Chang Q, Gold PE. Impaired and spared cholinergic functions in the hippocampus after lesions of the medial septum/vertical limb of the diagonal band with 192 IgG-saporin.
Hippocampus 2004;
14:170-9. [PMID:
15098723 DOI:
10.1002/hipo.10160]
[Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To lesion the cholinergic input to the hippocampus, rats received injections of 192 IgG-saporin into the medial septum/vertical limb of the diagonal band (MS/VDB). The lesions produced near-total loss of choline acetyltransferase (ChAT)-positive neurons in the MS/VDB. The loss was accompanied, however, by only partial decreases (to 40% of control levels) in acetylcholine (ACh) release in the hippocampus. Moreover, ACh release in the hippocampus increased when lesioned and control rats were tested on a spontaneous alternation task, indicating that there was significant residual cholinergic function in the hippocampus. The lesions were sufficient to impair spontaneous alternation scores. However, this impairment could be reversed by either systemic or intra-hippocampal injections of the indirect cholinergic agonist, physostigmine, providing additional evidence of residual and effective cholinergic functions in the hippocampus of lesioned rats. Moreover, systemic injections of physostigmine at doses that produced mild tremors in control rats led to more severe tremors in the lesioned rats, suggesting upregulation of cholinergic mechanisms after saporin lesions, likely in brain areas other than the hippocampus. Thus, these findings provide evidence for decreases in cholinergic input to the hippocampus accompanied by deficits on a spontaneous alternation tasks. The findings also provide evidence for considerable residual cholinergic input to the hippocampus after saporin lesions of the MS/VDB. Together, the results suggest that 192 IgG-saporin lesions of the MS/VDB, using methods often employed, do not fully remove septohippocampal cholinergic input to the hippocampus but are nonetheless sufficient to produce impairments on a task impaired by hippocampal lesions.
Collapse