1
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
HIV UTR, LTR, and Epigenetic Immunity. Viruses 2022; 14:v14051084. [PMID: 35632825 PMCID: PMC9146425 DOI: 10.3390/v14051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome—epigenetic immunity towards a cure.
Collapse
|
3
|
Fang J, Wood AM, Chen Y, Yue J, Ming R. Genomic variation between PRSV resistant transgenic SunUp and its progenitor cultivar Sunset. BMC Genomics 2020; 21:398. [PMID: 32532215 PMCID: PMC7291442 DOI: 10.1186/s12864-020-06804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. RESULTS In this study, a total of more than 74 million Illumina reads for progenitor 'Sunset' were mapped onto transgenic papaya 'SunUp' reference genome. 310,364 single nucleotide polymorphisms (SNPs) and 34,071 small Inserts/deletions (InDels) were detected between 'Sunset' and 'SunUp'. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4 × 10- 4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. A total of 3430 nuclear plastid DNA (NUPT) and 2764 nuclear mitochondrial DNA (NUMT) junction sites have been found in 'SunUp', which is proportionally higher than the predicted total NUPT and NUMT junction sites in 'Sunset' (3346 and 2745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by 'SunUp' and 'Sunset'. The average identity between 'SunUp' specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by 'SunUp' and 'Sunset'. Six 'SunUp' organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18 ~ 100%). None of the paired-end spans of mapped 'Sunset' reads were elongated by any 'SunUp' transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions. CONCLUSIONS Comparative whole-genome analyses between 'SunUp' and 'Sunset' provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.
Collapse
Affiliation(s)
- Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China.,FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew Michael Wood
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Ye RY, Kuang XY, Zeng HJ, Shao N, Lin Y, Wang SM. KCTD12 promotes G1/S transition of breast cancer cell through activating the AKT/FOXO1 signaling. J Clin Lab Anal 2020; 34:e23315. [PMID: 32207860 PMCID: PMC7439418 DOI: 10.1002/jcla.23315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/01/2020] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
Background Sustaining proliferation is the most fundamental step for breast cancer tumor genesis. Accelerated proliferation is usually linked to the uncontrolled cell cycle. However, the internal and external factors linked to the activation of breast cancer cell cycle are still to be investigated. Methods quantitative PCR (qPCR) and Western blotting assay were used to detect the expression of potassium channel tetramerization domain containing 12 (KCTD12) in breast cancer. MTT and colony formation assays were performed to evaluate the effect of KCTD12 on cell proliferation of breast cancer. Anchorage‐independent growth assay was used to examine the in vitro tumorigenesis of breast cancer cells. Flow cytometry assay, qPCR, and Western blotting were used to investigate the detailed mechanisms of KCTD12 on breast cancer progression. Results Herein, the result showed that the level of KCTD12 is significantly decreased in breast cancer tissues and cells, and lower level of KCTD12 predicts poorer survival for patients with breast cancer. Further cell function tests illustrated that downregulation of KCTD12 significantly promotes cell proliferation and in vitro tumor genesis. Besides, molecular biologic experiments showed that downregulation of KCTD12 can enhance the G1/S transition through activating the AKT/FOXO1 signaling. Conclusion Our study inferred that downregulation of KCTD12 can be a novel factor for poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Run-Yi Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xia-Ying Kuang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui-Juan Zeng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shen-Ming Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Ge C, Zeng B, Li R, Li Z, Fu Q, Wang W, Wang Z, Dong S, Lai Z, Wang Y, Xue Y, Guo J, Di T, Song X. Knockdown of STIM1 expression inhibits non-small-cell lung cancer cell proliferation in vitro and in nude mouse xenografts. Bioengineered 2020; 10:425-436. [PMID: 31564210 PMCID: PMC6779409 DOI: 10.1080/21655979.2019.1669518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a calcium-sensing protein localized in the membrane of the endoplasmic reticulum. The expression of STIM1 has been shown to be closely associated with cell proliferation. The aim of the present study was to investigate the role of STIM1 in the regulation of cancer progression and its clinical relevance. The data demonstrated that the expression of the STIM1 was significantly higher in non-small-cell lung cancer (NSCLC) tissues than in benign lesions and was associated with advanced NSCLC T stage. Knockdown of STIM1 expression in NSCLC cell lines A549 and SK-MES-1 significantly inhibited cell proliferation and induces A549 and SK-MES-1 cell arrest at the G2/M and S phases of the cell cycle. Western blotting showed that the expression of cyclin-dependent kinase (CDK) 1 and CDK2 were reduced while knockdown of STIM1 expression. Furthermore, knockdown of STIM1 in NSCLC cells significantly reduced the levels of xenograft tumor growth in nude mice. These data indicate that aberrant expression of the STIM1 protein may contribute to NSCLC progression. Future studies should focus on targeting STIM1 as a novel strategy for NSCLC therapy.
Collapse
Affiliation(s)
- Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Baozhen Zeng
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Qiaofen Fu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Zhenyu Wang
- Department of Biomedical Engineering Research Center, Kunming Medical University , Kunming , Yunnan , China
| | - Suwei Dong
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Zhangchao Lai
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Ying Wang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Yuanbo Xue
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Jiyin Guo
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Tiannan Di
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province) , Kunming , Yunnan , China
| |
Collapse
|
6
|
Effect of Chromatographic Conditions on Supercoiled Plasmid DNA Stability and Bioactivity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dysfunction of the tumor suppressor gene TP53 has been associated with the pathogenesis of the majority of the cases of cancer reported to date, leading the cell to acquire different features known as the cancer hallmarks. In normal situations, the protein p53 protects the cells against tumorigenesis. By detecting metabolic stress or DNA damage in response to stress, p53 can lead the cell to senescence, autophagy, cell cycle arrest, DNA repair, and apoptosis. Thus, in the case of p53 mutations, it is reasonable to assume that the reestablishment of its function, may restrain the proliferation of cancer cells. The concept of cancer gene therapy can be based on this assumption, and suitable biotechnological approaches must be explored to assure the preparation of gene-based biopharmaceuticals. Although numerous procedures have already been established to purify supercoiled plasmid DNA (sc pDNA), the therapeutic application is highly dependent on the biopharmaceutical’s activity, which can be affected by the chromatographic conditions used. Thus, the present work aims at comparing quality and in vitro activity of the supercoiled (sc) isoform of the p53 encoding plasmid purified by three different amino acids-based chromatographic strategies, involving histidine–agarose, arginine–macroporous, and histidine–monolith supports. The B-DNA topology was maintained in all purified pDNA samples, but their bioactivity, related to the induction of protein p53 expression and apoptosis in cancer cells, was higher with arginine–macroporous support, followed by histidine–monolith and histidine–agarose. Despite the purity degree of 92% and recovery yield of 43% obtained with arginine–macroporous, the sc pDNA sample led to a higher expression level of the therapeutic p53 protein (58%) and, consequently, induced a slightly higher apoptotic effect (27%) compared with sc pDNA samples obtained with histidine–monolithic support (26%) and histidine–agarose support (24%). This behavior can be related to the mild chromatographic conditions used with arginine–macroporous support, which includes the use of low salt concentrations, at neutral pH and lower temperatures, when compared to the high ionic strength of ammonium sulfate and acidic pH used with histidine-based supports. These results can contribute to field of biopharmaceutical preparation, emphasizing the need to control several experimental conditions while adapting and selecting the methodologies that enable the use of milder conditions as this can have a significant impact on pDNA stability and biological activity.
Collapse
|
7
|
Themeli M, Waterhouse M, Finke J, Spyridonidis A. DNA chimerism and its consequences after allogeneic hematopoietic cell transplantation. CHIMERISM 2017; 2:25-8. [PMID: 21547035 DOI: 10.4161/chim.2.1.15276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/19/2022]
Abstract
The unphysiological formation of biological chimeras after allogeneic hematopoietic cell transplantation is not free of consequences. Recent findings suggest that in the transplant recipient some epithelial cells reveal, unexpectedly, donor-derived genotype and/or acquire genomic alterations. Since both phenomena are presented in the host epithelium, one could argue that they might be etiologically linked through a common background mechanism. We recently proposed that the incessant charge of the transplant recipient with donor-DNA and its integration in host epithelium by horizontal DNA transference may indeed be operative in the generation of epithelial cells with donor derived genome. On the other hand, the incessant incorporation of the foreign DNA into the host genome may result in genomic alterations. Lymphocyte-epithelial interactions between the two genetically distinct cell populations in the transplant recipient should be investigated more precisely not only in cellular but also in molecular level.
Collapse
Affiliation(s)
- Maria Themeli
- Hematology Division, BMT Unit, University of Patras; Patras, Greece
| | | | | | | |
Collapse
|
8
|
Dai MY, Wang Y, Chen C, Li F, Xiao BK, Chen SM, Tao ZZ. Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells. Oncol Rep 2016; 35:2657-64. [PMID: 26986926 DOI: 10.3892/or.2016.4689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/22/2015] [Indexed: 11/05/2022] Open
Abstract
The dietary compound phenethyl isothiocyanate (PEITC), an important tumoricidal component found in cruciferous vegetables, exhibits strong anticancer and chemopreventive effects in a variety of tumors. However, its role in human laryngeal cancer is unclear. The aim of the present study was to investigate whether PEITC exhibits anticancer properties in human laryngeal carcinoma Hep-2 cells in vitro and to identify the potential molecular mechanisms. The results showed that treatment of Hep-2 cells with PEITC significantly inhibited cell proliferation in a dose- and time-dependent manner, promoted apoptosis with concurrent G2/M cell cycle arrest and inhibited cell invasion in a dose-dependent manner. These effects were accompanied by significant alterations in the expression levels of key proteins associated with pro-survival signaling pathways, including PI3K, Akt, ERK, NF-κB, Bcl, Bax, cyclin B, CDK4 and CDK6. Importantly, these effects were not reflected in 16HBE normal human bronchial epithelial cells, suggesting a safe range of treatment concentrations between 0 and 10 µM PEITC. In summary, PEITC exhibited significant anticancer effects against human laryngeal cancer cells in vitro with low toxicological impact on normal bronchial epithelial cells. This was achieved through dysregulation of key proteins involved in the occurrence and development of tumors, thereby offering a valuable contribution to future strategies for the treatment and screening of patients with laryngocarcinoma.
Collapse
Affiliation(s)
- Meng-Yuan Dai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Otolaryngology-Head and Neck Surgery Institute, Medical School of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo-Kui Xiao
- Otolaryngology-Head and Neck Surgery Institute, Medical School of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, Chunlei G, Zhangchao L, Yuanbo X, Jinyan Y, Gaofeng L, Xin S. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol 2015; 8:120. [PMID: 26503334 PMCID: PMC4620602 DOI: 10.1186/s13045-015-0203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Objective Nemo-like kinase (NLK) is an evolutionarily conserved serine/threonine kinase that regulates the activity of a wide range of signal transduction pathways. Metformin, an oral antidiabetic drug, is used for cancer prevention. However, the significance and underlying mechanism of NLK and metformin in oncogenesis has not been fully elucidated. Here, we investigate a novel role of NLK and metformin in human non-small cell lung cancer (NSCLC). Materials and methods NLK expression was analyzed in 121 NSCLCs and 92 normal lung tissue samples from benign pulmonary disease. Lentivirus vectors with NLK-shRNA were used to examine the effect of NLK on cell proliferation and tumorigenesis in vitro. Then, tumor xenograft mouse models revealed that NLK knockdown cells had a reduced ability for tumor formation compared with the control group in vivo. Multiple cell cycle regulator expression patterns induced by NLK silencing were examined by western blots in A549 cells. We also employed metformin to study its anti-cancer effects and mechanisms. Cancer stem cell property was checked by tumor sphere formation and markers including CD133, Nanog, c-Myc, and TLF4. Results Immunohistochemical (IHC) analysis revealed that NLK expression was up-regulated in NSCLC cases (p < 0.001) and correlated with tumor T stage (p < 0.05). Silencing of NLK suppressed cell proliferation and tumorigenicity significantly in vitro and in vivo, which might be modulated by JUN family proteins. Furthermore, metformin selectively inhibits NLK expression and proliferation in NSCLC cells, but not immortalized noncancerous lung bronchial epithelial cells. In addition, both NLK knockdown and metformin treatment reduced the tumor sphere formation capacity and percentage of CD133+ cells. Accordingly, the expression level of stem cell markers (Nanog, c-Myc, and TLF4) were decreased significantly. Conclusion NLK is critical for cancer cell cycle progression, and tumorigenesis in NSCLC, NLK knockdown, and metformin treatment inhibit cancer cell proliferation and stemness. Metformin inhibits NLK expression and might be a potential treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Dong Suwei
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Zeng Liang
- Department of Pathology, Hunan Tumor Hospital, Changsha, Hunan, People's Republic of China.
| | - Liu Zhimin
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Li Ruilei
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Zou Yingying
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, Yunnan, People's Republic of China.
| | - Li Zhen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Ge Chunlei
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Lai Zhangchao
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Xue Yuanbo
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Yang Jinyan
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Li Gaofeng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Song Xin
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
10
|
XIE GUI, LI JINLONG, CHEN JINGSONG, TANG XUEWEI, WU SHAOQING, LIAO CAN. Knockdown of flotillin-2 impairs the proliferation of breast cancer cells through modulation of Akt/FOXO signaling. Oncol Rep 2015; 33:2285-90. [DOI: 10.3892/or.2015.3826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/13/2015] [Indexed: 11/06/2022] Open
|
11
|
Themeli M, Waterhouse M, Finke J, Spyridonidis A. DNA chimerism and its consequences after allogeneic hematopoietic cell transplantation. CHIMERISM 2014. [DOI: 10.4161/chim.15276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Zhang X. Depression of testes-specific protease 50 (TSP50) inhibits cell proliferation and induces apoptosis in laryngocarcinoma. Tumour Biol 2014; 35:10781-8. [PMID: 25077921 DOI: 10.1007/s13277-014-2090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/12/2014] [Indexed: 12/13/2022] Open
Abstract
Testes-specific protease 50 (TSP50) is a potential cancer-associated gene that may be involved in human laryngocarcinoma. The present study aimed to investigate suppressive effects on the HEp2 human laryngocarcinoma cell line by transfection with TSP50-specific short hairpin RNA (shRNA). Western blot analysis was used to detect the expression levels of TSP50. MTT assay was used to evaluate cell proliferation. Wound healing was used in cell migration and invasion assays to evaluate the cell exercise capacity. Nuclear staining assay was used to evaluate cell apoptosis after knockdown of TSP50. Expression levels of TSP50 protein in the shRNA group were downregulated successfully by transfection, and the knockdown of endogenous TSP50 in HEp2 cells greatly inhibited nuclear factor κB (NF-κB) activity. MTT results showed that the cell proliferation in the shRNA group was significantly more depressed than that in the blank (P < 0.05) and negative control groups (P < 0.05). Additionally, a decreased number of migrated cells in the shRNA group was observed (P < 0.05) using a cell migration and invasion assay. Moreover, knockdown of endogenous TSP50 expression can induce apoptosis in HEp2 Cells. These data indicated that knockdown of TSP50 may cause inhibition of proliferation, migration, and invasion of HEp2 cells. This study provides a new perspective in understanding the molecular mechanisms underlying the progression of laryngocarcinoma and offers a potential therapeutic target for laryngocarcinoma.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Province, 150001, China,
| |
Collapse
|
13
|
Alkhalaf MA, Guiver M, Cooper RJ. Prevalence and quantitation of adenovirus DNA from human tonsil and adenoid tissues. J Med Virol 2013; 85:1947-54. [PMID: 23852770 DOI: 10.1002/jmv.23678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
In this study, real-time PCR was used to quantify adenovirus DNA in cell suspensions prepared from 106 right and left tonsils and 10 adenoids obtained from 57 patients who underwent routine tonsillectomies and/or adenoidectomies. Eighty-four (72.4%) tonsils and adenoids samples were positive for HAdV by real-time PCR. The viral load ranged from 2.8 × 10(2) to 2.6 × 10(6) copies/10(7) cells and varied up to sixfold between the right and left tonsils. In some cases, only one tonsil was positive and the viral load was lower in older children. Seventy-eight of 84 positive samples could be typed by sequencing of the hexon L1 region. Species C (types 1, 2, and 5) were detected in 84.1% of the patients followed by types 3 and 7 of species B (6.8%), HAdV-E4 (6.8%), and HAdV-F41 (2.3%). In one patient adenovirus C2 was found in the left tonsil and adenovirus C5 in the right tonsil. No DNA methylation was detected in either the E1A promoter or the major late promoter region of adenovirus DNA from six tonsils and adenoids samples and two clinical isolates.
Collapse
Affiliation(s)
- Moustafa Alissa Alkhalaf
- Virology Unit, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
14
|
Wu Z, He B, He J, Mao X. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate 2013; 73:596-604. [PMID: 23060044 DOI: 10.1002/pros.22600] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/10/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Accumulating evidence indicates that microRNAs play a pivotal role in the development and progression of prostate cancer. The present study was aimed at clarifying the biological functions of miR-153, one of the upregulated microRNAs in prostate cancers, and the signaling transduction induced by miR-153. METHODS miR-153 was identified to be overexpressed in prostate cancers. The probable biological function of miR-153 in cellular proliferation was then examined by diverse assays, such as MTT, colony formation and BrdUrd incorporation assay. Moreover, real-time PCR and western blotting analysis were applied to investigate the underlying molecular mechanism induced by miR-153. Luciferase assays were used to determined the FOXO1 transactivity and the direct regulation of PTEN-3'-UTR by miR-153. RESULTS High-throughput method identified miR-153 to be upregulated in prostate cancers, which is further confirmed by the upregulated expression in four paired prostate tumor/adjacent non-cancerous tissues from the same patients. Further studies revealed that overexpression of miR-153 promoted cell cycle transition and cell proliferation, while inhibition of miR-153 reduced this effect. Moreover, miR-153 overexpression in prostate cancer cells increased the G1/S transitional promoter, cyclin D1 expression, and decreased cyclin-dependent kinase (CDK) inhibitor, p21(Cip1) expression. In addition, we demonstrated that miR-153 directly targeted the PTEN tumor suppressor gene, activated the AKT signaling and downregulated FOXO1 transcriptional activity. CONCLUSIONS Taken together, our results suggest that miR-153 play an important role in promoting proliferation of human prostate cancer cells and present a novel mechanism of microRNA-mediated direct suppression of PTEN expression in prostate cancer cells.
Collapse
Affiliation(s)
- Ziqing Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | | | | | | |
Collapse
|
15
|
Lin C, Wu Z, Lin X, Yu C, Shi T, Zeng Y, Wang X, Li J, Song L. Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin Cancer Res 2011; 17:3089-99. [PMID: 21447726 DOI: 10.1158/1078-0432.ccr-10-3068] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lipid rafts, specialized domains in cell membranes, function as physical platforms for various molecules to coordinate a variety of signal transduction processes. Flotinllin-1 (FLOT1), a marker of lipid rafts, is involved in the progression of cancer, but the precise mechanism remains unclear. The aim of the present study was to examine the role of FLOT1 on the tumorigenesis of breast cancer cells and its clinical significance in progression of the disease. EXPERIMENTAL DESIGN FLOT1 expression was analyzed in 212 paraffin-embedded, archived clinical breast cancer samples by using immunohistochemistry (IHC). The effect of FLOT1 on cell proliferation and tumorigenesis was examined in vitro and in vivo. Western blotting and luciferase reporter analyses were carried out to identify the effects of downregulating FLOT1 on expression of cell cycle regulators and transcriptional activity of FOXO3a. RESULTS IHC analysis revealed high expression of FLOT1 in 129 of the 212 (60.8%) paraffin-embedded archived breast cancer specimens. The overall expression level of FLOT1 significantly correlated with clinical staging and poor patient survival of breast cancer. Strikingly, we found that silencing FLOT1 inhibited proliferation and tumorigenicity of breast cancer cells both in vitro and in vivo, which was further shown to be mechanistically associated with suppression of Akt activity, enhanced transcriptional activity of FOXO3a, upregulation of cyclin-dependent kinase inhibitor p21(Cip1) and p27(Kip1), and downregulation of the CDK regulator cyclin D1. CONCLUSIONS FLOT1 plays an important role in promoting proliferation and tumorigenesis of human breast cancer and may represent a novel prognostic biomarker and therapeutic target for the disease.
Collapse
Affiliation(s)
- Chuyong Lin
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang C, Yang Q. Astrocyte elevated gene-1 and breast cancer (Review). Oncol Lett 2011; 2:399-405. [PMID: 22866094 DOI: 10.3892/ol.2011.268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/22/2011] [Indexed: 01/15/2023] Open
Abstract
Astrocyte elevated gene-1 (AEG-1), also known as MTDH and Lyric, is a novel gene that was first cloned by subtraction hybridization in 2002 and has recently been shown to play a role as a crucial oncogene that acts as a promoter of tumor malignancy. Overexpression and inhibition studies both in in vitro and in vivo models have partly shown the oncogenic roles of AEG-1 in a number of crucial aspects of tumor development and progression, including transformation, evasion of apoptosis, proliferation, cell survival, migration, invasion, metastasis, angiogenesis and chemoresistance through the activation of numerous signaling pathways, such as the nuclear factor κB, PI3K/AKT, Wnt/β-catenin and mitogen-activated protein kinase signaling pathways. However the potential roles of AEG-1, particularly in specific organs or tissues, such as breast tissue, require further clarification. Studies have found that in normal human breast tissue, AEG-1 is always expressed at low levels or is absent, while it is widely overexpressed in many breast cancer cell lines and breast tumors. The present review evaluates the current literature with regards to AEG-1 relative to breast cancer development and progression and highlights new perspectives relative to this molecule, indicating its potential to become a new target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Breast Surgery, Qilu Hospital, Shandong University School of Medicine, Shandong 250012, P.R. China
| | | |
Collapse
|
17
|
Waterhouse M, Themeli M, Bertz H, Zoumbos N, Finke J, Spyridonidis A. Horizontal DNA transfer from donor to host cells as an alternative mechanism of epithelial chimerism after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2010; 17:319-29. [PMID: 20837151 DOI: 10.1016/j.bbmt.2010.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
Animal and human studies have shown that after allogeneic hematopoietic cell transplantation, epithelial cells containing donor-derived genome emerge. The mechanisms underlying this phenomenon are still unclear. We hypothesized that horizontal transfer of the hematopoietic donor-DNA to the host epithelium confers a possible operating mechanism. In an in vitro model mimicking the lymphocyte-epithelial interaction, we cocultivated keratinocyte HaCaT cells (Y-chromosome negative) with nonapoptotic or apoptotic, CMFDA, or BrdU-labeled hematopoietic Jurkat cells (Y+) and looked for the emergence of HaCaT cells bearing Jurkat genome. We found that DNA can be horizontally transferred from hematopoietic to epithelial cell lines through phagocytosis of apoptotic bodies. The ingested genomic material was also found within the nuclear compartment and in isolated chromosomes obtained from HaCaT metaphases. Both lysosomal inhibition in HaCaT cells and repetitive load of HaCaT cells with apoptotic bodies increased the intercellular and intranuclear DNA delivery. Although recipient cells remained viable and showed to express the foreign DNA, this expression was transient. Taking into consideration these findings of horizontal DNA transfer between hematopoietic and epithelial cells, we evaluated by quantitative microsatellite analysis the amount of donor DNA in 176 buccal swabs obtained from 71 patients after allogeneic transplantation. We found a high amount of donor-DNA (mean 26.6%) in the majority (89.7%) of them, although no donor hematopoietic cells were evident in the samples by immunofluorescence. We propose that the incessant charge of the transplant recipient with donor-DNA and its "inappropriate" intranuclear delivery in host epithelium may explain the emergence of epithelial cells with donor-derived genome.
Collapse
Affiliation(s)
- Miguel Waterhouse
- Department of Hematology/Oncology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother 2010; 33:136-45. [PMID: 20145549 DOI: 10.1097/cji.0b013e3181badc46] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We generated an adenovirus-based T-cell vaccine (Ad-p14) that reliably elicits T-cell responses to human papillomavirus (HPV) oncogenes of the 2 most common high-risk HPV serotypes. The artificial gene used to create the vaccine comprising 415 aa (1248 bp) was cloned by fusing 14 polymerase chain reaction fragments of HPV16 and HPV18 E6 and E7 oncogenes devoid of sequences with transforming potential. Although ensuring maximal biologic safety, the construct includes approximately 70% of the relevant T-cell epitopes. In a tumor model for cervical cancer (C3), therapeutic vaccination led to complete eradication in 100% of the mice. In a second model (TC1), it induced initial tumor mass reduction, but 90% of the animals showed delayed tumor progression. To further improve the therapeutic effect, vaccination was combined with systemic application of imiquimod, anti-CD4, alpha-interferon, or anti-GITR. Although adding alpha-interferon improved the therapeutic potential of Ad-p14 by 40%, the combination with anti-GITR resulted in complete and permanent eradication of all TC1 tumors. Ad-p14 has clinical potential for treating HPV-induced lesions, and the added effect of immune response modifiers stresses the importance of combined protocols for immunotherapy of malignant tumors.
Collapse
|
19
|
Li J, Yang L, Song L, Xiong H, Wang L, Yan X, Yuan J, Wu J, Li M. Astrocyte elevated gene-1 is a proliferation promoter in breast cancer via suppressing transcriptional factor FOXO1. Oncogene 2009; 28:3188-96. [PMID: 19633686 DOI: 10.1038/onc.2009.171] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously reported that astrocyte elevated gene-1 (AEG-1) was upregulated in human breast cancer. However, the biological function of AEG-1 in the development and progression of breast cancer remains to be clarified. In this study, we examined the effect of AEG-1 on cell proliferation and found that AEG-1 upregulation was significantly linked to increased Ki67 (P<0.001). Ectopic expression of AEG-1 in MCF-7 and MDA-MB-435 breast cancer cells dramatically enhanced cell proliferation and their ability of anchorage-independent growth, whereas silencing endogenous AEG-1 with shRNAs inhibited cell proliferation and colony-forming ability of the cells on soft agar. Furthermore, these proliferative effects were significantly associated with decreases of p27Kip1 and p21Cip1 two key cell-cycle inhibitors. Moreover, we further demonstrated that AEG-1 could downregulate the transcriptional activity of FOXO1 by inducing its phosphorylation through the PI3K/Akt signaling pathway. These observations were further confirmed in clinical human primary breast cancer specimens, in which high-level expression of AEG-1 was inversely correlated with the expression of FOXO1. Taken together, our results provide the first demonstration of a novel mechanism by which AEG-1 induces proliferation of breast cancer cell, and our findings suggest that AEG-1 might play an important role in tumorigenesis of breast cancer.
Collapse
Affiliation(s)
- J Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Doerfler W. Epigenetic mechanisms in human adenovirus type 12 oncogenesis. Semin Cancer Biol 2009; 19:136-43. [PMID: 19429476 PMCID: PMC7129905 DOI: 10.1016/j.semcancer.2009.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/11/2009] [Indexed: 11/28/2022]
Abstract
For the past 30 years, my laboratory has concentrated its work on demonstrating that the epigenetic consequences of foreign DNA insertion into established mammalian genomes – de novo DNA methylation of the integrate and alterations of methylation patterns across the recipient genome – are essential elements in setting the stage towards oncogenic transformation. We have primarily studied human adenovirus type 12 (Ad12) which induces undifferentiated tumors in Syrian hamsters (Mesocricetus auratus) either at the site of subcutaneous Ad12 injection or intraperitoneally upon intramuscular injection. Up to 90% of the hamsters injected with Ad12 develop tumors within 3–6 weeks. Integration of foreign DNA, its de novo methylation, and the consequences of insertion on the cellular methylation and transcription profiles have been studied in detail. While viral infections are a frequent source of foreign genomes entering mammalian and other hosts and often their genomes, we have also pursued the fate of food-ingested foreign DNA in the mouse organism. The persistence of this DNA in the animals is transient and there is no evidence for the expression or germ line fixation of foreign DNA. Nevertheless, the occasional cell that carries integrated genomes from that foreign source deserves the oncologist's sustained interest.
Collapse
Affiliation(s)
- Walter Doerfler
- University of Cologne, Institute of Genetics, Zülpicherstrasse 47, D-50674 Köln, Germany.
| |
Collapse
|
21
|
Strath J, Georgopoulos LJ, Kellam P, Blair GE. Identification of genes differentially expressed as result of adenovirus type 5- and adenovirus type 12-transformation. BMC Genomics 2009; 10:67. [PMID: 19200380 PMCID: PMC2651901 DOI: 10.1186/1471-2164-10-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 02/06/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cells transformed by human adenoviruses (Ad) exhibit differential capacities to induce tumours in immunocompetent rodents; for example, Ad12-transformed rodent cells are oncogenic whereas Ad5-transformed cells are not. The E1A gene determines oncogenic phenotype, is a transcriptional regulator and dysregulates host cell gene expression, a key factor in both cellular transformation and oncogenesis. To reveal differences in gene expression between cells transformed with oncogenic and non-oncogenic adenoviruses we have performed comparative analysis of transcript profiles with the aim of identifying candidate genes involved in the process of neoplastic transformation. RESULTS Analysis of microarray data revealed that a total of 232 genes were differentially expressed in Ad12 E1- or Ad5 E1-transformed BRK cells compared to untransformed baby rat kidney (BRK) cells. Gene information was available for 193 transcripts and using gene ontology (GO) classifications and literature searches it was possible to assign known or suggested functions to 166 of these identified genes. A subset of differentially-expressed genes from the microarray was further examined by real-time PCR and Western blotting using BRK cells immortalised by Ad12 E1A or Ad5 E1A in addition to Ad12 E1- or Ad5 E1-transformed BRK cells. Up-regulation of RelA and significant dysregulation of collagen type I mRNA transcripts and proteins were found in Ad-transformed cells. CONCLUSION These results suggest that a complex web of cellular pathways become altered in Ad-transformed cells and that Ad E1A is sufficient for the observed dysregulation. Further work will focus on investigating which splice variant of Ad E1A is responsible for the observed dysregulation at the pathway level, and the mechanisms of E1A-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Janet Strath
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
22
|
Liu JW, Cheng J. Molecular mechanism of immune response induced by foreign plasmid DNA after oral administration in mice. World J Gastroenterol 2007; 13:3847-54. [PMID: 17657840 PMCID: PMC4611218 DOI: 10.3748/wjg.v13.i28.3847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To study immune response induced by foreign plasmid DNA after oral administration in mice.
METHODS: Mice were orally administered with 200 μg of plasmid pcDNA3 once and spleen was isolated 4 h and 18 h after administration. Total RNA was extracted from spleen and gene expression profile of BALB/c mice spleen was analyzed by using Affymetrix oligonucleotide GeneChip. Functional cluster analysis was conducted by GenMAPP software.
RESULTS: At 4 h and 18 h after oral plasmid pcDNA3 administration, a number of immune-related genes, including cytokine and cytokine receptors, chemokines and chemokine receptor, complement molecule, proteasome, histocompatibility molecule, lymphocyte antigen complex and apoptotic genes, were up-regulated. Moreover, MAPPFinder results also showed that numerous immune response processes were up-regulated. In contrast, the immunoglobulin genes were down-regulated.
CONCLUSION: Foreign plasmid DNA can modulate the genes expression related to immune system via the gastrointestinal tract, and further analysis of the related immune process may help understand the molecular mechanisms of immune response induced by foreign plasmid via the gastrointestinal tract.
Collapse
Affiliation(s)
- Jian-Wen Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing 100011, China.
| | | |
Collapse
|
23
|
Mende M, Hopert A, Wünsche W, Overhoff M, Detzer A, Börngen K, Schlenke P, Kirchner H, Sczakiel G. A hexanucleotide selected for increased cellular uptake in cis contains a highly active CpG-motif in human B cells and primary peripheral blood mononuclear cells. Immunology 2006; 120:261-72. [PMID: 17137465 PMCID: PMC2265851 DOI: 10.1111/j.1365-2567.2006.02497.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The relationship between immunostimulation of human B cells by cytosine-phosphate-guanosine (CpG) -containing oligonucleotides and their physical cellular uptake is of mechanistic interest and a prerequisite for rational improvements of the therapeutic potential of CpG-harbouring oligonucleotides. Here, a combinatorial approach was used to identify nucleotide sequence motifs that facilitate increased cellular uptake in mammalian cells. Oligonucleotides harbouring the selected hexanucleotide TCGTGT in cis show increased cellular uptake. This motif contains a CpG dinucleotide within a sequence context that shows a very strong CpG-specific stimulatory activity on human B cells. Here we describe the influence of concentration, length and sequence position of the unmethylated CpG dinucleotide on immunostimulation. A comparison between phosphorothioate-derivatives and unmodified TCGTGT-containing oligonucleotides strongly indicates a great CpG-specificity for the unmodified CpG-harbouring oligonucleotides but not for the phosphorothioate versions. This work describes a link between the physical cellular uptake of naked oligonucleotides harbouring the selected cellular uptake motif TCGTGT, its strong CpG-specific stimulation of human B cells and its relationship with the sequence context of CpG and its cellular uptake.
Collapse
Affiliation(s)
- Miriam Mende
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
- Kompetenzzentrum für Drug Design & Target MonitoringLübeck, Germany
| | - Anne Hopert
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
| | - Winfried Wünsche
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
| | - Marita Overhoff
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
| | - Anke Detzer
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
| | - Kirsten Börngen
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
| | - Peter Schlenke
- Institut für Immunologie und Transfusionsmedizin, Universitätsklinikum Schleswig-HolsteinLübeck, Germany
| | - Holger Kirchner
- Institut für Immunologie und Transfusionsmedizin, Universitätsklinikum Schleswig-HolsteinLübeck, Germany
| | - Georg Sczakiel
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and Universität zu LübeckLübeck
- Kompetenzzentrum für Drug Design & Target MonitoringLübeck, Germany
| |
Collapse
|
24
|
Detmer A, Glenting J. Live bacterial vaccines--a review and identification of potential hazards. Microb Cell Fact 2006; 5:23. [PMID: 16796731 PMCID: PMC1538998 DOI: 10.1186/1475-2859-5-23] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/23/2006] [Indexed: 12/20/2022] Open
Abstract
The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.
Collapse
Affiliation(s)
- Ann Detmer
- Danish Toxicology Centre, Hørsholm, Denmark
| | | |
Collapse
|
25
|
Doerfler W. De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion. Curr Top Microbiol Immunol 2006; 301:125-75. [PMID: 16570847 DOI: 10.1007/3-540-31390-7_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This chapter presents a personal account of the work on DNA methylation in viral and mammalian systems performed in the author's laboratory in the course of the past 30 years. The text does not attempt to give a complete and meticulous account of the work accomplished in many other laboratories; in that sense it is not a review of the field in a conventional sense. Since the author is also one of the editors of this series of Current Topics in Immunology and Microbiology on DNA methylation, to which contributions by many of our colleagues in this field have been invited, the author's conscience is alleviated that he has not cited many of the relevant and excellent reports by others. The choice of viral model systems in molecular biology is well founded. Over many decades, viruses have proved their invaluable and pioneering role as tools in molecular genetics. When our interest turned to the demonstration of genome-wide patterns of DNA methylation, we focused mainly on the human genome. The following topics in DNA methylation will be treated in detail: (1) The de novo methylation of integrated foreign genomes; (2) the long-term gene silencing effect of sequence-specific promoter methylation and its reversal; (3) the properties and specificity of patterns of DNA methylation in the human genome and their possible relations to pathogenesis; (4) the long-range global effects on cellular DNA methylation and transcriptional profiles as a consequence of foreign DNA insertion into an established genome; (5) the patterns of DNA methylation can be considered part of a cellular defense mechanism against foreign or repetitive DNA; which role has food-ingested DNA played in the elaboration of this mechanism? The interest in problems related to DNA methylation has spread-like the mechanism itself-into many neighboring fields. The nature of the transcriptional programs orchestrating embryonal and fetal development, chromatin structure, genetic imprinting, genetic disease, X chromosome inactivation, and tumor biology are but a few of the areas of research that have incorporated studies on the importance of the hitherto somewhat neglected fifth nucleotide in many genomes. Even the fly researchers now have to cope with the presence of this nucleotide, in however small quantities it exists in the genome of their model organism, at least during embryonal development. The bulk of the experimental work accomplished in the author's laboratory has been shouldered by many very motivated undergraduate and graduate students and by a number of talented postdoctoral researchers. Their contributions are reflected in the list of references in this chapter. We have also had the good luck to receive funding through a number or organizations as acknowledged.
Collapse
Affiliation(s)
- W Doerfler
- Institut für Genetik, Universität zu Köln, Germany.
| |
Collapse
|
26
|
Doerfler W. On the biological significance of DNA methylation. BIOCHEMISTRY (MOSCOW) 2005; 70:505-24. [PMID: 15948705 DOI: 10.1007/s10541-005-0145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This chapter presents a personal account of the work on DNA methylation in viral and mammalian systems performed in the author's laboratory in the course of the past thirty years. The text does not attempt to give a complete and meticulous account of the many relevant and excellent reports published by many other laboratories, so it is not a review of the field in a conventional sense. The choice of viral model systems in molecular biology is well founded. Over many decades, viruses have proven their invaluable and pioneering role as tools in molecular genetics. When our interest turned to the demonstration of genome-wide patterns of DNA methylation, we focused mainly on the human genome. The following topics in DNA methylation will be treated in detail: (i) the de novo methylation of integrated foreign genomes; (ii) the long-term gene silencing effect of sequence-specific promoter methylation and its reversal; (iii) the properties and specificity of patterns of DNA methylation in the human genome and their possible relations to pathogenesis; (iv) the long-range global effects on cellular DNA methylation and transcriptional profiles as a consequence of foreign DNA insertion into an established genome; (v) the patterns of DNA methylation can be considered part of a cellular defense mechanism against foreign or repetitive DNA; what role has food-ingested DNA played in the elaboration of this mechanism?
Collapse
Affiliation(s)
- W Doerfler
- Institut für Genetik, Universität zu Köln, 50674 Köln, Germany.
| |
Collapse
|
27
|
Hsieh CL. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1. BMC BIOCHEMISTRY 2005; 6:6. [PMID: 15799776 PMCID: PMC1084342 DOI: 10.1186/1471-2091-6-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/30/2005] [Indexed: 12/31/2022]
Abstract
Background Though Dnmt1 is considered the primary maintenance methyltransferase and Dnmt3a and Dnmt3b are considered de novo methyltransferases in mammals, these three enzymes may work together in maintaining as well as establishing DNA methylation patterns. It has been proposed that Dnmt1 may carry out de novo methylation at sites in the genome with transient single-stranded regions, such as replication origins, and then spread methylation from these nucleation sites in vivo, even though such activity has not been reported. Results In this study, we show that Dnmt3a does not act on single-stranded substrates in vitro, indicating that Dnmt3a is not likely to initiate DNA methylation at such proposed nucleation sites. Dnmt3a shows similar methylation activity on unmethylated and hemimethylated duplex DNA, though with some substrate preference. Unlike Dnmt1, pre-existing cytosine methylation at CpG sites or non-CpG sites does not stimulate Dnmt3a activity in vitro and in vivo. Conclusion The fact that Dnmt3a does not act on single stranded DNA and is not stimulated by pre-existing cytosine methylation indicates that the de novo methylation activity of Dnmt3a is quite different from that of Dnmt1. These findings are consistent with a model in which Dnmt3a initiates methylation on one of the DNA strands of duplex DNA, and these hemimethylated sites then stimulate Dnmt1 activity for further methylation.
Collapse
Affiliation(s)
- Chih-Lin Hsieh
- Department of Urology, University of Southern California, 1441 Eastlake Ave,, Rm 5420, Norris Cancer Center, Los Angeles, CA 90033, USA.
| |
Collapse
|
28
|
Lehmann MJ, Sczakiel G. Spontaneous uptake of biologically active recombinant DNA by mammalian cells via a selected DNA segment. Gene Ther 2004; 12:446-51. [PMID: 15616601 DOI: 10.1038/sj.gt.3302428] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA can be internalized by mammalian cells without taking advantage of helper reagents. Here, we ask whether the spontaneous cellular uptake of double-stranded DNA (dsDNA) occurs in a biologically significant and sequence-dependent way. We describe a combinatorial approach to search for dsDNA sequence segments that are preferentially internalized. A selected dsDNA species was identified and covalently linked to a luciferase expression cassette. The increased apparent cellular uptake of long-chain recombinant DNA accompanied by an increased apparent expression of luciferase provides strong evidence for the view that (i) naked long-chain dsDNA can be taken up spontaneously by mammalian cells, (ii) specific sequences substantially increase this process, and (iii) dsDNA is transported into the nucleus of cells in a bioactive form. Experimental evidence indicates a tissue- or cell-type specificity for this process. This work indicates that, in principle, specific nucleotide sequences can facilitate the introduction of naked dsDNA into target cells of interest, thereby improving existing vector systems and providing a new methodology to study DNA uptake by mammalian cells. The cellular uptake of biologically active genetic material in vivo occurs to be conceivable.
Collapse
Affiliation(s)
- M J Lehmann
- Institut für Molekulare Medizin, Universität zu Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | | |
Collapse
|
29
|
Liu JW, Shi YH, Le GW, Fang XX. Metabolic kinetics of foreign plasmid DNA uptake via gastrointestinal tract in mice. Shijie Huaren Xiaohua Zazhi 2004; 12:1108-1113. [DOI: 10.11569/wcjd.v12.i5.1108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyse the changes of foreign plasmid copies in different tissues after uptake via gastrointestinal tract and to evaluate the possibility of foreign plasmid integrating on the host genome.
METHODS: Samples including lung, kidney, spleen, mesenteric lymph node, thymus, gonads, feces, duodenum, large intestine, blood and liver were obtained 1, 3, 6, 24, and 48 h and 3, 6 wk after oral administration of 200 mg plasmid pcDNA3s. PCR technique was used to detect the distribution and kinetics of plasmid in different tissues. Genomic DNA was assayed for integrated plasmid by PCR after purification of high-molecular-weight genomic DNA away from free plasmid by using gel electrophoresis.
RESULTS: Plasmid could be detected in almost all tissues 1 h after oral administration and the copies of plasmid in tissues changed with time. Foreign plasmid could be detected only in kidney and blood at sixth week time. Foreign plasmid mainly as fragment survived in vivo.
CONCLUSION: Foreign plasmid can be absorbed by gastrointestinal tract and distribute in different tissues quickly, surviving as the form of fragment. Foreign plasmid DNA probably integrates into the host genome via the gastrointestinal tract.
Collapse
|
30
|
Schumacher A, Doerfler W. Influence of in vitro manipulation on the stability of methylation patterns in the Snurf/Snrpn-imprinting region in mouse embryonic stem cells. Nucleic Acids Res 2004; 32:1566-76. [PMID: 15004243 PMCID: PMC390307 DOI: 10.1093/nar/gkh322] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent work on embryonic stem (ES) cells showed that stem cell-derived tissues and embryos, cloned from ES cell nuclei, often fail to maintain epigenetic states of imprinted genes. This deregulation is frequently associated with in vitro manipulations and culture conditions which might affect the cells potential to develop into normal fetuses. Usually, epigenetic instability is reported in differentially methylated regions of mostly growth-related imprinted genes. However, little is known about the epigenetic stability of genes that function late in organogenesis. Hence, we set out to investigate the epigenetic stability of neuronal genes and analyzed DNA methylation patterns in the Snurf/Snrpn imprinted cluster in several cultured mouse ES cell lines. We also determined the effects of in vitro stress factors such as consecutive passaging, trypsination, mechanical handling, single cell cloning, centrifugation, staurosporine-induced neurogenesis and the insertion of viral (foreign) DNA into the host genome. Intriguingly, none of these in vitro manipulations interfered with the stability of the methylation patterns in the analyzed neuronal genes. These data imply that, in contrast to growth-related genes like Igf2, H19, Igf2r or Grb10, the methylation imprints of the analyzed neuronal genes in the Snurf/Snrpn cluster may be particularly stable in manipulated ES cells.
Collapse
Affiliation(s)
- Axel Schumacher
- Institute of Genetics, University of Cologne, Weyertal 121, D-50931 Cologne, Germany.
| | | |
Collapse
|
31
|
Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K. Fidelity of the methylation pattern and its variation in the genome. Genome Res 2003; 13:868-74. [PMID: 12727906 PMCID: PMC430912 DOI: 10.1101/gr.969603] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 02/26/2003] [Indexed: 12/31/2022]
Abstract
The methylated or unmethylated status of a CpG site is copied faithfully from parental DNA to daughter DNA, and functions as a cellular memory. However, no information is available for the fidelity of methylation pattern in unmethylated CpG islands (CGIs) or its variation in the genome. Here, we determined the methylation status of each CpG site on each DNA molecule obtained from clonal populations of normal human mammary epithelial cells. Methylation pattern error rates (MPERs) were calculated based upon the deviation from the methylation patterns that should be obtained if the cells had 100% fidelity in replicating the methylation pattern. Unmethylated CGIs in the promoter regions of five genes showed MPERs of 0.018-0.032 errors/site/21.6 generations, and the fidelity of methylation pattern was calculated as 99.85%-99.92%/site/generation. In contrast, unmethylated CGIs outside the promoter regions showed MPERs more than twice as high (P < 0.01). Methylated regions, including a CGI in the MAGE-A3 promoter and DMR of the H19 gene, showed much lower MPERs than unmethylated CGIs. These showed that errors in methylation pattern were mainly due to de novo methylations in unmethylated regions. The differential MPERs even among unmethylated CGIs indicated that a promoter-specific protection mechanism(s) from de novo methylation was present.
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | |
Collapse
|