1
|
Newland B, Dowd E, Pandit A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1:556. [DOI: 10.1039/c3bm60030k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
2
|
Juárez I, González DJ, Mena R, Flores G. The chronic administration of cerebrolysin induces plastic changes in the prefrontal cortex and dentate gyrus in aged mice. Synapse 2011; 65:1128-35. [DOI: 10.1002/syn.20950] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/03/2011] [Indexed: 12/11/2022]
|
3
|
Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 2010; 19:R12-20. [PMID: 20413653 PMCID: PMC2875049 DOI: 10.1093/hmg/ddq160] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/19/2010] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment, progressive neurodegeneration and formation of amyloid-beta (Abeta)-containing plaques and neurofibrillary tangles composed of hyperphosphorylated tau. The neurodegenerative process in AD is initially characterized by synaptic damage accompanied by neuronal loss. In addition, recent evidence suggests that alterations in adult neurogenesis in the hippocampus might play a role. Synaptic loss is one of the strongest correlates to the cognitive impairment in patients with AD. Several lines of investigation support the notion that the synaptic pathology and defective neurogenesis in AD are related to progressive accumulation of Abeta oligomers rather than fibrils. Abnormal accumulation of Abeta resulting in the formation of toxic oligomers is the result of an imbalance between the levels of Abeta production, aggregation and clearance. Abeta oligomers might lead to synaptic damage by forming pore-like structures with channel activity; alterations in glutamate receptors; circuitry hyper-excitability; mitochondrial dysfunction; lysosomal failure and alterations in signaling pathways related to synaptic plasticity, neuronal cell and neurogenesis. A number of signaling proteins, including fyn kinase; glycogen synthase kinase-3beta (GSK3beta) and cyclin-dependent kinase-5 (CDK5), are involved in the neurodegenerative progression of AD. Therapies for AD might require the development of anti-aggregation compounds, pro-clearance pathways and blockers of hyperactive signaling pathways.
Collapse
Affiliation(s)
| | - Eliezer Masliah
- Department of Pathology and
- Department of Neurosciences, University of California – San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| |
Collapse
|
4
|
Crews L, Tsigelny I, Hashimoto M, Masliah E. Role of synucleins in Alzheimer's disease. Neurotox Res 2009; 16:306-17. [PMID: 19551456 PMCID: PMC2727399 DOI: 10.1007/s12640-009-9073-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/07/2009] [Accepted: 06/08/2009] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-beta protein (Abeta) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of alpha-synuclein (alpha-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Abeta and Tau; however, recent studies suggest that alpha-syn might also play a role in the pathogenesis of AD. For example, fragments of alpha-syn can associate with amyloid plaques and Abeta promotes the aggregation of alpha-syn in vivo and worsens the deficits in alpha-syn tg mice. Moreover, alpha-syn has also been shown to accumulate in limbic regions in AD, Down's syndrome, and familial AD cases. Abeta and alpha-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Abeta and alpha-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Abeta and alpha-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624 USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624 USA
| | - Igor Tsigelny
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0624 USA
- San Diego Super Computer Center, University of California San Diego, La Jolla, CA 92093-0624 USA
| | - Makoto Hashimoto
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624 USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624 USA
| |
Collapse
|
5
|
Ubhi K, Rockenstein E, Doppler E, Mante M, Adame A, Patrick C, Trejo M, Crews L, Paulino A, Moessler H, Masliah E. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin. Acta Neuropathol 2009; 117:699-712. [PMID: 19252918 DOI: 10.1007/s00401-009-0505-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) continues to be the most common cause of cognitive and motor alterations in the aging population. Accumulation of amyloid beta (Abeta)-protein oligomers and the microtubule associated protein-TAU might be responsible for the neurological damage. We have previously shown that Cerebrolysin (CBL) reduces the synaptic and behavioral deficits in amyloid precursor protein (APP) transgenic (tg) mice by decreasing APP phosphorylation via modulation of glycogen synthase kinase-3beta (GSK3beta) and cyclin-dependent kinase-5 (CDK5) activity. These kinases also regulate TAU phosphorylation and are involved in promoting neurofibrillary pathology. In order to investigate the neuroprotective effects of CBL on TAU pathology, a new model for neurofibrillary alterations was developed using somatic gene transfer with adeno-associated virus (AAV2)-mutant (mut) TAU (P301L). The Thy1-APP tg mice (3 m/o) received bilateral injections of AAV2-mutTAU or AAV2-GFP, into the hippocampus. After 3 months, compared to non-tg controls, in APP tg mice intra-hippocampal injections with AAV2-mutTAU resulted in localized increased accumulation of phosphorylated TAU and neurodegeneration. Compared with vehicle controls, treatment with CBL in APP tg injected with AAV2-mutTAU resulted in a significant decrease in the levels of TAU phosphorylation at critical sites dependent on GSK3beta and CDK5 activity. This was accompanied by amelioration of the neurodegenerative alterations in the hippocampus. This study supports the concept that the neuroprotective effects of CBL may involve the reduction of TAU phosphorylation by regulating kinase activity.
Collapse
Affiliation(s)
- Kiren Ubhi
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA 92093-0624, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer's disease treatment. Expert Opin Biol Ther 2007; 7:1853-67. [PMID: 18034651 DOI: 10.1517/14712598.7.12.1853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable progress has been made in recent years towards better understanding the pathogenesis of Alzheimer's disease (AD), a dementing neurodegenerative disorder that affects > 10 million individuals in the US and Europe combined. Recent studies suggest that alterations in the processing of amyloid precursor protein (APP), resulting in the accumulation of amyloid-beta protein (Abeta) and the formation of oligomers leads to synaptic damage and neurodegeneration. Therefore, strategies for treatment development have been focused on reducing Abeta accumulation using, among other approaches, antiaggregation molecules, regulators of the APP proteolysis and processing, reducing APP production (e.g., small-interfering RNA), and increasing Abeta clearance with antibodies, apolipoprotein E and Abeta-degrading enzymes (e.g., neprilysin). The main focus of this review is on novel treatments for AD with a special emphasis on delivering neuroprotective and antiamyloidogenic molecules by gene therapy and by promoting neurogenesis.
Collapse
Affiliation(s)
- Brian Spencer
- University of California, Department of Neurosciences, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
7
|
Rockenstein E, Mante M, Adame A, Crews L, Moessler H, Masliah E. Effects of Cerebrolysin on neurogenesis in an APP transgenic model of Alzheimer's disease. Acta Neuropathol 2007; 113:265-75. [PMID: 17131129 DOI: 10.1007/s00401-006-0166-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/27/2006] [Accepted: 10/28/2006] [Indexed: 11/28/2022]
Abstract
Cerebrolysin (CBL) is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative alterations in Alzheimer's disease (AD). We have previously shown that in the amyloid precursor protein (APP) transgenic (tg) mouse model of AD, CBL improves synaptic plasticity and behavioral performance. However, the mechanisms are not completely clear. The neuroprotective effects of CBL might be related to its ability to promote neurogenesis in the hippocampal subgranular zone (SGZ) of the dentate gyrus (DG). To study this possibility, tg mice expressing mutant APP under the Thy-1 promoter were injected with BrdU and treated with CBL for 1 and 3 months. Compared to non-tg controls, vehicle-treated APP tg mice showed decreased numbers of BrdU-positive (+) and doublecortin+ (DCX) neural progenitor cells (NPC) in the SGZ. In contrast, APP tg mice treated with CBL showed a significant increase in BrdU+ cells, DCX+ neuroblasts and a decrease in TUNEL+ and activated caspase-3 immunoreactive NPC. CBL did not change the number of proliferating cell nuclear antigen+ (PCNA) NPC or the ratio of BrdU+ cells converting to neurons and astroglia in the SGZ cells in the APP tg mice. Taken together, these studies suggest that CBL might rescue the alterations in neurogenesis in APP tg mice by protecting NPC and decreasing the rate of apoptosis. The improved neurogenesis in the hippocampus of CBL-treated APP tg mice might play an important role in enhancing synaptic formation and memory acquisition.
Collapse
Affiliation(s)
- Edward Rockenstein
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093-0624, USA
| | | | | | | | | | | |
Collapse
|
8
|
Jacobsen JS, Reinhart P, Pangalos MN. Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer's disease. NeuroRx 2006; 2:612-26. [PMID: 16489369 PMCID: PMC1201319 DOI: 10.1602/neurorx.2.4.612] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder and the leading cause of dementia in the Western world. Postmortem, it is characterized neuropathologically by the presence of amyloid plaques, neurofibrillary tangles, and a profound gray matter loss. Neurofibrillary tangles are composed of an abnormally hyperphosphorylated intracellular protein called tau, tightly wound into paired helical filaments and thought to impact microtubule assembly and protein trafficking, resulting in the eventual demise of neuronal viability. The extracellular amyloid plaque deposits are composed of a proteinacious core of insoluble aggregated amyloid-beta (Abeta) peptide and have led to the foundation of the amyloid hypothesis. This hypothesis postulates that Abeta is one of the principal causative factors of neuronal death in the brains of Alzheimer's patients. With multiple drugs now moving through clinical development for the treatment of Alzheimer's disease, we will review current and future treatment strategies aimed at improving both the cognitive deficits associated with the disease, as well as more novel approaches that may potentially slow or halt the deadly neurodegenerative progression of the disease.
Collapse
Affiliation(s)
- J Steven Jacobsen
- Wyeth Research, Neuroscience Discovery, CN8000, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|
9
|
Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, Verma IM, Masliah E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 2005; 8:1343-9. [PMID: 16136043 DOI: 10.1038/nn1531] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 08/09/2005] [Indexed: 11/09/2022]
Abstract
In Alzheimer disease, increased beta-secretase (BACE1) activity has been associated with neurodegeneration and accumulation of amyloid precursor protein (APP) products. Thus, inactivation of BACE1 could be important in the treatment of Alzheimer disease. In this study, we found that lowering BACE1 levels using lentiviral vectors expressing siRNAs targeting BACE1 reduced amyloid production and the neurodegenerative and behavioral deficits in APP transgenic mice, a model of Alzheimer disease. Our results suggest that lentiviral vector delivery of BACE1 siRNA can specifically reduce the cleavage of APP and neurodegeneration in vivo and indicate that this approach could have potential therapeutic value for treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Oded Singer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rockenstein E, Mante M, Alford M, Adame A, Crews L, Hashimoto M, Esposito L, Mucke L, Masliah E. High beta-secretase activity elicits neurodegeneration in transgenic mice despite reductions in amyloid-beta levels: implications for the treatment of Alzheimer disease. J Biol Chem 2005; 280:32957-67. [PMID: 16027115 DOI: 10.1074/jbc.m507016200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-beta peptides (Abeta) are widely presumed to play a causal role in Alzheimer disease. Release of Abeta from the amyloid precursor protein (APP) requires proteolysis by the beta-site APP-cleaving enzyme (BACE1). Although increased BACE1 activity in Alzheimer disease brains and human (h) BACE1 transgenic (tg) mice results in altered APP cleavage, the contribution of these molecular alterations to neurodegeneration is unclear. We therefore used the murine Thy1 promoter to express high levels of hBACE1, with or without hAPP, in neurons of tg mice. Compared with hAPP mice, hBACE1/hAPP doubly tg mice had increased levels of APP C-terminal fragments (C89, C83) and decreased levels of full-length APP and Abeta. In contrast to non-tg controls and hAPP mice, hBACE1 mice and hBACE1/hAPP mice showed degeneration of neurons in the neocortex and hippocampus and degradation of myelin. Neurological deficits were also more severe in hBACE1 and hBACE1/hAPP mice than in hAPP mice. These results demonstrate that high levels of BACE1 activity are sufficient to elicit neurodegeneration and neurological decline in vivo. This pathogenic pathway involves the accumulation of APP C-terminal fragments but does not depend on increased production of human Abeta. Thus, inhibiting BACE1 may block not only Abeta-dependent but also Abeta-independent pathogenic mechanisms.
Collapse
Affiliation(s)
- Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093-0624, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem Res 2004; 28:1743-56. [PMID: 14584828 DOI: 10.1023/a:1026073324672] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are the most common neurodegenerative disorders affecting the elderly. The cognitive and motor deficits in these diseases are associated with the disruption of neuritic substructure, loss of synaptic contacts in selectively vulnerable circuitries, and aberrant sprouting. Where as in AD, accumulation of misfolded forms of Abeta triggers neurodegeneration, in DLB accumulation of alpha-synuclein might play a central role. The mechanisms by which oligomeric forms of these proteins might lead to cycles of synapse loss and aberrant sprouting are currently under investigation. Several possibilities are being considered, including mitochondrial damage, caspase activation, lysosomal leakage, fragmentation of the Golgi apparatus, interference with synaptic vesicle transport and function, and interference with gene transcription and signaling. Among them, recent lines of research support the possibility that alterations in signaling pathways such extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 relevant to synaptic plasticity and cell survival might play a pivotal role. A wide range of cellular functions are affected by the accumulation of misfolded Abeta and alpha-synuclein; thus it is possible that a more fundamental cellular alteration may underlie the mechanisms of synaptic pathology in these disorders. Among them, one possibility is that scaffold proteins, such as caveolin and JNK-interacting protein (JIP), which are necessary to integrate signaling pathways, are affected, leading to cycles of synapse loss and aberrant sprouting. This is significant because both caveolar dysfunction and altered axonal plasticity might be universally important in the pathogenesis of various neurodegenerative disorders, and therefore these signaling pathways might be common therapeutic targets for these devastating diseases.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Department of Neurosciences. University of California, San Diego, La Jolla, California 92093-0624, USA
| | | |
Collapse
|
12
|
Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J Neurosci 2002. [PMID: 12417655 DOI: 10.1523/jneurosci.22-21-09298.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) is an abundant neuronal cell surface receptor that regulates amyloid beta-protein (Abeta) trafficking into the cell. Specifically, LRP binds secreted Abeta complexes and mediates its degradation. Previously, we have shown in vitro that the uptake of Abeta mediated by LRP is protective and that blocking this receptor significantly enhances neurotoxicity. To further characterize the effects of LRP and other lipoprotein receptors on Abeta deposition, an in vivo model of decreased LRP expression, receptor-associated protein (RAP)-deficient (RAP-/-) mice was crossed with human amyloid protein precursor transgenic (hAPP tg) mice, and plaque formation and neurodegeneration were analyzed. We found that, although the age of onset for plaque formation was the same in hAPP tg and hAPP tg/RAP-/- mice, the amount of amyloid deposited doubled in the hAPP tg/RAP-/- background. Moreover, these mice displayed increased neuronal damage and astrogliosis. Together, these results further support the contention that LRP and other lipoprotein receptors might be neuroprotective against Abeta toxicity and that this receptor might play an integral role in Abeta clearance.
Collapse
|