1
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Shang Q, Xiao J, Gao B, Liang M, Wang J, Qian H, Xi Z, Li T, Liu X. D1R/PP2A/p-CaMKIIα signaling in the caudate putamen is involved in acute methamphetamine-induced hyperlocomotion. Neurosci Lett 2021; 760:136102. [PMID: 34237414 DOI: 10.1016/j.neulet.2021.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Drug addiction is underscored by the transition from experimental use to dependent use of addictive drugs. Acute use of methamphetamine (METH) causes a range of clinical symptoms, including hyperlocomotion. Dopamine D1 receptor (D1R)-mediated negative regulation of phosphorylated calcium/calmodulin-dependent protein kinase IIα (p-CaMKIIα, threonine [Thr] 286) is involved in the acute effects induced by single METH administration. Protein phosphatase 2A (PP2A) is a potential bridge that links D1R and p-CaMKIIα (Thr 286) after acute METH administration. However, the mechanisms underlying hyperlocomotion induced by single METH administration remain unclear. In this study, SCH23390 (a D1R inhibitor) and LB100 (a PP2A inhibitor) were administered to examine the involvement of D1R and PP2A signaling in acute METH-induced hyperlocomotion in mice. The protein levels of methylated PP2A-C (m-PP2A-C, leucine [Leu] 309), phosphorylated PP2A-C (p-PP2A-C, tyrosine [Tyr] 307), PP2A-C, p-CaMKIIα (Thr 286), and CaMKIIα in the prefrontal cortex (PFc), nucleus accumbens (NAc), and caudate putamen (CPu) were measured. Administration of 0.5 mg/kg SCH23390 reversed the acute METH-induced increase in protein levels of m-PP2A-C (Leu 309) and the decrease in protein levels of p-PP2A-C (Tyr 307) in the CPu, but not in the PFC and NAc. Moreover, prior administration of 0.1 mg/kg LB100 attenuated hyperlocomotion induced by single METH administration and reversed the decrease in protein levels of p-CaMKII (Thr 286) in the PFC, NAc, and CPu. Collectively, these results indicate that the D1R/PP2A/p-CaMKIIα signaling cascade in the CPu may be involved in hyperlocomotion after a single administration of METH.
Collapse
Affiliation(s)
- Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Zhijia Xi
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China.
| |
Collapse
|
3
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
4
|
Ifenprodil Attenuates Methamphetamine-Induced Behavioral Sensitization Through the GluN2B-PP2A-AKT Cascade in the Dorsal Striatum of Mice. Neurochem Res 2020; 45:891-901. [DOI: 10.1007/s11064-020-02966-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
5
|
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 2018; 71:37-51. [PMID: 29729322 PMCID: PMC6003882 DOI: 10.1016/j.bbi.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (METH) abuse is common among individuals infected with HIV-1 and has been shown to affect HIV replication and pathogenesis. These HIV-1 infected individuals also exhibit greater neuronal injury and higher cognitive decline. HIV-1 proteins, specifically gp120 and HIV-1 Tat, have been earlier shown to affect neurocognition. HIV-1 Tat, a viral protein released early during HIV-1 replication, contributes to HIV-associated neurotoxicity through various mechanisms including production of pro-inflammatory cytokines, reactive oxygen species and dysregulation of neuroplasticity. However, the combined effect of METH and HIV-1 Tat on neurocognition and its potential effect on neuroplasticity mechanisms remains largely unknown. Therefore, the present study was undertaken to investigate the combined effect of METH and HIV-1 Tat on behavior and on the expression of neuroplasticity markers by utilizing Doxycycline (DOX)-inducible HIV-1 Tat (1-86) transgenic mice. Expression of Tat in various brain regions of these mice was confirmed by RT-PCR. The mice were administered with an escalating dose of METH (0.1 mg/kg to 6 mg/kg, i.p) over a 7-day period, followed by 6 mg/kg, i.p METH twice a day for four weeks. After three weeks of METH administration, Y maze and Morris water maze assays were performed to determine the effect of Tat and METH on working and spatial memory, respectively. Compared with controls, working memory was significantly decreased in Tat mice that were administered METH. Moreover, significant deficits in spatial memory were also observed in Tat-Tg mice that were administered METH. A significant reduction in the protein expressions of synapsin 1, synaptophysin, Arg3.1, PSD-95, and BDNF in different brain regions were also observed. Expression levels of Calmodulin kinase II (CaMKII), a marker of synaptodendritic integrity, were also significantly decreased in HIV-1 Tat mice that were treated with METH. Together, this data suggests that METH enhances HIV-1 Tat-induced memory deficits by reducing the expression of pre- and postsynaptic proteins and neuroplasticity markers, thus providing novel insights into the molecular mechanisms behind neurocognitive impairments in HIV-infected amphetamine users.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Daniel C. Schwartz
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Alexy Glazyrin
- Department of Pathology, School of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy E. J. Berman
- Department of Anatomy and Cell biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
6
|
Chen X, Xing J, Jiang L, Qian W, Wang Y, Sun H, Wang Y, Xiao H, Wang J, Zhang J. Involvement of calcium/calmodulin-dependent protein kinase II in methamphetamine-induced neural damage. J Appl Toxicol 2016; 36:1460-7. [PMID: 26923100 DOI: 10.1002/jat.3301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 11/11/2022]
Abstract
Methamphetamine (METH), an illicit drug, is widely abused in many parts of the world. Mounting evidence shows that METH exposure contributes to neurotoxicity, particularly for the monoaminergic neurons. However, to date, only a few studies have tried to unravel the mechanisms involved in METH-induced non-monoaminergic neural damage. Therefore, in the present study, we tried to explore the mechanisms for METH-induced neural damage in cortical neurons. Our results showed that METH significantly increased intracellular [Ca(2) (+) ]i in Ca(2) (+) -containing solution rather than Ca(2) (+) -free solution. Moreover, METH also upregulated calmodulin (CaM) expression and activated CaM-dependent protein kinase II (CaMKII). Significantly, METH-induced neural damage can be partially retarded by CaM antagonist W7 as well as CaMKII blocker KN93. In addition, L-type Ca(2) (+) channel was also proved to be involved in METH-induced cell damage, as nifedipine, the L-type Ca(2) (+) channel-specific inhibitor, markedly attenuated METH-induced neural damage. Collectively, our results suggest that Ca(2) (+) -CaM-CaMKII is involved in METH-mediated neurotoxicity, and it might suggest a potential target for the development of therapeutic strategies for METH abuse. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jingjing Xing
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Wenyi Qian
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yixin Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hao Sun
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| | - Jinsong Zhang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
7
|
Son JS, Jeong YC, Kwon YB. Regulatory effect of bee venom on methamphetamine-induced cellular activities in prefrontal cortex and nucleus accumbens in mice. Biol Pharm Bull 2015; 38:48-52. [PMID: 25744457 DOI: 10.1248/bpb.b14-00539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies demonstrated that subcutaneous injection of bee venom (BV) into the Zusanli (ST36) acupuncture point, namely BV acupuncture, dose-dependently prevents conditioned place preference (CPP) induced by repeated injection of methamphetamine (METH) in mice. To expand on our observations, the present study was designed to determine the suppressive mechanisms of BV acupuncture in the development of METH-induced CPP by evaluating the changes in expression of ΔFosB, phosphorylated extracellular signal-regulated kinase 1/2 (pERK), and phosphorylated calcium/calmodulin-dependent protein kinase type II (pCaMKII) in the prefrontal cortex (PFC) and nucleus accumbens (NAc) in mice. Pre-emptive treatment with BV at 30 min before repeated METH injection completely suppressed acquisition of CPP at the day 7 test session. METH-induced upregulation of ΔFosB and pERK in PFC and NAc was significantly reduced by BV pretreatment. Expression of pCaMKII was significantly elevated by METH in NAc and reduced in PFC. BV pretreatment reversed the changes of pCaMKII expression in PFC and NAc. These findings suggest that BV acupuncture may exert a suppressive effect on METH-induced addiction via regulation of signaling cascades of ΔFosB, ERK, and CaMKII in PFC and NAc.
Collapse
Affiliation(s)
- Ji Seon Son
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School
| | | | | |
Collapse
|
8
|
Bian H, Yu LC. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor KN93 induced antinociception in rats with mononeuropathy. Neurosci Lett 2014; 583:6-10. [PMID: 25218714 DOI: 10.1016/j.neulet.2014.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 11/29/2022]
Abstract
The present study was conducted on rats with mononeuropathy induced by left common sciatic nerve ligation. Unilateral sciatic nerve loose ligation produced decreases of the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation. Intra-nucleus accumbens (NAc) injection of 1μg, 3μg and 6μg of KN93, the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor, dose-dependently increased the HWL in mononeuropathic rats. Furthermore, intra-NAc administration of morphine, the HWL to noxious thermal and mechanical stimulation increased markedly, and there were no significant differences between morphine group and KN93 group. The results demonstrated that intra-NAc injection of KN93 induced significant antinociceptive effects in rats with mononeuropathy, indicating CaMKII may play important roles in transmission of nociceptive information in the NAc of mononeuropathic rats.
Collapse
Affiliation(s)
- Hui Bian
- Neurobiology Laboratory and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China; Kunming Medical University, Kunming 650500, PR China
| | - Long-Chuan Yu
- Neurobiology Laboratory and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
9
|
Philibin SD, Hernandez A, Self DW, Bibb JA. Striatal signal transduction and drug addiction. Front Neuroanat 2011; 5:60. [PMID: 21960960 PMCID: PMC3176395 DOI: 10.3389/fnana.2011.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022] Open
Abstract
Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction.
Collapse
Affiliation(s)
- Scott D Philibin
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|