1
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
2
|
Deurholt T, ten Bloemendaal L, Chhatta AA, van Wijk ACWA, Weijer K, Seppen J, Elferink RPJO, Chamuleau RAFM, Hoekstra R. In Vitro Functionality of Human Fetal Liver Cells and Clonal Derivatives under Proliferative Conditions. Cell Transplant 2017; 15:811-22. [PMID: 17269451 DOI: 10.3727/000000006783464417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mature human hepatocytes are not suitable for large-scale in vitro applications that rely on hepatocyte function, due to their limited availability and insufficient proliferation capacity in vitro. In contrast, human fetal liver cells (HFLC) can be easily expanded in vitro. In this study we evaluated the hepatic function of HFLCs under proliferative conditions, to determine whether HFLCs can replace mature hepatocytes for in vitro applications. HFLCs were isolated from fetal livers of 16 weeks gestation. Hepatic functions of HFLCs were determined in primary culture and after expansion in vitro. Clonal derivatives were selected and tested for hepatic functionality. Results were compared to primary mature human hepatocytes in vitro. No differences were observed between primary HFLCs and mature human hepatocytes in albumin production and mRNA levels of various liver-specific genes. Ureagenesis was 4.4-fold lower and ammonia elimination was absent in HFLCs. Expanding HFLCs decreased hepatic functions and increased cell stretching. In contrast, clonal derivatives had stable functionality and morphology and responded to differentiation stimuli. Although their hepatic functions were higher than in passaged HFLCs, functionality was at least 20 times lower compared to mature human hepatocytes. HFLCs cannot replace mature human hepatocytes in in vitro applications requiring extensive in vitro expansion, because this is associated with decreased hepatic functionality. Selecting functional subpopulations can, at least partly, prevent this. In addition, defining conditions that support hepatic differentiation is necessary to obtain HFLC cultures suitable for in vitro hepatic applications.
Collapse
Affiliation(s)
- Tanja Deurholt
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ramboer E, De Craene B, De Kock J, Berx G, Rogiers V, Vanhaecke T, Vinken M. Development and characterization of a new human hepatic cell line. EXCLI JOURNAL 2015; 14:875-89. [PMID: 26869867 PMCID: PMC4747020 DOI: 10.17179/excli2015-424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
Abstract
The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics.
Collapse
Affiliation(s)
- Eva Ramboer
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Joey De Kock
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Vera Rogiers
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Tamara Vanhaecke
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
4
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
5
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
6
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
7
|
Zhao LF, Pan XP, Li LJ. Key challenges to the development of extracorporeal bioartificial liver support systems. Hepatobiliary Pancreat Dis Int 2012; 11:243-9. [PMID: 22672816 DOI: 10.1016/s1499-3872(12)60155-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND For nearly three decades, extracorporeal bioartificial liver (BAL) support systems have been anticipated as promising tools for the treatment of liver failure. However, these systems are still far from clinical application. This review aimed to analyze the key challenges to the development of BALs. DATA SOURCE We carried out a PubMed search of English-language articles relevant to extracorporeal BAL support systems and liver failure. RESULTS Extracorporeal BALs face a series of challenges. First, an appropriate cell source for BAL is not readily available. Second, existing bioreactors do not provide in vivo-like oxygenation and bile secretion. Third, emergency needs cannot be met by current BALs. Finally, the effectiveness of BALs, either in animals or in patients, has been difficult to document. CONCLUSIONS Extracorporeal BAL support systems are mainly challenged by incompetent cell sources and flawed bioreactors. To advance this technology, future research is needed to provide more insights into interpreting the conditions for hepatocyte differentiation and liver microstructure formation.
Collapse
Affiliation(s)
- Li-Fu Zhao
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
8
|
Nibourg GAA, Chamuleau RAFM, van Gulik TM, Hoekstra R. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther 2012; 12:905-21. [DOI: 10.1517/14712598.2012.685714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Abstract
A variety of bioartificial liver support systems were developed to replace some of the liver's function in case of liver failure. Those systems, in contrast to purely artificial systems, incorporate metabolically active cells to contribute synthetic and regulatory functions as well as detoxification. The selection of the ideal cell source and the design of more sophisticated bioreactors are the main issues in this field of research. Several systems were already introduced into clinical studies to prove their safety. This review briefly introduces a cross-section of experimental and clinically applied systems and tries to give an overview on the problems and limitations of bioartificial liver support.
Collapse
Affiliation(s)
- Gesine Pless
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
10
|
Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, Schwartlander R, Payne C, Plevris JN, Sauer IM, Chamuleau RA, Elferink RPO, Seppen J, Hoekstra R. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009; 9:89. [PMID: 19845959 PMCID: PMC2770505 DOI: 10.1186/1472-6750-9-89] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 10/21/2009] [Indexed: 01/15/2023] Open
Abstract
Background A clonal cell line that combines both stable hepatic function and proliferation capacity is desirable for in vitro applications that depend on hepatic function, such as pharmacological or toxicological assays and bioartificial liver systems. Here we describe the generation and characterization of a clonal human cell line for in vitro hepatocyte applications. Results Cell clones derived from human fetal liver cells were immortalized by over-expression of telomerase reverse transcriptase. The resulting cell line, cBAL111, displayed hepatic functionality similar to the parental cells prior to immortalization, and did not grow in soft agar. Cell line cBAL111 expressed markers of immature hepatocytes, like glutathione S transferase and cytokeratin 19, as well as progenitor cell marker CD146 and was negative for lidocaine elimination. On the other hand, the cBAL111 cells produced urea, albumin and cytokeratin 18 and eliminated galactose. In contrast to hepatic cell lines NKNT-3 and HepG2, all hepatic functions were expressed in cBAL111, although there was considerable variation in their levels compared with primary mature hepatocytes. When transplanted in the spleen of immunodeficient mice, cBAL111 engrafted into the liver and partly differentiated into hepatocytes showing expression of human albumin and carbamoylphosphate synthetase without signs of cell fusion. Conclusion This novel liver cell line has the potential to differentiate into mature hepatocytes to be used for in vitro hepatocyte applications.
Collapse
Affiliation(s)
- Tanja Deurholt
- AMC Liver Center, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu CB, Lv GL, Pan XP, Chen YS, Cao HC, Zhang YM, Du WB, Yang SG, Li LJ. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs 2009; 32:272-81. [PMID: 19569036 DOI: 10.1177/039139880903200504] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Microencapsulated hepatocytes have been proposed as promising bioactive agents for packed-bed or fluidized-bed bioartificial liver assist devices (BLaDs) and for hepatocyte transplantation because of the potential advantages they offer of high mass transport rate and an optimal microenvironment for hepatocyte culture. We developed a large-scale and high-production alginate-chitosan (AC) microcapsule roller bottle culture system for the encapsulation of hepLL immortalized human hepatocytes. In this study, the efficacy of upscaling encapsulated hepLL cells production with roller bottle cultivation was evaluated in vitro. METHODS Microencapsulated hepLL cells were grown at high yield in large-scale roller bottles, with free cells cultured in roller bottle spinners serving as controls. The mechanical stability and the permeability of the AC microcapsules were investigated, and the growth, metabolism and functions of the encapsulated hepLL cells were evaluated as compared to free cells. RESULTS The microcapsules withstood well the shear stress induced by high agitation rates. The microcapsules were permeable to albumin, but prevented the release of immunoglobulins. Culture in roller bottles of immortalized human hepatocytes immobilized in the AC microcapsules improved cell growth, albumin synthesis, ammonia elimination and lidocaine clearance as compared with free cells cultured in roller bottles. CONCLUSIONS Encapsulated hepLL cells may be cultured on a large scale in roller bottles. This makes them possible candidates for use in cell-based liver assist therapies.
Collapse
Affiliation(s)
- Cheng-Bo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
David B, Barbe L, Barthès-Biesel D, Legallais C. Mechanical properties of alginate beads hosting hepatocytes in a fluidized bed bioreactor. Int J Artif Organs 2007; 29:756-63. [PMID: 16969753 DOI: 10.1177/039139880602900805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluidized bed bioartificial liver has been proposed as a temporary support to bridge patients suffering from acute liver failure to transplantation. In such a bioreactor, alginate beads hosting hepatocytes are in continuous motion during at least six hours. After having shown in vitro the functionality of such a device, the present study aims at analyzing the potential mechanical alterations of the beads in the bioreactor, perfused by different surrounding media. Compression experiments are performed and coupled for analysis with Hertz theory. They provide qualitative and quantitative data. The average value of the shear modulus, calculated for the different cases studied varied from 2.4 to 10.4 kPa, and could therefore be considered as a quantitative measure of the beads mechanical properties. From the compression experiments and the estimated values of the shear modulus, we could now evaluate the effect of different operating conditions (fluidization, presence of cells, surrounding medium) on the mechanical behavior of alginate beads. On the one hand, the motion during six hours in the bioreactor does not alter the beads significantly. On the other hand, the presence of different substances in the fluid phase might change their mechanical strength. These results can be considered as new encouragements to use such a device as a bioartificial organ.
Collapse
Affiliation(s)
- B David
- Compiègne University of Technology, Laboratory of Biomechanics and Biomedical Engineering, Compiègne, France
| | | | | | | |
Collapse
|
13
|
Diekmann S, Bader A, Schmitmeier S. Present and Future Developments in Hepatic Tissue Engineering for Liver Support Systems : State of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology 2006; 50:163-79. [PMID: 19003077 PMCID: PMC3476010 DOI: 10.1007/s10616-006-6336-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/03/2006] [Indexed: 12/23/2022] Open
Abstract
The liver is the most important organ for the biotransformation of xenobiotics, and the failure to treat acute or acute-on-chronic liver failure causes high mortality rates in affected patients. Due to the lack of donor livers and the limited possibility of the clinical management there has been growing interest in the development of extracorporeal liver support systems as a bridge to liver transplantation or to support recovery during hepatic failure. Earlier attempts to provide liver support comprised non-biological therapies based on the use of conventional detoxification procedures, such as filtration and dialysis. These techniques, however, failed to meet the expected efficacy in terms of the overall survival rate due to the inadequate support of several essential liver-specific functions. For this reason, several bioartificial liver support systems using isolated viable hepatocytes have been constructed to improve the outcome of treatment for patients with fulminant liver failure by delivering essential hepatic functions. However, controlled trials (phase I/II) with these systems have shown no significant survival benefits despite the systems' contribution to improvements in clinical and biochemical parameters. For the development of improved liver support systems, critical issues, such as the cell source and culture conditions for the long-term maintenance of liver-specific functions in vitro, are reviewed in this article. We also discuss aspects concerning the performance, biotolerance and logistics of the selected bioartificial liver support systems that have been or are currently being preclinically and clinically evaluated.
Collapse
Affiliation(s)
- Sonja Diekmann
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Augustinus Bader
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Stephanie Schmitmeier
- Center for Biotechnology and Biomedicine, Cell Techniques and Applied Stem Cell Biotechnology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
14
|
N/A, 曾 欣. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:1734-1736. [DOI: 10.11569/wcjd.v13.i14.1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:273-275. [DOI: 10.11569/wcjd.v13.i3.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Abstract
Insufficient donor organs for orthotopic liver transplantation worldwide have urgently increased the requirement for new therapies for acute and chronic liver disease. Whilst none are yet clinically proven there are at least two different approaches for which there is extensive experimental data, some human anecdotal evidence and some data emerging from Phase 1 clinical trials. Both approaches involve bio-engineering. In vivo tissue engineering involves isolated liver cell transplantation into the liver and/or other ectopic sites and in vitro tissue engineering, using an extracorporeal hepatic support system or bioartificial liver. Some questions are common to both these approaches, such as the best cell source and the therapeutic mass required, and are discussed. Others are specific to each approach. For cell transplantation in vivo the initial engraftment and repopulation will make a critical difference to the outcome, and development of markers for transplanted cells has enabled significant advances in understanding, and therefore manipulating, the process. Moreover, the role of immunosuppression is also important and novel approaches to natural immunosuppression are discussed. For use in a bioartificial liver, the ability for hepatocytes to perform ex vivo at in vivo levels is critical. Three dimensional culture improves cell performance over monolayer cultures. Alginate encapsulated cells offer a suitable 3-D environment for a bioartificial liver since they are both easily manipulatable and cryopreservable. The use of cells derived from stem cells or foetal rather than adult liver cells is also emerging as a potential human cell source which may overcome problems associated with xenogeneic cells.
Collapse
Affiliation(s)
- Clare Selden
- Centre for Hepatology, Royal Free Campus, Royal Free and University College Medical School, London NW3 2PF, UK.
| | | |
Collapse
|
17
|
Abstract
Because acute liver cell failure is associated with an exceedingly high mortality, liver support has been proposed since the 1950s to improve patient outcome. Early devices, including hemodialysis, hemofiltration, exchange transfusion, plasmapheresis, hemoperfusion, plasma and cross-hemodialysis or cross-circulation, appeared inefficient. Meanwhile, documented results of extracorporeal liver perfusion (ECLP) suggested its superiority over conventional treatment. These devices were abandoned with the development of liver transplantation (LT), which allowed a better outcome and longer survival rate. In the present day, the fact that patients die while waiting for LT because of organ shortage led to a renewed interest in liver support as bridge to LT or regeneration. These devices can be classified according to the presence or lack of hepatocytes, whereas biologic devices refers to the presence of cells or other organic and biochemical component. The absence of individual success of early models led to the development of combined hepatocyte free devices, or artificial liver, which are based upon the hemodiabsorption principle (Biologic-DT) or on the "albumin bound toxin hypothesis" (Molecular Adsorbents Recirculating System) with encouraging results. Meanwhile, hepatocyte based bioartificial liver devices (BLD) were conceived for a global "metabolic support." BLD were developed with the use of human hepatoma cell line (C3A) or primary or cryopreserved porcine hepatocytes. Preliminary experience gave promising results bridging patients to LT. Based upon the same principle of global hepatocyte metabolic support, ECLP regained interest, particularly with the development of transgenic pigs. Several concerns were raised about these devices. Artificial livers lacked any metabolic synthetic activity, the use of human liver for ECLP seems hardly acceptable because of organ shortage, and the accepted use of borderline livers for transplantation is pending trials for the use of xenogenic livers. For BLD, the concerns were the low hepatocyte mass, the absence of accessory liver cells, and the potential risk of seeding tumor cells into patient with the use of human hepatoma cell line. The use of porcine hepatocytes (BLD or ECLP) raised physiologic and immunologic concerns and particularly the fear of a possible transfer of porcine viral material. Although recent studies clearly demonstrate clinical improvement of patients with the use of recently developed liver support devices, most of reported prospective, controlled, or randomized trials had a small number of patients. To give the deciding vote and avoid previous pitfalls, trials need to be developed with a larger number of patients based upon statistically significant models with the following characteristics: 1) comprehensive understanding of the acute liver cell failure mechanisms, 2) world wide classification of conditions that require liver support, and 3) a clear definition of treatment success pending patients to LT or recovery without transplantation. There has not yet been conclusive evidence to support the benefits of extracorporeal liver support. We are still waiting for the deciding vote.
Collapse
Affiliation(s)
- Mustapha Adham
- Department of General, Digestive Surgery and Liver Transplantation, Croix Rousse Hospital, Lyon, France
| |
Collapse
|
18
|
Court FG, Wemyss-Holden SA, Dennison AR, Maddern GJ. Bioartificial liver support devices: historical perspectives. ANZ J Surg 2003; 73:739-48. [PMID: 12956791 DOI: 10.1046/j.1445-2197.2003.02741.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fulminant hepatic failure (FHF) is an important cause of death worldwide. Despite significant improvements in critical care therapy there has been little impact on survival with mortality rates approaching 80%. In many patients the cause of the liver failure is reversible and if short-term hepatic support is provided, the liver may regenerate. Survivors recover full liver function and a normal life expectancy. For many years the only curative treatment for this condition has been liver transplantation, subjecting many patients to replacement of a potentially self-regenerating organ, with the lifetime danger of immunosuppression and its attendant complications, such as malignancy. Because of the shortage of livers available for transplantation, many patients die before a transplant can be performed, or are too ill for operation by the time a liver becomes available. Many patients with hepatic failure do not qualify for liver transplantation because of concomitant infection, metastatic cancer, active alcoholism or concurrent medical problems. The survival of patients excluded from liver transplantation or those with potentially reversible acute hepatitis might be improved with temporary artificial liver support. With a view to this, bioartificial liver support devices have been developed which replace the synthetic, metabolic and detoxification functions of the liver. Some such devices have been evaluated in clinical trials. During the last decade, improvements in bioengineering techniques have been used to refine the membranes and hepatocyte attachment systems used in these devices, in the hope of improving function. The present article reviews the history of liver support systems, the attendant problems encountered, and summarizes the main systems that are currently under evaluation.
Collapse
Affiliation(s)
- Fiona G Court
- University of Adelaide, Department of Surgery, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
19
|
Wang K, Shindoh H, Inoue T, Horii I. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci 2002; 27:229-37. [PMID: 12238146 DOI: 10.2131/jts.27.229] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We investigated and compared the cytotoxicity of 16 reference compounds in four in vitro systems: primary cultured rat hepatocytes, hepatoma HepG2 cell line, non-hepatic HeLa and Balb/c 3T3 cell lines. After 24 hr of exposure to the test compounds, the water-soluble tetrazolium salts WST-1 assay was used as an endpoint to evaluate cytotoxicity. Acetaminophen, diclofenac sodium cyclophosphamide and disulfiram displayed from 2 to more than 10 times higher IC50 values in three cell lines than in rat primary cultured hepatocytes. The cytotoxic effects of aspirin, amiodarone, clorfibiric acid, chlorpromazine, erythomycin, lithocholic acid, cisplatin and quinidine in rat hepatocytes were similar or 2 times stronger than those observed in cell lines. Ketoconazole resulted in the lowest IC50 value in the HeLa cell line. The data suggested that the compounds which are known to be metabolism-mediated liver toxicants have a differential hepatotoxicity in vitro and that primary cultured rat hepatocytes could represent a valuable tool for both screening and study of the effects of bio-transformation on the cytotoxicity of new chemical entities and xenobiotics in vitro.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pharmacology, Dalian Medical University, 465 Zhongshan Road, Dalian, 116027, P. R. China
| | | | | | | |
Collapse
|
20
|
Hoekstra R, Chamuleau RAFM. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs 2002; 25:182-91. [PMID: 11999190 DOI: 10.1177/039139880202500304] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most bioartificial liver (BAL) devices contain porcine primary hepatocytes as their biological component. However, alternatives are needed due to xenotransplantation associated risks. Human liver cell lines have excellent growth characteristics and are therefore candidates for application in BAL devices. Tumour-derived cell lines HepG2 and C3A express a variety of liver functions, but some specific liver functions, like ammonia detoxification and ureagenesis are insufficient. Immortalised human hepatocytes might offer better prospects. The balance between immortalisation and transformation with dedifferentiation of cells seems controllable by conditional immortalisation and/or the use of telomerase as immortalising agent. Another promising approach will be the use of embryonic or adult human stem cells. Rodent stem cells have been directed to hepatic differentiation in vitro, which might be applicable to human stem cells. However, both functionality and safety of immortalised human liver cell lines and differentiated stem cells should be improved before successful use in BAL devices becomes reality.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Experimental Hepatology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
|
22
|
Tsiaoussis J, Newsome PN, Nelson LJ, Hayes PC, Plevris JN. Which hepatocyte will it be? Hepatocyte choice for bioartificial liver support systems. Liver Transpl 2001; 7:2-10. [PMID: 11150414 DOI: 10.1053/jlts.2001.20845] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver failure, notwithstanding advances in medical management, remains a cause of considerable morbidity and mortality in the developed world. Although bioartificial liver (BAL) support systems offer the potential of significant therapeutic benefit for such patients, many issues relating to their use are still to be resolved. In this review, these issues are examined in terms of the functions required, the cells of choice in such a system, and the most appropriate environment to optimize the function of such cells. The major functions identified to date for a BAL are ammonia detoxification and biotransformation of toxic compounds, although this somewhat belies the complexity of the functions required. Two practical choices for cell type within such a system are xenogenic hepatocytes and immortalized human hepatocyte lines. Both these choices have drawbacks, such as the transmission of zoonoses and malignant infiltration, respectively. Finally, improvements in culture conditions, such as supplemented media, biodegradable scaffolds, and coculture, offer the possibility of prolonging the differentiated function of hepatocytes in a BAL.
Collapse
Affiliation(s)
- J Tsiaoussis
- Department of Internal Medicine, Liver Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
23
|
Legallais C, David B, Doré E. Bioartificial livers (BAL): current technological aspects and future developments. J Memb Sci 2001. [DOI: 10.1016/s0376-7388(00)00539-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|