1
|
Pai VP, Cooper BG, Levin M. Screening Biophysical Sensors and Neurite Outgrowth Actuators in Human Induced-Pluripotent-Stem-Cell-Derived Neurons. Cells 2022; 11:cells11162470. [PMID: 36010547 PMCID: PMC9406775 DOI: 10.3390/cells11162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
All living cells maintain a charge distribution across their cell membrane (membrane potential) by carefully controlled ion fluxes. These bioelectric signals regulate cell behavior (such as migration, proliferation, differentiation) as well as higher-level tissue and organ patterning. Thus, voltage gradients represent an important parameter for diagnostics as well as a promising target for therapeutic interventions in birth defects, injury, and cancer. However, despite much progress in cell and molecular biology, little is known about bioelectric states in human stem cells. Here, we present simple methods to simultaneously track ion dynamics, membrane voltage, cell morphology, and cell activity (pH and ROS), using fluorescent reporter dyes in living human neurons derived from induced neural stem cells (hiNSC). We developed and tested functional protocols for manipulating ion fluxes, membrane potential, and cell activity, and tracking neural responses to injury and reinnervation in vitro. Finally, using morphology sensor, we tested and quantified the ability of physiological actuators (neurotransmitters and pH) to manipulate nerve repair and reinnervation. These methods are not specific to a particular cell type and should be broadly applicable to the study of bioelectrical controls across a wide range of combinations of models and endpoints.
Collapse
Affiliation(s)
- Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Ben G. Cooper
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
2
|
Pai VP, Levin M. HCN2 Channel-induced Rescue of Brain, Eye, Heart, and Gut Teratogenesis Caused by Nicotine, Ethanol, and Aberrant Notch Signaling. Wound Repair Regen 2022; 30:681-706. [PMID: 35662339 DOI: 10.1111/wrr.13032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Organogenesis is a complex process that can be disrupted by embryonic exposure to teratogens or mutation-induced alterations in signaling pathways, both of which result in organ mispatterning. Building on prior work in Xenopus laevis that showed that increased HCN2 ion channel activity rescues nicotine-induced brain & eye morphogenesis, we demonstrate much broader HCN2-based rescue of organ patterning defects. Induced HCN2 expression in both local or distant tissues can rescue CNS (brain & eye) as well as non-CNS (heart, & gut) organ defects induced by three different teratogenic conditions: nicotine exposure, ethanol exposure, or aberrant Notch protein. Rescue can also be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. Our results suggest that HCN2 (likely mediated by bioelectric signals) can be an effective regulator of organogenesis from all three germ layers (ectoderm, mesoderm, and endoderm) and reveal non-cell-autonomous influences on organ formation that work at considerable distance during embryonic development. These results suggest molecular bioelectric strategies for repair that could be explored in the future for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
3
|
Pai VP, Cervera J, Mafe S, Willocq V, Lederer EK, Levin M. HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. Front Cell Neurosci 2020; 14:136. [PMID: 32528251 PMCID: PMC7264377 DOI: 10.3389/fncel.2020.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Embryonic exposure to the teratogen nicotine results in brain defects, by disrupting endogenous spatial pre patterns necessary for normal brain size and patterning. Extending prior work in Xenopus laevis that showed that misexpression of ion channels can rescue morphogenesis, we demonstrate and characterize a novel aspect of developmental bioelectricity: channel-dependent repair signals propagate long-range across the embryo. We show that distal HCN2 channel misexpression and distal transplants of HCN2-expressing tissue, non-cell-autonomously reverse profound defects, rescuing brain anatomy, gene expression, and learning. Moreover, such rescue can be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. We present a simple, versatile computational model of bioelectrical signaling upstream of key patterning genes such as OTX2 and XBF1, which predicts long-range repair induced by ion channel activity, and experimentally validate the predictions of this model. Our results and quantitative model identify a powerful morphogenetic control mechanism that could be targeted by future regenerative medicine exploiting ion channel modulating drugs approved for human use.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Javier Cervera
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Salvador Mafe
- Departament de Termodinamica, Facultat de Fisica, Universitat de Valencia, Burjassot, Spain
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Emma K Lederer
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
4
|
Toh MF, Brooks JM, Strassmaier T, Haedo RJ, Puryear CB, Roth BL, Ouk K, Pin SS. Application of High-Throughput Automated Patch-Clamp Electrophysiology to Study Voltage-Gated Ion Channel Function in Primary Cortical Cultures. SLAS DISCOVERY 2020; 25:447-457. [PMID: 32003306 DOI: 10.1177/2472555220902388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventionally, manual patch-clamp electrophysiological approaches are the gold standard for studying ion channel function in neurons. However, these approaches are labor-intensive, yielding low-throughput results, and are therefore not amenable for compound profiling efforts during the early stages of drug discovery. The SyncroPatch 384PE has been successfully implemented for pharmacological experiments in heterologous overexpression systems that may not reproduce the function of voltage-gated ion channels in a native, heterogeneous environment. Here, we describe a protocol allowing the characterization of endogenous voltage-gated potassium (Kv) and sodium (Nav) channel function in developing primary rat cortical cultures, allowing investigations at a significantly improved throughput compared with manual approaches. Key neuronal marker expression and microelectrode array recordings of electrophysiological activity over time correlated well with neuronal maturation. Gene expression data revealed high molecular diversity in Kv and Nav subunit composition throughout development. Voltage-clamp experiments elicited three major current components composed of inward and outward conductances. Further pharmacological experiments confirmed the endogenous expression of functional Kv and Nav channels in primary cortical neurons. The major advantages of this approach compared with conventional manual patch-clamp systems include unprecedented improvements in experimental ease and throughput for ion channel research in primary neurons. These efforts demonstrated feasibility for primary neuronal ion channel investigation with the SyncroPatch, providing the foundation for future studies characterizing biophysical changes in endogenous ion channels in primary systems associated with disease or development.
Collapse
|
5
|
Schaarschmidt G, Wegner F, Schwarz SC, Schmidt H, Schwarz J. Characterization of voltage-gated potassium channels in human neural progenitor cells. PLoS One 2009; 4:e6168. [PMID: 19584922 PMCID: PMC2702754 DOI: 10.1371/journal.pone.0006168] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 06/03/2009] [Indexed: 12/30/2022] Open
Abstract
Background Voltage-gated potassium (Kv) channels are among the earliest ion channels to appear during brain development, suggesting a functional requirement for progenitor cell proliferation and/or differentiation. We tested this hypothesis, using human neural progenitor cells (hNPCs) as a model system. Methodology/Principal Findings In proliferating hNPCs a broad spectrum of Kv channel subtypes was identified using quantitative real-time PCR with a predominant expression of the A-type channel Kv4.2. In whole-cell patch-clamp recordings Kv currents were separated into a large transient component characteristic for fast-inactivating A-type potassium channels (IA) and a small, sustained component produced by delayed-rectifying channels (IK). During differentiation the expression of IA as well as A-type channel transcripts dramatically decreased, while IK producing delayed-rectifiers were upregulated. Both Kv currents were differentially inhibited by selective neurotoxins like phrixotoxin-1 and α-dendrotoxin as well as by antagonists like 4-aminopyridine, ammoniumchloride, tetraethylammonium chloride and quinidine. In viability and proliferation assays chronic inhibition of the A-type currents severely disturbed the cell cycle and precluded proper hNPC proliferation, while the blockade of delayed-rectifiers by α-dendrotoxin increased proliferation. Conclusions/Significance These findings suggest that A-type potassium currents are essential for proper proliferation of immature multipotent hNPCs.
Collapse
|
6
|
Yamamoto N, Akamatsu H, Hasegawa S, Yamada T, Nakata S, Ohkuma M, Miyachi EI, Marunouchi T, Matsunaga K. Isolation of multipotent stem cells from mouse adipose tissue. J Dermatol Sci 2007; 48:43-52. [PMID: 17644316 DOI: 10.1016/j.jdermsci.2007.05.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 01/09/2023]
Abstract
BACKGROUND Embryonic stem (ES) cells, bone marrow, adipose tissue or other genetically modified stem cells are being widely used in basic research in the field of regenerative medicine. However, there is no specific surface antigen that can be used as a marker of multipotent stem cells. OBJECTIVE We tried to isolate and collect putative multipotent stem cells from mouse subcutaneous adipose tissue using the p75 neurotrophin receptor (p75NTR) as a marker. METHODS Adipose tissue was processed for immunostaining using antibodies anti-CD90, anti-CD105 and anti-Sca-1 as general mesenchymal stem cell (MSC) markers, and anti-p75NTR, an epithelial stem cell and MSC marker. Subsequently, the expression of cell surface markers in adipose tissue-derived stromal vascular fraction culture cells (ADSVF cells) was examined by flow cytometry (fluorescence-activated cell sorting: FACS). Finally, ADSVF cells positive for p75NTR were sorted and cultured to induce their differentiation into adipocytes, osteoblasts, chondrocytes, smooth muscle cells and neuronal cells. RESULTS Cells positive for several of these markers were found in the deep layers of adipose tissue. Among them, those positive for p75NTR differentiated into adipocytes, osteoblasts, chondrocytes, smooth muscle cells and neuronal cells. The rate of differentiation into adipocytes, osteoblasts and neuronal cells was higher for p75NTR-positive cells than for p75NTR-negative cells. CONCLUSIONS p75NTR proved to be a useful marker to isolate adipose tissue-derived stem cells (ASCs).
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Molecular Biology & Histochemistry, Fujita Health University Joint Research Laboratory, 1-98 Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liebau S, Pröpper C, Böckers T, Lehmann-Horn F, Storch A, Grissmer S, Wittekindt OH. Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 2007; 99:426-37. [PMID: 17029597 DOI: 10.1111/j.1471-4159.2006.03967.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The modulation of cell proliferation in neural progenitor cells (NPCs) is believed to play a role in neuronal regeneration. Recent studies showed that K(+) channel activity influenced cell proliferation. Therefore, we examined NPCs for K(+) channels and tested whether NPC self renewing can be modulated by synthetic K(+) channel modulators. The whole-cell K(+) current was partly K(+) dependent and showed a cumulative inactivating component. Two tetra-ethyl-ammonium ion (TEA)-sensitive K(+) currents with different voltage dependencies ( = 65 microm, E(50) = -0.3 +/- 1.3 mV and = 8 mm, E(50) = -15.2 +/- 2.8 mV) and an almost TEA-insensitive current were identified. Kaliotoxin blocked approximately 50% of the entire K(+) currents (IC(50) = 0.25 nm). These properties resembled functional characteristics of K(v)1.4, K(v)1.3 and K(v)3.1 channels. Transcripts for these channels, as well as proteins for K(v)1.3 and K(v)3.1, were identified. Immunocytochemical staining revealed K(v)1.3 and K(v)3.1 K(+) channel expression in almost all NPCs. The blockage of K(v)3.1 by low concentrations of TEA, as well as the blockage of K(v)1.3 by Psora-4, increased NPC proliferation. These findings underline the regulatory role of K(+) channels on the cell cycle and imply that K(+) channel modulators might be used therapeutically to activate endogenous NPCs.
Collapse
Affiliation(s)
- Stefan Liebau
- Department of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Coutts CA, Patten SA, Balt LN, Ali DW. Development of ionic currents of zebrafish slow and fast skeletal muscle fibers. ACTA ACUST UNITED AC 2006; 66:220-35. [PMID: 16329121 DOI: 10.1002/neu.20214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.
Collapse
Affiliation(s)
- Christopher A Coutts
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | |
Collapse
|
9
|
Caminos E, Vale C, Lujan R, Martinez-Galan JR, Juiz JM. Developmental regulation and adult maintenance of potassium channel proteins (Kv1.1 and Kv1.2) in the cochlear nucleus of the rat. Brain Res 2005; 1056:118-31. [PMID: 16122713 DOI: 10.1016/j.brainres.2005.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 07/06/2005] [Accepted: 07/10/2005] [Indexed: 11/21/2022]
Abstract
The development and maintenance of the adult expression and distribution of Kv 1.1 and Kv 1.2, two voltage-dependent potassium channel subunits, were investigated in the anteroventral cochlear nucleus (AVCN) of the rat. Both Kv 1.1 and Kv 1.2 were found in AVCN neuronal cell bodies at birth, as detected by in situ hybridization and immunocytochemistry. However, Kv 1.1 and Kv 1.2 were not seen in axons until the end of the third postnatal week. From postnatal day 21 through adulthood, labeling for both potassium channels was in axonal processes, whereas the number of cell bodies labeled for Kv 1.1 decreased and there were no cell bodies labeled for Kv 1.2. Therefore, these two potassium channel proteins are targeted to their final subcellular destinations in axons well after hearing onset. Once the adult distribution pattern of Kv 1.1 and Kv 1.2 is attained, its maintenance does not depend on signals from auditory nerve synapses. Eliminating auditory nerve input to the cochlear nucleus by means of bilateral cochleotomy did not change Kv 1.1 or Kv 1.2 expression or distribution, as seen by in situ hybridization, immunocytochemistry and Western blot. Thus, normal excitatory synaptic input in adult animals is not a requirement to regulate the expression and cellular and subcellular distribution of these potassium channel proteins.
Collapse
Affiliation(s)
- Elena Caminos
- Facultad de Medicina and Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | | | | | | | | |
Collapse
|
10
|
Muennich EAL, Fyffe REW. Focal aggregation of voltage-gated, Kv2.1 subunit-containing, potassium channels at synaptic sites in rat spinal motoneurones. J Physiol 2003; 554:673-85. [PMID: 14608003 PMCID: PMC1664801 DOI: 10.1113/jphysiol.2003.056192] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Delayed rectifier K+ currents are involved in the control of alpha-motoneurone excitability, but the precise spatial distribution and organization of the membrane ion channels that contribute to these currents have not been defined. Voltage-activated Kv2.1 channels have properties commensurate with a contribution to delayed rectifier currents and are expressed in neurones throughout the mammalian central nervous system. A specific antibody against Kv2.1 channel subunits was used to determine the surface distribution and clustering of Kv2.1 subunit-containing channels in the cell membrane of alpha-motoneurones and other spinal cord neurones. In alpha-motoneurones, Kv2.1 immunoreactivity (-IR) was abundant in the surface membrane of the soma and large proximal dendrites, and was present also in smaller diameter distal dendrites. Plasma membrane-associated Kv2.1-IR in alpha-motoneurones was distributed in a mosaic of small irregularly shaped, and large disc-like, clusters. However, only small to medium clusters of Kv2.1-IR were observed in spinal interneurones and projection neurones, and some interneurones, including Renshaw cells, lacked demonstrable Kv2.1-IR. In alpha-motoneurones, dual immunostaining procedures revealed that the prominent disc-like domains of Kv2.1-IR are invariably apposed to presynaptic cholinergic C-terminals. Further, Kv2.1-IR colocalizes with immunoreactivity against postsynaptic muscarinic (m2) receptors at these locations. Ultrastructural examination confirmed the postsynaptic localization of Kv2.1-IR at C-terminal synapses, and revealed clusters of Kv2.1-IR at a majority of S-type, presumed excitatory, synapses. Kv2.1-IR in alpha-motoneurones is not directly associated with presumed inhibitory (F-type) synapses, nor is it present in presynaptic structures apposed to the motoneurone. Occasionally, small patches of extrasynaptic Kv2.1-IR labelling were observed in surface membrane apposed by glial processes. Voltage-gated potassium channels responsible for the delayed rectifier current, including Kv2.1, are usually assigned roles in the repolarization of the action potential. However, the strategic localization of Kv2.1 subunit-containing channels at specific postsynaptic sites suggests that this family of voltage-activated K+ channels may have additional roles and/or regulatory components.
Collapse
|
11
|
Hattori S, Murakami F, Song WJ. Quantitative relationship between Kv4.2 mRNA and A-type K+ current in rat striatal cholinergic interneurons during development. J Neurophysiol 2003; 90:175-83. [PMID: 12843309 DOI: 10.1152/jn.00990.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Channel density is a fundamental factor in determining neuronal firing and is primarily regulated during development through transcriptional and translational regulation. In adult rats, striatal cholinergic interneurons have a prominent A-type current and co-express Kv4.1 and Kv4.2 mRNAs. There is evidence that Kv4.2 plays a primary role in producing the current in adult neurons. The contribution of Kv4.2 and Kv4.1 to the A-type current in cholinergic interneurons during development, however, is not known. Here, using patch-clamp recording and semi-quantitative single-cell reverse transcription-polymerase chain reaction (RT-PCR) techniques, we have examined the postnatal development of A-type current and the expression of Kv4.2 and Kv4.1 in rat striatal cholinergic interneurons. A-type current was detectable at birth, and its amplitude was up-regulated with age, reaching a plateau at about 3 wk after birth. At all ages, the current inactivated with two time constants: one ranging from 15 to 27 ms and the other ranging from 99 to 142 ms. Kv4.2 mRNA was detectable at birth, and the expression level increased exponentially with age, reaching a plateau by 3 wk postnatal. In contrast, Kv4.1 mRNA was not detectable during the first week after birth, and the expression level did not show a clear tendency with age. Taken together, our results suggest that Kv4.2 plays an essential role in producing the A-type current in striatal cholinergic interneurons during the entire course of postnatal development.
Collapse
Affiliation(s)
- Satoko Hattori
- Department of Electronic Engineering, Graduate School of Engineering, and Neuroscience Laboratories, Graduate School of Frontier Bioscience, Osaka University, Suita 565-0871, Japan
| | | | | |
Collapse
|
12
|
Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P, Hedrick MH. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 2003; 111:1922-31. [PMID: 12711954 DOI: 10.1097/01.prs.0000055043.62589.05] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human processed lipoaspirate (PLA) cells are multipotent stem cells, capable of differentiating into multiple mesenchymal lineages (bone, cartilage, fat, and muscle). To date, differentiation to nonmesodermal fates has not been reported. This study demonstrates that PLA cells can be induced to differentiate into early neural progenitors, which are of an ectodermal origin. Undifferentiated cultures of human PLA cells expressed markers characteristic of neural cells such as neuron-specific enolase (NSE), vimentin, and neuron-specific nuclear protein (NeuN). After 2 weeks of treatment of PLA cells with isobutylmethylxanthine, indomethacin, and insulin, about 20 to 25 percent of the cells differentiated into cells with typical neural morphologic characteristics, accompanied by increased expression of NSE, vimentin, and the nerve-growth factor receptor trk-A. However, induced PLA cells did not express the mature neuronal marker, MAP, or the mature astrocyte marker, GFAP. It was also found that neurally induced PLA cells displayed a delayed-rectifier type K+ current (an early developmental ion channel) concomitantly with morphologic changes and increased expression of neural-specific markers. The authors concluded that human PLA cells might have the potential to differentiate in vitro into cells that represent early progenitors of neurons and/or glia.
Collapse
Affiliation(s)
- Peter H Ashjian
- Laboratory for Regenerative Bioengineering and Repair, Department of Surgery,University of California, Los Angeles, CALIF. 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J Neurosci 2002. [PMID: 12388606 DOI: 10.1523/jneurosci.22-20-08992.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hyperpolarization-activated excitatory current I(h) shapes rhythmic firing and other components of excitability in differentiating neurons, and may thus influence activity-dependent CNS development. We therefore studied developmental changes in I(h) and underlying hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits in pyramidal neurons of neonatal mouse hippocampus using electrophysiological and immunofluorescence approaches. I(h) conductance (at -80 mV) tripled in CA3 neurons and quintupled in CA1 neurons between postnatal day 1 (P1) and P20; parallel changes in membrane area resulted in current density maxima at P5 in CA3 and P10 in CA1. Concurrently, I(h) activation times fell sevenfold in CA3 and 10-fold in CA1. A computational model indicates that a decrease in I(h) activation time will increase the rhythmic firing rate. Two mechanisms contributed to more rapid I(h) activation at P20 in CA3 and CA1 neurons: a fall in the intrinsic time constants of two kinetic components, tau(fast) and tau(slow), to 35-40% (at -90 mV) of their P1 values, and a preferential increase in fast component amplitude and contribution to I(h) (from approximately 35% to approximately 74% of total). HCN1, HCN2, and HCN4 immunoreactivities showed independent temporal and spatial developmental patterns. HCN1 immunoreactivity was low at P1 and P5 and increased by P20. HCN2 immunoreactivity was detected at P1 and increased steadily up to P20. HCN4 immunoreactivity was initially low and showed a small increase by P20. We suggest that developmental increases in I(h) amplitude and activation rate reflect changes in the number and underlying structure of I(h) channels, and that I(h) maturation may shape rhythmic activity important for hippocampal circuit maturation.
Collapse
|
14
|
Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J Neurosci 2002. [PMID: 12040053 DOI: 10.1523/jneurosci.22-11-04456.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium transients play an important role in the early and later phases of differentiation and maturation of single neurons and neuronal networks. Small-conductance calcium-activated potassium channels of the SK type modulate membrane excitability and are important determinants of the firing properties of central neurons. Increases in the intracellular calcium concentration activate SK channels, leading to a hyperpolarization of the membrane potential, which in turn reduces the calcium inflow into the cell. This feedback mechanism is ideally suited to regulate the spatiotemporal occurrence of calcium transients. However, the role of SK channels in neuronal development has not been addressed so far. We have concentrated on the ontogenesis and function of SK channels in the developing rat cerebellum, focusing particularly on Purkinje neurons. Electrophysiological recordings combined with specific pharmacological tools have revealed for the first time the presence of an afterhyperpolarizing current (I(AHP)) in immature Purkinje cells in rat cerebellar slices. The channel subunits underlying this current were identified as SK2 and localized by in situ hybridization and subunit-specific antibodies. Their expression level was shown to be high at birth and subsequently to decline during the first 3 weeks of postnatal life, both at the mRNA and protein levels. This developmental regulation was tightly correlated with the expression of I(AHP) and the prominent role of SK2 channels in shaping the spontaneous firing pattern in young, but not in adult, Purkinje neurons. These results provide the first evidence of the developmental regulation and function of SK channels in central neurons.
Collapse
|
15
|
Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A. Brain from bone: efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001; 68:235-44. [PMID: 11776476 DOI: 10.1046/j.1432-0436.2001.680411.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone marrow stromal cells are able to differentiate into adipogenic, chondrogenic, myogenic, osteogenic, and cardiomyogenic lineages, all of which are limited to a mesoderm-derived origin. In this study, we showed that neurons, which are of an ectoderm-origin, could be generated from marrow-derived stromal cells by specific inducers, fibronectin/ornithine coating, and neurosphere formation. The neurons generated from marrow stroma formed neurites, expressed neuron-specific markers and genes, and started to respond to depolarizing stimuli as functional mature neurons. Among stromal cells, isolated mature osteoblasts which had strong in vivo osteogenic activity could be efficiently converted into functional neurons. This transdifferentiation or meta-differentiation was enhanced by Noggin, an inhibitor of bone morphogenetic proteins, in comparison with 5-azacytidine, a demethylating agent capable of altering the gene expression pattern. Marrow stroma is therefore a potential source of cells for neural cell transplantation.
Collapse
Affiliation(s)
- J Kohyama
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Differential expression of kcnq2 splice variants: implications to m current function during neuronal development. J Neurosci 2001. [PMID: 11160379 DOI: 10.1523/jneurosci.21-04-01096.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The KCNQ family of K(+) channels has been implicated in several cardiac and neurological disease pathologies. KCNQ2 (Q2) is a brain-derived gene, which in association with KCNQ3 (Q3) has been shown to provide a molecular basis for the neuronal M current. We have cloned a long (Q2L) and a short (Q2S) splice variant of the human KCNQ2 gene; these variants differ in their C-terminal tail. Northern blot analysis reveals that Q2L is preferentially expressed in differentiated neurons, whereas the Q2S transcript is prominent in fetal brain, undifferentiated neuroblastoma cells, and brain tumors. Q2L, transfected into mammalian cells, produces a slowly activating, noninactivating voltage-gated K(+) current that is blocked potently by tetraethylammonium (TEA; IC(50), 0.14 mm). Q2S on the other hand produces no measurable potassium currents. Cotransfection of Q2S with either Q2L, Q3, or Q2L/Q3 heteromultimers results in attenuation of K(+) current, the suppression being most profound for Q3. Inclusion of Q2S in the heteromultimer also positively shifts the voltage dependence of current activation and alters affinity for the TEA block, suggesting that under these conditions, some Q2S subunits incorporate into functional channels on the plasma membrane. In view of the crucial role of M currents in modulating neuronal excitability, our findings provide important insight into the functional consequences of differential expression of KCNQ2 splice variants: dampened potassium conductances in the developing brain could shape firing repertoires to provide cues for proliferation rather than differentiation.
Collapse
|