Warren JT, Wismar J, Subrahmanyam B, Gilbert LI. Woc (without children) gene control of ecdysone biosynthesis in Drosophila melanogaster.
Mol Cell Endocrinol 2001;
181:1-14. [PMID:
11476936 DOI:
10.1016/s0303-7207(01)00404-x]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The first step in ecdysteroidogenesis, i.e. the 7,8-dehydrogenation of dietary cholesterol (C) to 7-dehydrocholesterol (7dC), is blocked in Drosophila melanogaster homozygous woc (without children) third instar larval ring glands (source of ecdysone). Unlike ring glands from wild-type D. melanogaster larvae, glands from woc mutants cannot convert radiolabelled C or 25-hydroxycholesterol (25C) to 7dC or 7-dehydro-25-hydroxycholesterol (7d25C) in vitro, nor to ecdysone (E). Yet, when these same glands are incubated with synthetic tracer 7d25C, the rate of metabolism of this polar Delta(5,7)-sterol into E is identical to that observed with glands from comparably staged wild-type larvae. The absence of this enzymatic activity in vivo is probably the direct cause of the observed low whole-body ecdysteroid titers in late third instar homozygous mutant larvae, the low ecdysteroid secretory activity in vitro of brain-ring gland complexes from these animals, and the failure of the larvae to pupariate (undergo metamorphosis). Oral administration of 7dC, but not C, results in a dramatic increase in ecdysteroid production both in vivo and in vitro by the woc mutant brain-ring gland complexes and affects a partial rescue to the beginning of pupal-adult development, but no further, despite elevated whole-body ecdysteroid titers. Data previously reported (Wismar et al., 2000) indicate that the woc gene encodes a zinc-finger protein that apparently modulates the activity of the 7,8-dehydrogenase.
Collapse