1
|
Jordan J, Petrovici MA, Breitwieser O, Schemmel J, Meier K, Diesmann M, Tetzlaff T. Deterministic networks for probabilistic computing. Sci Rep 2019; 9:18303. [PMID: 31797943 PMCID: PMC6893033 DOI: 10.1038/s41598-019-54137-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/06/2019] [Indexed: 01/13/2023] Open
Abstract
Neuronal network models of high-level brain functions such as memory recall and reasoning often rely on the presence of some form of noise. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. In vivo, synaptic background input has been suggested to serve as the main source of noise in biological neuronal networks. However, the finiteness of the number of such noise sources constitutes a challenge to this idea. Here, we show that shared-noise correlations resulting from a finite number of independent noise sources can substantially impair the performance of stochastic network models. We demonstrate that this problem is naturally overcome by replacing the ensemble of independent noise sources by a deterministic recurrent neuronal network. By virtue of inhibitory feedback, such networks can generate small residual spatial correlations in their activity which, counter to intuition, suppress the detrimental effect of shared input. We exploit this mechanism to show that a single recurrent network of a few hundred neurons can serve as a natural noise source for a large ensemble of functional networks performing probabilistic computations, each comprising thousands of units.
Collapse
Affiliation(s)
- Jakob Jordan
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.
- Department of Physiology, University of Bern, Bern, Switzerland.
| | - Mihai A Petrovici
- Department of Physiology, University of Bern, Bern, Switzerland
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Oliver Breitwieser
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Johannes Schemmel
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karlheinz Meier
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
2
|
Highstein SM, Mann MA, Holstein GR, Rabbitt RD. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx. J Neurophysiol 2015; 113:3827-35. [PMID: 25878150 DOI: 10.1152/jn.00055.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 μs, decayed to baseline with a time constant of τ(R) ∼ 690 μs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses.
Collapse
Affiliation(s)
| | | | - Gay R Holstein
- Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Richard D Rabbitt
- Marine Biological Laboratory, Woods Hole, Massachusetts; University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Abstract
EPSCs at the synapses of sensory receptors and of some CNS neurons include large events thought to represent the synchronous release of the neurotransmitter contained in several synaptic vesicles by a process known as multiquantal release. However, determination of the unitary, quantal size underlying such putatively multiquantal events has proven difficult at hair cell synapses, hindering confirmation that large EPSCs are in fact multiquantal. Here, we address this issue by performing presynaptic membrane capacitance measurements together with paired recordings at the ribbon synapses of adult hair cells. These simultaneous presynaptic and postsynaptic assays of exocytosis, together with electron microscopic estimates of single vesicle capacitance, allow us to estimate a single vesicle EPSC charge of approximately -45 fC, a value in close agreement with the mean postsynaptic charge transfer of uniformly small EPSCs recorded during periods of presynaptic hyperpolarization. By thus establishing the magnitude of the fundamental quantal event at this peripheral sensory synapse, we provide evidence that the majority of spontaneous and evoked EPSCs are multiquantal. Furthermore, we show that the prevalence of uniquantal versus multiquantal events is Ca2+ dependent. Paired recordings also reveal a tight correlation between membrane capacitance increase and evoked EPSC charge, indicating that glutamate release during prolonged hair cell depolarization does not significantly saturate or desensitize postsynaptic AMPA receptors. We propose that the large EPSCs reflect the highly synchronized release of multiple vesicles at single presynaptic ribbon-type active zones through a compound or coordinated vesicle fusion mechanism.
Collapse
|
4
|
Holt JC, Lysakowski A, Goldberg JM. Mechanisms of efferent-mediated responses in the turtle posterior crista. J Neurosci 2006; 26:13180-93. [PMID: 17182768 PMCID: PMC4157627 DOI: 10.1523/jneurosci.3539-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 10/12/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022] Open
Abstract
To study the cellular mechanisms of efferent actions, we recorded from vestibular-nerve afferents close to the turtle posterior crista while efferent fibers were electrically stimulated. Efferent-mediated responses were obtained from calyx-bearing (CD, calyx and dimorphic) afferents and from bouton (B) afferents distinguished by their neuroepithelial locations into BT units near the torus and BM units at intermediate sites. The spike discharge of CD units is strongly excited by efferent stimulation, whereas BT and BM units are inhibited, with BM units also showing a postinhibitory excitation. Synaptic activity was recorded intracellularly after spikes were blocked. Responses of BT/BM units to single efferent shocks consist of a brief depolarization followed by a prolonged hyperpolarization. Both components reflect variations in hair-cell quantal release rates and are eliminated by pharmacological antagonists of alpha9/alpha10 nicotinic receptors. Blocking calcium-dependent SK potassium channels converts the biphasic response into a prolonged depolarization. Results can be explained, as in other hair-cell systems, by the sequential activation of alpha9/alpha10 and SK channels. In BM units, the postinhibitory excitation is based on an increased rate of hair-cell quanta and depends on the preceding inhibition. There is, in addition, an efferent-mediated, direct depolarization of BT/BM and CD fibers. In CD units, it is the exclusive efferent response. Nicotinic antagonists have different effects on hair-cell efferent actions and on the direct depolarization of CD and BT/BM units. Ultrastructural studies, besides confirming the efferent innervation of type II hair cells and calyx endings, show that turtle efferents commonly contact afferent boutons terminating on type II hair cells.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
5
|
Abstract
One of the primary challenges that sensory systems face is extracting relevant information from background noise. In the auditory system, the ear receives efferent feedback, which may help it extract signals from noise. Here we directly test the hypothesis that efferent activity increases the signal-to-noise ratio (SNR) of the ear, using the relatively simple teleost ear. Tone-evoked saccular potentials were recorded before and after efferent stimulation, and the SNR of the responses was calculated. In quiet conditions, efferent stimulation suppressed saccular responses to a tone, reducing the SNR. However, when masking noise was added, efferent stimulation increased the SNR of the saccular responses within a range of stimulus combinations. These data demonstrate that auditory efferent feedback can increase SNR in conditions where a signal is masked by noise, thereby enhancing the encoding of signals in noise. Efferent feedback thus performs a fundamental signal processing function, helping the animal to hear sounds in difficult listening conditions.
Collapse
Affiliation(s)
- Seth M Tomchik
- University of Miami, Department of Biology, 1301 Memorial Dr., Coral Gables, Florida 33146, USA.
| | | |
Collapse
|
6
|
Tomchik SM, Lu Z. Auditory physiology and anatomy of octavolateral efferent neurons in a teleost fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:51-67. [PMID: 16180037 DOI: 10.1007/s00359-005-0050-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 12/19/2022]
Abstract
Vertebrate hair cell systems receive innervation from efferent neurons in the brain. Here we report the responses of octavolateral efferent neurons that innervate the inner ear and lateral lines in a teleost fish, Dormitator latifrons, to directional linear accelerations, and compare them with the afferent responses from the saccule, the main auditory organ in the inner ear of this species. Efferent neurons responded to acoustic stimuli, but had significantly different response properties than saccular afferents. The efferents produced uniform, omnidirectional responses with no phase-locking. Evoked spike rates increased monotonically with stimulus intensity. Efferents were more broadly tuned and responsive to lower frequencies than saccular afferents, and efferent modulation of the otolithic organs and lateral lines is likely more pronounced at lower frequencies. The efferents had wide dynamic ranges, shallow rate-level function slopes, and low maximum discharge rates. These findings support the role of the efferent innervation of the otolithic organs as part of a general arousal system that modulates overall sensitivity of the peripheral octavolateral organs. In addition, efferent feedback may help unmask biologically relevant directional stimuli, such as those emitted by a predator, prey, or conspecific, by reducing sensitivity of the auditory system to omnidirectional ambient noise.
Collapse
Affiliation(s)
- Seth M Tomchik
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
7
|
Holt JC, Xue JT, Brichta AM, Goldberg JM. Transmission between type II hair cells and bouton afferents in the turtle posterior crista. J Neurophysiol 2005; 95:428-52. [PMID: 16177177 DOI: 10.1152/jn.00447.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic activity was recorded with sharp microelectrodes during rest and during 0.3-Hz sinusoidal stimulation from bouton afferents identified by their efferent-mediated inhibitory responses. A glutamate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased quantal size (qsize) while lowering external Ca(2+) decreased quantal rate (qrate). Miniature excitatory postsynaptic potentials (mEPSPs) had effective durations (qdur) of 3.5-5 ms. Their timing was consistent with Poisson statistics. Mean qsizes ranged in different units from 0.25 to 0.73 mV and mean qrates from 200 to 1,500/s; there was an inverse relation across the afferent population between qrate and qsize. qsize distributions were consistent with the independent release of variable-sized quanta. Channel noise, measured during AMPA-induced depolarizations, was small compared with quantal noise. Excitatory responses were larger than inhibitory responses. Peak qrates, which could approach 3,000/s, led peak excitatory mechanical stimulation by 40 degrees . Quantal parameters varied with stimulation phase with qdur and qsize being maximal during inhibitory stimulation. Voltage modulation (vmod) was in phase with qrate and had a peak depolarization of 1.5-3 mV. On average, 80% of vmod was accounted for by quantal activity; the remaining 20% was a nonquantal component that persisted in the absence of quantal activity. The extracellular accumulation of glutamate and K(+) are potential sources of nonquantal transmission and may provide a basis for the inverse relation between qrate and qsize. Comparison of the phases of synaptic and spike activity suggests that both presynaptic and postsynaptic mechanisms contribute to variations across afferents in the timing of spikes during sinusoidal stimulation.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, 947 E. 58th St., MC 0926, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The activity of individual afferent neurones in the mammalian cochlea can be driven by neurotransmitter released from a single synaptic ribbon in a single inner hair cell. Thus, a ribbon synapse must be able to transmit all the information on sound frequency, intensity and timing carried centrally. This task is made still more demanding by the process of binaural sound localization that utilizes separate computations of time and intensity, with temporal resolution as fine as 10 micros in central nuclei. These computations may rely in part on the fact that the response phase (at the characteristic frequency) of individual afferent neurones is invariant with intensity. Somehow, the ribbon synapse can provide stronger synaptic drive to signal varying intensity, without accompanying changes in transmission time that ordinarily occur during chemical neurotransmission. Recent ultrastructural and functional studies suggest features of the ribbon that may underlie these capabilities.
Collapse
Affiliation(s)
- Paul Albert Fuchs
- The Cochlear Neurotransmission Laboratory, Center for Hearing and Balance, Department of Otolaryngology--Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21286, USA.
| |
Collapse
|
9
|
Abstract
Neurotransmitters are released continuously at ribbon synapses in the retina and cochlea. Notably, a single ribbon synapse of inner hair cells provides the entire input to each cochlear afferent fiber. We investigated hair cell transmitter release in the postnatal rat cochlea by recording excitatory postsynaptic currents (EPSCs) from afferent boutons directly abutting the ribbon synapse. EPSCs were carried by rapidly gating AMPA receptors. EPSCs were clustered in time, indicating the possibility of coordinate release. Amplitude distributions of spontaneous EPSCs were highly skewed, peaking at 0.4 nS and ranging up to 20 times larger. Hair cell depolarization increased EPSC frequency up to 150 Hz without altering the amplitude distribution. We propose that the ribbon synapse operates by multivesicular release, possibly to achieve high-frequency transmission.
Collapse
Affiliation(s)
- Elisabeth Glowatzki
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA.
| | | |
Collapse
|