative defence system and evaluated the effects of ginsenoside-Rd, the saponin from ginseng, by measuring antioxidative defence system parameters, including the glutathione (GSH)/glutathione disulfide (GSSG) redox status, antioxidative enzyme activity and level of lipid peroxidation. SAM at 11 months of age (old SAM) showed a significantly lower hepatic GSH/GSSG ratio, due to decreased GSH and increased GSSG levels, than SAM at 5 weeks of age (young SAM). However, the administration of ginsenoside-Rd at a dose of 1 or 5 mg kg−1 daily for 30 days to 10-month-old SAM significantly increased GSH, but decreased GSSG, resulting in elevation of the GSH/GSSG ratio. In addition, ginsenoside-Rd increased the activity of glutathione peroxidase (GSH-Px) and glutathione reductase that were both significantly lower in old SAM than in young SAM. This suggests that ginsenoside-Rd could play a crucial role in enhancing the defence system through regulation of the GSH/GSSG redox status. Moreover, decreases in the superoxide dismutase (SOD) and catalase activity in old SAM compared with young SAM were also revealed, indicating that the aging process resulted in suppression of the antioxidative defence system. However, ginsenoside-Rd did not affect SOD and catalase activity. As catalase is localized in peroxisome granules and GSH-Px is present in the cytoplasm and mitochondrial matrix, the site of ginsenoside-Rd action may be the cytoplasm and mitochondrial matrix. Furthermore, the serum and liver malondialdehyde levels, indicators of lipid peroxidation, were elevated with aging, while ginsenoside-Rd inhibited lipid peroxidation. This study indicates that the aging process leads to suppression of the antioxidative defence system and accumulation of lipid peroxidation products, while ginsenoside-Rd attenuates the oxidative damage, which may be responsible for the intervention of GSH/GSSG redox status.
Collapse
Affiliation(s)
- Takako Yokozawa
- Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
10
|
Duncan FE, Chiang T, Schultz RM, Lampson MA. Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol Reprod 2009; 81:768-76. [PMID: 19553597 DOI: 10.1095/biolreprod.109.077909] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Advanced maternal age is unequivocally associated with increased aneuploidy in human eggs and infertility, but the molecular basis for this phenomenon is unknown. An age-dependent deterioration of the spindle assembly checkpoint (SAC) has been proposed as a probable cause of aneuploidy. Accurate chromosome segregation depends on correct chromosome attachment to spindle microtubules, and the SAC provides time for this process by delaying anaphase onset until all chromosomes are stably attached. If SAC function decreases with age, oocytes from reproductively old mice would enter anaphase of meiosis I (AI) prematurely, leading to chromosome segregation errors and aneuploid eggs. Although intuitively appealing, this hypothesis is largely untested. We used a natural reproductive aging mouse model to determine if a defective SAC is the primary cause of aneuploidy in eggs. We tracked the progress of individual oocytes from young and old mice through meiosis I by time-lapse microscopy and counted chromosomes in the resulting eggs. This data set allowed us to correlate the timing of AI onset with aneuploidy in individual oocytes. We found that oocytes from old mice do not enter AI prematurely compared to young counterparts despite a 4-fold increase in the incidence of aneuploidy. Moreover, we did not observe a correlation between the timing of AI onset and aneuploidy in individual oocytes. When SAC function was challenged with a low concentration of the spindle toxin nocodazole, oocytes from both young and old mice arrested at meiosis I, which is indicative of a functional checkpoint. These findings indicate that a defective SAC is unlikely the primary cause of aneuploidy associated with maternal age.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
11
|
Wu B, Ueno M, Onodera M, Kusaka T, Huang CL, Hosomi N, Kanenishi K, Sakamoto H. RAGE, LDL receptor, and LRP1 expression in the brains of SAMP8. Neurosci Lett 2009; 461:100-5. [PMID: 19539695 DOI: 10.1016/j.neulet.2009.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 12/25/2022]
Abstract
SAMP8, senescence-accelerated mice with age-related deficits in memory and learning, are known to show age-related increases of amyloid precursor protein (APP) expression and to be under elevated oxidative stress. The receptor for advanced glycation end product (RAGE) is a representative influx transporter of APP or amyloid-beta (A beta) protein in cerebral vessels, while low-density lipoprotein receptor (LDLR) and LDL-related protein 1 (LRP1) are efflux transporters. These receptors play roles not only in clearance of A beta protein but also in control of oxidative stress. In this study, we examined the gene and protein expressions of these receptors, by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemical techniques. SAMR1 mice with lower expression of APP were as controls. The gene and protein expressions of RAGE were lower in SAMP8 brains than in SAMR1. Those of LDLR were higher in SAMP8 brains than those of SAMR1. There were no differences in the expressions of LRP1 between SAMP8 and SAMR1. Immunosignals of RAGE and LDLR were seen in the cytoplasm of CD34-positive endothelial cells and also in astrocytes, in both strains of mice. These findings suggest that the lower expression of RAGE and the higher expression of LDLR may contribute to clearance of toxic substances and, in addition, be related to elevated oxidative stress in SAMP8 brains.
Collapse
Affiliation(s)
- Bin Wu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Borrás C, Stvolinsky S, López-Grueso R, Fedorova T, Gambini J, Boldyrev A, Viña J. Low in vivo brain glucose consumption and high oxidative stress in accelerated aging. FEBS Lett 2009; 583:2287-93. [DOI: 10.1016/j.febslet.2009.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 05/26/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
|
13
|
Brown JCL, McClelland GB, Faure PA, Klaiman JM, Staples JF. Examining the mechanisms responsible for lower ROS release rates in liver mitochondria from the long-lived house sparrow (Passer domesticus) and big brown bat (Eptesicus fuscus) compared to the short-lived mouse (Mus musculus). Mech Ageing Dev 2009; 130:467-76. [PMID: 19464314 DOI: 10.1016/j.mad.2009.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/02/2009] [Accepted: 05/13/2009] [Indexed: 01/11/2023]
Abstract
Lower ROS release rate in long-lived species is likely caused by decreased reduction of electron transport chain (ETC) complexes, but how this is achieved remains largely unknown. We compared liver mitochondrial H(2)O(2) release rates among endotherms of comparable size and metabolic rate: house sparrow and big brown bat (both long-lived) and house mouse (short-lived). We hypothesized that low ROS release rates in long-lived species result from (i) lower mitochondrial respiration rate, (ii) increased mitochondrial proton conductance ('uncoupling to survive'), and/or (iii) increased ETC oxidative capacity ('spare oxidative capacity'). H(2)O(2) release rate was 70% lower in bats than mice despite similar respiration rates. Consistent with 'uncoupling to survive', proton leakiness was 3-fold higher in bats at membrane potentials above 130mV. Basal H(2)O(2) release rate and respiration rates were 2-fold higher in sparrows than mice. Consistent with 'spare oxidative capacity', subsaturating succinate decreased H(2)O(2) release rate in sparrows but not mice. Moreover, succinate:Cytochrome c oxidoreductase activity was 3-fold higher in sparrows, and ETC inhibitors increased ROS release rate 20-27-fold in sparrows (with glutamate or subsaturating succinate) but only 4-5-fold in mice. Taken together these data suggest that complexes I and III are less reduced under physiological conditions in sparrows. We conclude that different long-lived species may use distinct mechanisms to lower mitochondrial ROS release rate.
Collapse
Affiliation(s)
- Jason C L Brown
- Department of Biology, University of Western Ontario, ON, Canada.
| | | | | | | | | |
Collapse
|
14
|
Espía M, Sebastián C, Mulero M, Giralt M, Mallol J, Celada A, Lloberas J. Granulocyte macrophage--colony-stimulating factor-dependent proliferation is impaired in macrophages from senescence-accelerated mice. J Gerontol A Biol Sci Med Sci 2008; 63:1161-7. [PMID: 19038830 DOI: 10.1093/gerona/63.11.1161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A senescence-accelerated (SAMP8) mouse model was used to determine the effect of aging on the immune system. We produced in vitro bone marrow-derived macrophages from SAMP8 mice and compared them against senescence-resistant, long-lived mice (SAMR1). Although macrophages from both strains of mice proliferated in a similar manner in response to monocyte-colony-stimulating factor (M-CSF), SAMP8 macrophages showed an impaired response to granulocyte macrophage-colony-stimulating factor (GM-CSF). Similar levels of external regulated kinases (ERK)1/2 and signaling transducer and activator of transcription 5 (STAT5) phosphorylation were observed in macrophages from both strains of mice. The lack of proliferation was not caused by the induction of apoptosis. Differentiation of bone marrow cells into dendritic cells was similar in both strains of mice, as was the induction of major histocompatibility complex (MHC) class II molecules by interferon-gamma (IFN-gamma). Finally, we determined the density of Langerhans cells in vivo in the skin of the two mouse strains, but no differences were found.
Collapse
Affiliation(s)
- Marta Espía
- Macroophage Biology Group, Institute for Research in Biomedicine, Barcelona, Barcelona Science Park, C/ Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Akitane Mori, the artistic neurochemist. Neurochem Res 2008; 34:593-600. [PMID: 18937068 DOI: 10.1007/s11064-008-9862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
16
|
Head E. Oxidative damage and cognitive dysfunction: antioxidant treatments to promote healthy brain aging. Neurochem Res 2008; 34:670-8. [PMID: 18683046 DOI: 10.1007/s11064-008-9808-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/08/2008] [Indexed: 11/26/2022]
Abstract
Oxidative damage in the brain may lead to cognitive impairments in aged humans. Further, in age-associated neurodegenerative disease, oxidative damage may be exacerbated and associated with additional neuropathology. Epidemiological studies in humans show both positive and negative effects of the use of antioxidant supplements on healthy cognitive aging and on the risk of developing Alzheimer disease (AD). This contrasts with consistent behavioral improvements in aged rodent models. In a higher mammalian model system that naturally accumulates human-type pathology and cognitive decline (aged dogs), an antioxidant enriched diet leads to rapid learning improvements, memory improvements after prolonged treatment and cognitive maintenance. Cognitive benefits can be further enhanced by the addition of behavioral enrichment. In the brains of aged treated dogs, oxidative damage is reduced and there is some evidence of reduced AD-like neuropathology. In combination, antioxidants may be beneficial for promoting healthy brain aging and reducing the risk of neurodegenerative disease.
Collapse
Affiliation(s)
- Elizabeth Head
- Department of Neurology, Institute for Brain Aging & Dementia, University of California, 1259 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4540, USA.
| |
Collapse
|
17
|
Lithium Treatment Decreases Activities of Tau Kinases in a Murine Model of Senescence. J Neuropathol Exp Neurol 2008; 67:612-23. [DOI: 10.1097/nen.0b013e3181776293] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, Sánchez V, Romeu M, Acuña-Castroviejo D. Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol 2008; 43:749-56. [PMID: 18485648 DOI: 10.1016/j.exger.2008.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/26/2008] [Accepted: 04/01/2008] [Indexed: 11/25/2022]
Abstract
We investigated whether chronic melatonin administration influences mitochondrial oxidative stress and life span in mice. Diaphragmatic mitochondria from female senescent prone (SAMP8) and senescent resistant (SAMR1) mice at 5 and 10 months of age were studied. Mitochondrial oxidative stress was determined by measuring the levels of lipid peroxidation, glutathione and glutathione disulfide, and glutathione peroxidase and reductase activities. Mitochondrial function was assessed by measuring the activity of the respiratory chain complexes and the ATP content. The results suggest that the age-dependent mitochondrial oxidative damage in the diaphragm of SAMP8 mice was accompanied by a reduction in the electron transport chain complex activities and in ATP levels. Furthermore, melatonin administration between 1 and 10 months of age normalized the redox and the bioenergetic status of the mitochondria and increased the ATP levels. Melatonin also increased both half-life and longevity, mainly in SAMP8 group. These results suggest an age-related increase in mitochondria vulnerability to oxidation in SAM mice at 10 months of age that was counteracted by melatonin therapy. The effects of melatonin on mitochondrial physiology probably underline the ability of the indoleamine to increase maximal life span in these animals.
Collapse
Affiliation(s)
- María I Rodríguez
- Instituto de Biotecnología, Departamento de Fisiología, Universidad de Granada, Facultad de Medicina, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shimizu K, Kinouchi Shimizu N, Asai T, Tsukada H, Oku N. Enhanced Experimental Tumor Metastasis with Age in Senescence-Accelerated Mouse. Biol Pharm Bull 2008; 31:847-51. [DOI: 10.1248/bpb.31.847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Shimizu
- Department of Medical Biochemistry and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naomi Kinouchi Shimizu
- Department of Medical Biochemistry and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohiro Asai
- Department of Medical Biochemistry and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K
| | - Naoto Oku
- Department of Medical Biochemistry and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
20
|
Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, Acuña-Castroviejo D. Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res 2007; 42:272-9. [PMID: 17349026 DOI: 10.1111/j.1600-079x.2006.00416.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It is hypothesized that, besides increased free radical production, aging is a process also related to inflammation. Thus, female and male senescence-accelerated (SAMP8) and senescence-resistant (SAMR1) mice of 5 and 10 months of age were studied to assess this hypothesis. Plasma from these mice was processed to determine nitric oxide (NO), and pro-inflammatory [interleukin (IL)-1beta, IL-2, interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, and granulocyte-macrophage colony-stimulating factor] and anti-inflammatory (IL-4, IL-5 and IL-10) cytokines. The results show the presence of an age-dependent increase in IFN-gamma and TNF-alpha and a reduction in IL-2 levels, with minor changes in the remaining cytokines. Moreover, age was associated with a significant increase in NO levels. Chronic melatonin administration between 1 and 10 months of age counteracted the age-dependent production of pro-inflammatory cytokines and NO, reducing them to the levels found at 5 months of age. Melatonin also reduced the levels of the anti-inflammatory cytokines. The results of this study suggest the existence of an inflammatory process during aging and further support that melatonin behaves as an essential molecule against aging, for its anti-inflammatory properties together with its antioxidative role reported elsewhere.
Collapse
Affiliation(s)
- María I Rodríguez
- Departamento de Fisiología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Rodríguez MI, Carretero M, Escames G, López LC, Maldonado MD, Tan DX, Reiter RJ, Acuña-Castroviejo D. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res 2007; 41:15-24. [PMID: 17164175 DOI: 10.1080/10715760600936359] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heart mitochondria from female senescence-accelerated (SAMP8) and senescence-resistant (SAMR1) mice of 5 or 10 months of age, were studied. Mitochondrial oxidative stress was determined by measuring the levels of lipid peroxidation, glutathione and glutathione disulfide and glutathione peroxidase and reductase activities. Mitochondrial function was assessed by measuring the activity of the respiratory chain complexes and ATP content. The results show that the age-dependent mitochondrial oxidative damage in the heart of SAMP8 mice was accompanied by a reduction in the electron transport chain complex activities and in ATP levels. Chronic melatonin administration between 1 and 10 months of age normalized the redox and the bioenergetic status of the mitochondria and increased ATP levels. The results support the presence of significant mitochondrial oxidative stress in SAM mice at 10 months of age, and they suggest a beneficial effect of chronic pharmacological intervention with melatonin, which reduces the deteriorative and functional oxidative changes in cardiac mitochondria with age.
Collapse
Affiliation(s)
- María I Rodríguez
- Departamento de Fisiología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sureda FX, Gutierrez-Cuesta J, Romeu M, Mulero M, Canudas AM, Camins A, Mallol J, Pallàs M. Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8. Exp Gerontol 2006; 41:360-7. [PMID: 16542809 DOI: 10.1016/j.exger.2006.01.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/26/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
The senescence-accelerated strains of mice (SAMP) are well-characterized animal models of senescence. Senescence may be related to enhanced production or defective control of reactive oxygen species, which lead to neuronal damage. Therefore, the activity of various oxidative-stress related enzymes was determined in the cortex of 5 months-old senescence-accelerated mice prone-8 (SAMP-8) of both sexes and compared with senescence-accelerated mice-resistant-1 (SAMR-1). Glutathione reductase and peroxidase activities in SAMP-8 male mice were lower than in male SAMR-1, and a decreased catalase activity was found in both male and female SAMP-8 mice, which correlates with the lower catalase expression found by Western blotting. Nissl staining showed marked loss of neuronal cells in the cerebral cortex of five month-old SAMP-8 mice. SAMP-8 mice also had marked astrogliosis and microgliosis. We also found an increase in caspase-3 and calpain activity in the cortex. In addition, we observed morphological changes in the immunostaining of tau protein in SAMP-8, indicative of a loss of their structural function. Altogether, these results show that, at as early as 5 months of age, SAMP-8 mice have cytological and molecular alterations indicative of neurodegeneration in the cerebral cortex and suggestive of altered control of the production of oxidative species and hyper-activation of calcium-dependent enzymes.
Collapse
Affiliation(s)
- Francesc X Sureda
- Unitat de Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c./St. Llorenç 21, E-43201 Reus, Tarragona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Thouas GA, Trounson AO, Jones GM. Effect of female age on mouse oocyte developmental competence following mitochondrial injury. Biol Reprod 2005; 73:366-73. [PMID: 15843494 DOI: 10.1095/biolreprod.105.040956] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocytes from aging ovaries contain mitochondria with morphological and genetic flaws. How these flaws relate to phenotypes of oocyte developmental compromise associated with clinical infertility is not well understood. This study was conducted to investigate the role of mitochondria in the developmental compromises observed with female aging using a mouse model of mitochondrial dysfunction. Oocytes obtained from aging (30-40 wk) (C57BL/6J x CBACaH)F1 (B6CBAF1) hybrid female mice were photosensitized with mitochondrial fluorophore rhodamine-123 for variable durations and compared to similarly treated oocytes derived from pubertal mice (4-6 wk). Blastocyst development of normally fertilized oocytes from both age-groups correlated negatively in mathematically unique profiles with irradiation time, with a more sudden decline in development for oocytes from aging mice. Complete inhibition of blastocyst development occurred following a shorter duration of photosensitization for oocytes from aging compared to pubertal animals (60 vs. 90 sec). Prolonged photosensitization resulted in mitochondrial uncoupling and promoted localized generation of reactive oxygen species, mitochondrial permeabilization, and apoptotic phenotypes. Thus, aging oocytes are more developmentally sensitive to mitochondrial damage than pubertal oocytes but undergo similar metabolic and apoptotic responses. These and future findings may encourage further optimization of laboratory-based strategies to minimize mitochondrial injury to oocytes, particularly those from older women, and improve clinical outcomes for women with age-related etiologies of infertility.
Collapse
Affiliation(s)
- George A Thouas
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
24
|
Liu L, Keefe DL. Nuclear Origin of Aging-Associated Meiotic Defects in Senescence-Accelerated Mice1. Biol Reprod 2004; 71:1724-9. [PMID: 15269097 DOI: 10.1095/biolreprod.104.028985] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Factors of both cytoplasmic and nuclear origin regulate metaphase chromosome alignment and spindle checkpoint during mitosis. Most aneuploidies associated with maternal aging are believed to derive from nondisjunction and meiotic errors, such as aberrations in spindle formation and chromosome alignment at meiosis I. Senescence-accelerated mice (SAM) exhibit aging-associated meiotic defects, specifically chromosome misalignments at meiosis I and II that resemble those found in human female aging. How maternal aging disrupts meiosis remains largely unexplained. Using germinal vesicle nuclear transfer, we found that aging-associated misalignment of metaphase chromosomes is predominately associated with the nuclear factors in the SAM model. Cytoplasm of young hybrid B6C3F1 mouse oocytes could partly rescue aging-associated meiotic chromosome misalignment, whereas cytoplasm of young SAM was ineffective in preventing the meiotic defects of old SAM oocytes, which is indicative of a deficiency of SAM oocyte cytoplasm. Our results demonstrate that both nuclear and cytoplasmic factors contribute to the meiotic defects of the old SAM oocytes and that the nuclear compartment plays the predominant role in the etiology of aging-related meiotic defects.
Collapse
Affiliation(s)
- Lin Liu
- Department of Obstetrics and Gynecology, Brown Medical School and Women & Infants Hospital, Providence, Rhode Island 02905, USA.
| | | |
Collapse
|
25
|
Chemical intervention in senescence-accelerated mice metabolism for modeling neurodegenerative diseases: an overview. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0531-5131(03)01598-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Abstract
An antioxidant enzymatic system is pivotal for aerobic animals to minimize the damage induced by reactive oxygen species. Spontaneous mutant animals with altered antioxidant enzyme activity should be useful for the study of the function of these enzymes in vivo. We examined the nucleotide sequences of the genes for the major antioxidant enzymes, including catalase (Cat), superoxide dismutase (Sod1, Sod2, Sod3), glutathione peroxidase (Gpx1, Gpx2, Gpx3, Gpx4, Gpx5), and glutathione reductase (Gsr) in 10 inbred mouse strains. Nonsynonymous nucleotide polymorphisms were identified in all genes, except for Gpx1, Gpx3, and Gpx4. Notably, the SJL/J mouse strain possessed unique nucleotide substitutions in the Gsr and Sod2 genes, which led to Asp39Ala and Val138Met amino acid substitutions in GSR and SOD2, respectively. The specific activity of GSR of SJL/J mice was reduced to 65% of that of NZB/N mice. In vivo activity, however, was higher in SJL/J, due to upregulated expression of the enzyme. The SOD2 activity in SJL/J mice was reduced to half that of other mouse strains. Consistent with this reduction, oxidative damage in the mitochondria was increased as demonstrated by a decrease of total glutathione and an increase in the levels of protein oxidation. These spontaneous hypomorphic alleles would be valuable in the study of free radical biology.
Collapse
Affiliation(s)
- Zhanjun Guo
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Asahi, Matsumoto, Japan
| | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Changes in body composition accompany and predict medical and surgical risk; interventions may be considered. Aging affects body composition, particularly in reduction of the body cell mass. RECENT FINDINGS The molecular biology of aging has become an active frontier of research in the past 30 years, with acceleration in the past decade. A review of the toxicities of reactive oxygen and nitrogen species, especially at the mitochondria, can now be studied at the molecular, genetic, and proteomic scales, in individual cell components and systems, with major implications for patient management, for planning therapeutic interventions, and for predicting future age spans. SUMMARY The intersections between the clinical fields of endocrinology, nuclear medicine/radiology, and geriatrics, with the more fundamental fields of physiology, molecular biology, genetics, and proteomics are indicated.
Collapse
Affiliation(s)
- Richard N Pierson
- Nutrition Research Center, St Lukes Roosevelt Hospital Center, 1111 Amsterdam Avenue at 114th Street, New York, NY 10025, USA.
| |
Collapse
|
28
|
Shimada A, Keino H, Satoh M, Kishikawa M, Seriu N, Hosokawa M. Age-related progressive neuronal DNA damage associated with cerebral degeneration in a mouse model of accelerated senescence. J Gerontol A Biol Sci Med Sci 2002; 57:B415-21. [PMID: 12456731 DOI: 10.1093/gerona/57.12.b415] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The DNA of cerebral neurons in subjects with Alzheimer's disease is extensively damaged, although the morphological features of apoptosis are absent. We investigated whether DNA is damaged in the brains of the SAMP10 strain of mouse, in which accelerated senescence is characterized by age-related cerebral atrophy and cognitive impairment. We performed quantitative terminal deoxynucleotidyl transferase-mediated digoxigenin-labeled dUTP nick end labeling (TUNEL), using paraffin sections. TUNEL positive cells increased in number in the cerebral neurons of SAMP10 mice with aging. TUNEL positive cells were widely distributed in mice at age 13-14 months, and obvious in the olfactory tubercle, anterior cingulate cortex, insular cortex, and amygdala. These TUNEL positive cells did not have the morphological features of apoptosis. Therefore, the DNA became damaged with advancing age through a mechanism other than apoptosis. SAMP10 is a useful mouse model of brain aging that mimics the progressive neuronal DNA damage associated with human neurodegenerative disorders.
Collapse
Affiliation(s)
- Atsuyoshi Shimada
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, Jones J, Goldschmidt-Clermont PJ, Loscalzo J. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation 2002; 106:1154-8. [PMID: 12196344 DOI: 10.1161/01.cir.0000026820.87824.6a] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Oxidant stress has been implicated in the pathogenesis of atherothrombosis and other vascular disorders accompanied by endothelial dysfunction. Glutathione peroxidases (GPx) play an important role in the cellular defense against oxidant stress by utilizing glutathione (GSH) to reduce lipid hydroperoxides and hydrogen peroxide to their corresponding alcohols. Cellular GPx (GPx-1) is the principal intracellular isoform of GPx. We hypothesized that GPx-1 deficiency per se induces endothelial dysfunction and structural vascular abnormalities through increased oxidant stress. METHODS AND RESULTS A murine model of heterozygous deficiency of GPx-1 (GPx(+/-)) was investigated to examine this hypothesis. Mesenteric arterioles in GPx-1(+/-) mice demonstrated vasoconstriction to acetylcholine compared with vasodilation in wild-type mice (maximal change in vessel diameter, -13.0+/-2.8% versus 13.2+/-2.8%, P<0.0001). We also noted an increase in the plasma and aortic levels of the isoprostane iPF(2alpha)-III, a marker of oxidant stress, in GPx-1(+/-) mice compared with wild-type mice (170.4+/-23 pg/mL plasma versus 98.7+/-7.1 pg/mL plasma, P<0.03; 11.7+/-0.87 pg/mg aortic tissue versus 8.2+/-0.55 pg/mg aortic tissue, P<0.01). Histological sections from the coronary vasculature of GPx-1(+/-) mice show increased perivascular matrix deposition, an increase in the number of adventitial fibroblasts, and intimal thickening. These structural abnormalities in the myocardial vasculature were accompanied by diastolic dysfunction after ischemia-reperfusion. CONCLUSIONS These findings demonstrate that heterozygous deficiency of GPx-1 leads to endothelial dysfunction, possibly associated with increased oxidant stress, and to significant structural vascular and cardiac abnormalities. These data illustrate the importance of this key antioxidant enzyme in functional and structural responses of the mammalian cardiovascular system.
Collapse
Affiliation(s)
- Marc A Forgione
- Evans Department of Medicine, Boston University School of Medicine, Boston, Mass, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 2002; 23:639-44. [PMID: 12009513 DOI: 10.1016/s0197-4580(02)00005-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We investigated whether long-term melatonin administration in the drinking water influences oxidative modification of lipids and proteins and antioxidative enzyme activity in brain of senescence-accelerated mice (SAM). Cerebral cortex was obtained in the middle of the dark period of the daily light cycle from SAMP8, a strain of mice prone to accelerated senescence, and from SAMR1, a senescence-resistant strain, at 3, 6, and 12 months of age. Thiobarbituric acid-reactive substances (TBARS) and protein carbonyls exhibited significant age-related increases in both strains. Glutathione peroxidase (GPx) activity decreased significantly at 12 months of age in SAMP8. No age effect was found in GPx activity in SAMR1, or in superoxide dismutase (SOD) activity in either strain. Melatonin administration (2 microg/mL) via the drinking fluid beginning at 7 months significantly decreased neural TBARS content (over 30%) in both strains and lowered the protein carbonyl content in the brain of SAMP8 mice. Furthermore, melatonin significantly augmented GPx activity (over 20%) in both strains. Melatonin had no effect on SOD activity. These results suggest an age-related increase in cerebral tissue vulnerability to oxidation in SAM that can be modified by melatonin, most likely through the ability of melatonin to scavenge oxygen free radicals and to stimulate antioxidant enzyme activity.
Collapse
Affiliation(s)
- Yuji Okatani
- Department of Clinical Nursing Science, Kochi Medical School, Nankoku, Japan.
| | | | | | | |
Collapse
|
31
|
Liu J, Atamna H, Kuratsune H, Ames BN. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 2002; 959:133-66. [PMID: 11976193 DOI: 10.1111/j.1749-6632.2002.tb02090.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria decay with age due to the oxidation of lipids, proteins, RNA, and DNA. Some of this decay can be reversed in aged animals by feeding them the mitochondrial metabolites acetylcarnitine and lipoic acid. In this review, we summarize our recent studies on the effects of these mitochondrial metabolites and mitochondrial antioxidants (alpha-phenyl-N-t-butyl nitrone and N-t-butyl hydroxylamine) on the age-associated mitochondrial decay of the brain of old rats, neuronal cells, and human diploid fibroblast cells. In feeding studies in old rats, these mitochondrial metabolites and antioxidants improve the age-associated decline of ambulatory activity and memory, partially restore mitochondrial structure and function, inhibit the age-associated increase of oxidative damage to lipids, proteins, and nucleic acids, elevate the levels of antioxidants, and restore the activity and substrate binding affinity of a key mitochondrial enzyme, carnitine acetyltransferase. These mitochondrial metabolites and antioxidants protect neuronal cells from neurotoxin- and oxidant-induced toxicity and oxidative damage; delay the normal senescence of human diploid fibroblast cells, and inhibit oxidant-induced acceleration of senescence. These results suggest a plausible mechanism: with age, increased oxidative damage to proteins and lipid membranes, particularly in mitochondria, causes a deformation of structure of enzymes, with a consequent decrease of enzyme activity as well as substrate binding affinity for their substrates; an increased level of substrate restores the velocity of the reaction and restores mitochondrial function, thus delaying mitochondrial decay and aging. This loss of activity due to coenzyme or substrate binding appears to be true for a number of other enzymes as well, including mitochondrial complex III and IV.
Collapse
Affiliation(s)
- Jiankang Liu
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- K Hirokawa
- Department of Pathology and Immunology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113 8519, Japan.
| | | |
Collapse
|