1
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Lee EJ, Song MJ, Kwon HS, Ji GE, Sung MK. Oral administration of fermented red ginseng suppressed ovalbumin-induced allergic responses in female BALB/c mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:896-903. [PMID: 22608480 DOI: 10.1016/j.phymed.2012.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/18/2012] [Accepted: 04/17/2012] [Indexed: 06/01/2023]
Abstract
Anti-allergic efficacy of red ginseng (RG) and fermented red ginseng (FRG) was evaluated. RG or FRG were administered to ovalbumin (OVA)-sensitized mice for 8 weeks. Immunoglobulins (Igs), Th1/Th2 type cytokines, and β-lactoglobulin (BLG) in serum, and intestinal barrier-related molecules in jejunum were measured using enzyme-linked immunosorbent assay or reverse transcription-polymerase chain reaction. Mice sensitized with OVA increased serum IgG₁, IgE, OVA-IgG₁, and OVA-IgE. Both RG and FRG decreased serum IgE, OVA-IgE, and pro-inflammatory cytokines. Serum BLG, a marker of gut permeability, was significantly higher in sensitized animals and was decreased in mice fed RG or FRG. In addition, intestinal barrier-related markers such as MMCP-1, IL-4, TNF-α, COX-2, and iNOS mRNA expressions were decreased by RG or FRG. Our results suggest in vivo anti-allergic activities of RG or FRG, which are associated with the regulation of Th1/Th2 balance, intestinal inflammation and subsequent the suppression of IgE.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Asan Institute for Life Science, Seoul 138-736, Republic of Korea
| | | | | | | | | |
Collapse
|
3
|
Intestinal epithelial barrier dysfunction in food hypersensitivity. J Allergy (Cairo) 2011; 2012:596081. [PMID: 21912563 PMCID: PMC3170794 DOI: 10.1155/2012/596081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial barrier plays a critical role in the maintenance of gut homeostasis by limiting the penetration of luminal bacteria and dietary allergens, yet allowing antigen sampling for the generation of tolerance. Undigested proteins normally do not gain access to the lamina propria due to physical exclusion by tight junctions at the cell-cell contact sites and intracellular degradation by lysosomal enzymes in enterocytes. An intriguing question then arises: how do macromolecular food antigens cross the epithelial barrier? This review discusses the epithelial barrier dysfunction in sensitized intestine with special emphasis on the molecular mechanism of the enhanced transcytotic rates of allergens. The sensitization phase of allergy is characterized by antigen-induced cross-linking of IgE bound to high affinity FcεRI on mast cell surface, leading to anaphylactic responses. Recent studies have demonstrated that prior to mast cell activation, food allergens are transported in large quantity across the epithelium and are protected from lysosomal degradation by binding to cell surface IgE and low-affinity receptor CD23/FcεRII. Improved immunotherapies are currently under study including anti-IgE and anti-CD23 antibodies for the management of atopic disorders.
Collapse
|
4
|
Evans-Osses I, Ansa-Addo EA, Inal JM, Ramirez MI. Involvement of lectin pathway activation in the complement killing of Giardia intestinalis. Biochem Biophys Res Commun 2010; 395:382-6. [PMID: 20382117 DOI: 10.1016/j.bbrc.2010.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/02/2010] [Indexed: 11/26/2022]
Abstract
Giardia intestinalis (syn. G. lamblia, G. duodenalis) is a flagellated unicellular eukaryotic microorganism that commonly causes diarrheal disease throughout the world. In humans, the clinical effects of Giardia infection range from the asymptomatic carrier state to a severe malabsorption syndrome possibly due to different virulence of the Giardia strain, the number of cysts ingested, the age of the host, and the state of the host immune system at the time of infection. The question about how G. intestinalis is controlled by the organism remains unanswered. Here, we investigated the role of the complement system and in particular, the lectin pathway during Giardia infections. We present the first evidence that G. intestinalis activate the complement lectin pathway and in doing so participate in eradication of the parasite. We detected rapid binding of mannan-binding lectin, H-ficolin and L-ficolin to the surface of G. intestinalis trophozoites and normal human serum depleted of these molecules failed to kill the parasites. Our finding provides insight into the role of lectin pathway in the control of G. intestinalis and about the nature of surface components of parasite.
Collapse
Affiliation(s)
- Ingrid Evans-Osses
- Laboratório de Biologia Molecular de Parasitas e Vetores-Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | | | | | | |
Collapse
|
5
|
Abstract
The rapid rise of allergic disorders in developed countries has been attributed to the hygiene hypothesis, implicating that increased environmental sanitation in early childhood may be associated with higher incidence of hypersensitivity. Intestinal epithelial barriers play a crucial role in the maintenance of gut homeostasis by limiting penetration of luminal bacteria and dietary allergens, yet allowing antigen sampling via the follicle-associated epithelium for generation of tolerance. However, this intricate balance is upset in allergic intestines, whereby luminal proteins with antigenic properties gain access to the subepithelial compartment and stimulate mast cell degranulation. Recent studies demonstrated that food allergens were protected from lysosomal degradation, and were transported in large quantities across the epithelium by binding to cell surface IgE/CD23 (FcepsilonRII) that prevented the antigenic protein from lysosomal degradation in enterocytes. IL-4 (a Th2-type cytokine) not only increased production of IgE from B cells, but also upregulated the expression of CD23 on intestinal epithelial cells. Further studies indicated that CD23 was responsible for the bidirectional transport of IgE across epithelium. The presence of IgE/CD23 opens a gate for intact dietary allergens to transcytose across the epithelial cells, and thus foments the mast cell-dependent anaphylactic responses. The understanding of the molecular mechanism responsible for epithelial barrier defects may be helpful in designing novel therapies to treat food allergy and other allergic diseases.
Collapse
|
6
|
Host responses to intestinal microbial antigens in gluten-sensitive mice. PLoS One 2009; 4:e6472. [PMID: 19649259 PMCID: PMC2715133 DOI: 10.1371/journal.pone.0006472] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/30/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota.
Collapse
|
7
|
Moreno FJ. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed Pharmacother 2006; 61:50-60. [PMID: 17188456 DOI: 10.1016/j.biopha.2006.10.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 10/10/2006] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the in vitro digestion models developed to assess the stability digestion of food allergens, as well as the factors derived from the methodology and food structure that may affect the assay results. The adequacy of using the digestion stability of food allergens as a criterion for assessing potential allergenicity is also discussed. Data based on the traditional pepsin digestibility test in simulated gastric fluid are discussed in detail, with special attention to the influence of the pH and pepsin: allergen ratio in the pepsinolysis rate. This review points out the importance of using physiologically relevant in vitro digestion systems for evaluating digestibility of allergens. This would imply the sequential use of digestive enzymes in physiological concentrations, simulation of the stomach/small intestine environment (multi-phase models) with addition of surfactants such as phospholipids or bile salts, as well as the consideration of the gastrointestinal transit and the effect of the food matrices on the allergen digestion and subsequent absorption through the intestinal mucosa. In vitro gastrointestinal digestion protocols should be preferably combined with immunological assays in order to elucidate the role of large digestion-resistant fragments and the influence of the food matrix on the stimulation of the immune system.
Collapse
Affiliation(s)
- F Javier Moreno
- Instituto de Fermentaciones Industriales (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
8
|
Al-Ashy R, Chakroun I, El-Sabban ME, Homaidan FR. The role of NF-κB in mediating the anti-inflammatory effects of IL-10 in intestinal epithelial cells. Cytokine 2006; 36:1-8. [PMID: 17161612 DOI: 10.1016/j.cyto.2006.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/19/2006] [Accepted: 10/03/2006] [Indexed: 12/31/2022]
Abstract
In inflammatory bowel disease, cells that infiltrate the mucosa regulate intestinal epithelial cell function partly through release of pro- and anti-inflammatory cytokines. The aim of this study is to evaluate the role of the anti-inflammatory cytokine, IL-10, on normal mouse intestinal epithelial cells (Mode-K) in the absence or presence of IL-1. Western blotting assays and immunocytochemistry were used to identify the presence of IL-1 and IL-10 receptors on Mode-K cells; and electrophoretic mobility shift assays were used to study the activation of NF-kappaB transcription factor. Stimulation of Mode-K cells with IL-1 or IL-10 did not modify IL-1 and IL-10 receptor expression levels. IL-1 induced the synthesis of the enzyme cyclooxygenase-2 (COX-2) through the activation and translocation of p65 subunit of NF-kappaB. Inhibition of translocated p65 binding to DNA, inhibited COX-2 production and induced apoptosis. IL-10 inhibited IL-1-induced effects on IKB-alpha and IKB-beta proteins through stabilizing these proteins; subsequently causing inhibition of NF-kappaB translocation to the nucleus and any subsequent induction of COX-2. These data support a role for IL-10 in the regulation of IEC function under inflammatory conditions and the involvement of COX-2 in inhibiting apoptosis in mouse intestinal epithelial cells.
Collapse
Affiliation(s)
- Randa Al-Ashy
- Department of Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
9
|
Scott KGE, Yu LCH, Buret AG. Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun 2004; 72:3536-42. [PMID: 15155662 PMCID: PMC415705 DOI: 10.1128/iai.72.6.3536-3542.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell-mediated pathogenesis has been documented in various idiopathic and microbially induced intestinal disorders. Diffuse microvillous shortening seen in giardiasis is responsible for disaccharidase insufficiencies and malabsorption of electrolytes, nutrients, and water. Other mucosal changes include crypt hyperplasia and increased numbers of intraepithelial lymphocytes (IEL). A recent report using an athymic mouse model of infection showed that these epithelial injuries were dependent on T cells. The aim of the present study was to identify which subset of superior mesenteric lymph node (SMLN) T cells were responsible for mucosal alterations in giardiasis. CD4+ and CD8+ T cells, as well as whole lymphocyte populations, were isolated from SMLN of Giardia muris-infected mice for adoptive transfer. Jejunal segments of recipient mice were assessed for brush border ultrastructure, sucrase activity, crypt/villus ratio, and IEL numbers. Mice that received enriched CD8+ and whole SMLN lymphocytes, but not CD4+ T cells, from infected donors showed diffuse shortening of microvilli, loss of brush border surface area, impaired sucrase activity, and increased crypt/villus ratios compared to respective controls. Transfer of whole SMLN lymphocytes, as well as enriched CD4+ or CD8+ T cells, from infected donors led to increased IEL numbers in the recipient jejunum. The findings indicate that loss of intestinal brush border surface area, reduced disaccharidase activities, and increased crypt/villus ratios in giardiasis are mediated by CD8+ T cells, whereas both CD8+ and CD4+ SMLN T cells regulate the influx of IEL.
Collapse
Affiliation(s)
- Kevin G-E Scott
- Mucosal Inflammation Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
10
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
11
|
Woo AL, Gildea LA, Tack LM, Miller ML, Spicer Z, Millhorn DE, Finkelman FD, Hassett DJ, Shull GE. In vivo evidence for interferon-gamma-mediated homeostatic mechanisms in small intestine of the NHE3 Na+/H+ exchanger knockout model of congenital diarrhea. J Biol Chem 2002; 277:49036-46. [PMID: 12370192 DOI: 10.1074/jbc.m205288200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mice lacking NHE3, the major absorptive Na(+)/H(+) exchanger in the intestine, are the only animal model of congenital diarrhea. To identify molecular changes underlying compensatory mechanisms activated in chronic diarrheas, cDNA microarrays and Northern blot analyses were used to compare global mRNA expression patterns in small intestine of NHE3-deficient and wild-type mice. Among the genes identified were members of the RegIII family of growth factors, which may contribute to the increased absorptive area, and a large number of interferon-gamma-responsive genes. The latter finding is of particular interest, since interferon-gamma has been shown to regulate ion transporter activities in intestinal epithelial cells. Serum interferon-gamma was elevated 5-fold in NHE3-deficient mice; however, there was no evidence of inflammation, and unlike conditions such as inflammatory bowel disease, levels of other cytokines were unchanged. In addition, quantitative PCR analysis showed that up-regulation of interferon-gamma mRNA was localized to the small intestine and did not occur in the colon, spleen, or kidney. These in vivo data suggest that elevated interferon-gamma, produced by gut-associated lymphoid tissue in the small intestine, is part of a homeostatic mechanism that is activated in response to the intestinal absorptive defect in order to regulate the fluidity of the intestinal tract.
Collapse
Affiliation(s)
- Alison L Woo
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Ohio 45267-0524, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Musch MW, Clarke LL, Mamah D, Gawenis LR, Zhang Z, Ellsworth W, Shalowitz D, Mittal N, Efthimiou P, Alnadjim Z, Hurst SD, Chang EB, Barrett TA. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J Clin Invest 2002. [DOI: 10.1172/jci0215695] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Musch MW, Clarke LL, Mamah D, Gawenis LR, Zhang Z, Ellsworth W, Shalowitz D, Mittal N, Efthimiou P, Alnadjim Z, Hurst SD, Chang EB, Barrett TA. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J Clin Invest 2002; 110:1739-47. [PMID: 12464679 PMCID: PMC151630 DOI: 10.1172/jci15695] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is associated with mucosal T cell activation and diarrhea. We found that T cell activation with anti-CD3 mAb induces profound diarrhea in mice. Diarrhea was quantified by intestinal weight-to-length (wt/l) ratios, mucosal Na(+)/K(+)-ATPase activity was determined and ion transport changes were measured in Ussing chambers. Anti-CD3 mAb increased jejunal wt/l ratios by more than 50% at 3 hours, returning to base line after 6 hours. Fluid accumulation was significantly reduced in TNF receptor-1 (TNFR-1(-/-)), but not IFN-gamma knockout mice. Anti-CD3 mAb decreased mucosal Na(+)/K(+)-ATPase activity, which was blocked by anti-TNF mAb and occurred to a lesser degree in TNFR-1(-/-) mice. Neither alpha nor beta subunits of Na(+)/K(+)-ATPase decreased in abundance at 3 hours. Intestinal tissue from anti-CD3-treated mice exhibited increased permeability to mannitol at 1 hour and decreases in electroneutral Na(+) absorption, Na(+)-dependent glucose absorption, and cAMP-stimulated anion secretion at 3 hours. Furthermore, enteral fluid accumulation was observed in CFTR(-/-) mice, indicating a minor role of active anion secretion. These data suggest that diarrhea in IBD is due to TNF-mediated malabsorption rather than to secretory processes. T cell activation induces luminal fluid accumulation by increasing mucosal permeability and reducing epithelial Na(+)/K(+)-ATPase activity leading to decreased intestinal Na(+) and water absorption.
Collapse
Affiliation(s)
- Mark W Musch
- The Martin Boyer Laboratories, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|