1
|
Jiménez-Díaz E, Del-Rio D, Fiordelisio T. The Contribution of Cell Imaging to the Study of Anterior Pituitary Function and Its Regulation. Neuroendocrinology 2023; 113:179-192. [PMID: 35231920 DOI: 10.1159/000523860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Advances in the knowledge of the neuroendocrine system are closely related to the development of cellular imaging and labeling techniques. This synergy ranges from the staining techniques that allowed the first characterizations of the anterior pituitary gland, its relationship with the hypothalamus, and the birth of neuroendocrinology; through the development of fluorescence microscopy applications, specific labeling strategies, transgenic systems, and intracellular calcium sensors that enabled the study of processes and dynamics at the cellular and tissue level; until the advent of super-resolution microscopy, miniscopes, optogenetics, fiber photometry, and other imaging methods that allowed high spatiotemporal resolution and long-term three-dimensional cellular activity recordings in living systems in a conscious and freely moving condition. In this review, we briefly summarize the main contributions of cellular imaging techniques that have allowed relevant advances in the field of neuroendocrinology and paradigm shifts that have improved our understanding of the function of the hypothalamic-pituitary axes. The development of these methods and equipment is the result of the integration of knowledge achieved by the integration of several disciplines and effort to solve scientific questions and problems of high impact on health and society that this system entails.
Collapse
Affiliation(s)
- Edgar Jiménez-Díaz
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Del-Rio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Klein O, Roded A, Hirschberg K, Fukuda M, Galli SJ, Sagi-Eisenberg R. Imaging FITC-dextran as a Reporter for Regulated Exocytosis. J Vis Exp 2018. [PMID: 29985342 DOI: 10.3791/57936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulated exocytosis is a process by which cargo, which is stored in secretory granules (SGs), is released in response to a secretory trigger. Regulated exocytosis is fundamental for intercellular communication and is a key mechanism for the secretion of neurotransmitters, hormones, inflammatory mediators, and other compounds, by a variety of cells. At least three distinct mechanisms are known for regulated exocytosis: full exocytosis, where a single SG fully fuses with the plasma membrane, kiss-and-run exocytosis, where a single SG transiently fuses with the plasma membrane, and compound exocytosis, where several SGs fuse with each other, prior to or after SG fusion with the plasma membrane. The type of regulated exocytosis undertaken by a cell is often dictated by the type of secretory trigger. However, in many cells, a single secretory trigger can activate multiple modes of regulated exocytosis simultaneously. Despite their abundance and importance across cell types and species, the mechanisms that determine the different modes of secretion are largely unresolved. One of the main challenges in investigating the different modes of regulated exocytosis, is the difficulty in distinguishing between them as well as exploring them separately. Here we describe the use of fluorescein isothiocyanate (FITC)-dextran as an exocytosis reporter, and live cell imaging, to differentiate between the different pathways of regulated exocytosis, focusing on compound exocytosis, based on the robustness and duration of the exocytic events.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Amit Roded
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, School of Medicine, Stanford University
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
3
|
Klein O, Roded A, Zur N, Azouz NP, Pasternak O, Hirschberg K, Hammel I, Roche PA, Yatsu A, Fukuda M, Galli SJ, Sagi-Eisenberg R. Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Sci Rep 2017; 7:15315. [PMID: 29127297 PMCID: PMC5681557 DOI: 10.1038/s41598-017-15047-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Compound exocytosis is considered the most massive mode of exocytosis, during which the membranes of secretory granules (SGs) fuse with each other to form a channel through which the entire contents of their granules is released. The underlying mechanisms of compound exocytosis remain largely unresolved. Here we show that the small GTPase Rab5, a known regulator of endocytosis, is pivotal for compound exocytosis in mast cells. Silencing of Rab5 shifts receptor-triggered secretion from a compound to a full exocytosis mode, in which SGs individually fuse with the plasma membrane. Moreover, we show that Rab5 is essential for FcεRI-triggered association of the SNARE protein SNAP23 with the SGs. Direct evidence is provided for SNAP23 involvement in homotypic SG fusion that occurs in the activated cells. Finally, we show that this fusion event is prevented by inhibition of the IKKβ2 kinase, however, neither a phosphorylation-deficient nor a phosphomimetic mutant of SNAP23 can mediate homotypic SG fusion in triggered cells. Taken together our findings identify Rab5 as a heretofore-unrecognized regulator of compound exocytosis that is essential for SNAP23-mediated granule-granule fusion. Our results also implicate phosphorylation cycles in controlling SNAP23 SNARE function in homotypic SG fusion.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Roded
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Neta Zur
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Olga Pasternak
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ilan Hammel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ayaka Yatsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, 94305-5176, USA
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
4
|
Tagliavini A, Tabak J, Bertram R, Pedersen MG. Is bursting more effective than spiking in evoking pituitary hormone secretion? A spatiotemporal simulation study of calcium and granule dynamics. Am J Physiol Endocrinol Metab 2016; 310:E515-25. [PMID: 26786781 DOI: 10.1152/ajpendo.00500.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
Endocrine cells of the pituitary gland secrete a number of hormones, and the amount of hormone released by a cell is controlled in large part by the cell's electrical activity and subsequent Ca(2+) influx. Typical electrical behaviors of pituitary cells include continuous spiking and so-called pseudo-plateau bursting. It has been shown that the amplitude of Ca(2+) fluctuations is greater in bursting cells, leading to the hypothesis that bursting cells release more hormone than spiking cells. In this work, we apply computer simulations to test this hypothesis. We use experimental recordings of electrical activity as input to mathematical models of Ca(2+) channel activity, buffered Ca(2+) diffusion, and Ca(2+)-driven exocytosis. To compare the efficacy of spiking and bursting on the same cell, we pharmacologically block the large-conductance potassium (BK) current from a bursting cell or add a BK current to a spiking cell via dynamic clamp. We find that bursting is generally at least as effective as spiking at evoking hormone release and is often considerably more effective, even when normalizing to Ca(2+) influx. Our hybrid experimental/modeling approach confirms that adding a BK-type K(+) current, which is typically associated with decreased cell activity and reduced secretion, can actually produce an increase in hormone secretion, as suggested earlier.
Collapse
Affiliation(s)
- Alessia Tagliavini
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Joël Tabak
- Department of Mathematics and Program in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida; and Exeter University Medical School, Biomedical Neuroscience, Exeter, United Kingdom
| | - Richard Bertram
- Department of Mathematics and Program in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida; and
| | | |
Collapse
|
5
|
Bello OD, Auclair SM, Rothman JE, Krishnakumar SS. Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3015-3023. [PMID: 26972604 PMCID: PMC4946868 DOI: 10.1021/acs.langmuir.6b00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore.
Collapse
|
6
|
Bystrova OA, Shabelnikov SV, Martynova MG. The process of granule exocytosis in non-stimulated atrial granular cells of the snail, Achatina achatina: an ultrastructural, histochemical and immunocytochemical study. Acta Histochem 2014; 116:14-9. [PMID: 23706530 DOI: 10.1016/j.acthis.2013.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 12/18/2022]
Abstract
Abundant secretory granular cells (GCs) in the Giant African land snail atrium harbor a range of bioactive substances and undergo rapid total degranulation in response to stimulation of the cardiac nerve or stressful influences. Here we have analyzed exocytotic events in the non-stimulated GCs. It was shown that the GCs contain three major distinct types of granules that differ histochemically, immunocytochemically and ultrastructurally, each performing specific functions. The type I granules characteristically filled with electron-lucent homogeneous materials exhibit intense immunoreactivity for bioactive proteins and therefore are considered to be storage granules. Histochemistry using vital staining with Acridine Orange and Gomori acid phosphatase technique has revealed lysosomal-related nature of the electron-dense type II granules. Digestion remnants appearing as fine filamentous materials fill the type III granules. Only the type III granules fuse together and with the plasma membrane form degranulation channels and surface pores, through which the debris is removed from the cell. The finding of granules exhibiting intermediate ultrastructural, histochemical and immunocytochemical features suggests that the major granule types represent most stable states along a granule empting continuum. Thus, under physiological conditions, the GCs continuously produce secretory proteins and so maintain readiness for stress-response, but use protein degradation machinery to prevent massive release of these bioactive substances into hemolymph.
Collapse
Affiliation(s)
- Olga A Bystrova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue, 4, St. Petersburg 194064, Russia.
| | - Sergej V Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue, 4, St. Petersburg 194064, Russia
| | - Marina G Martynova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue, 4, St. Petersburg 194064, Russia
| |
Collapse
|
7
|
Flašker A, Jorgačevski J, Calejo AI, Kreft M, Zorec R. Vesicle size determines unitary exocytic properties and their sensitivity to sphingosine. Mol Cell Endocrinol 2013; 376:136-47. [PMID: 23791846 DOI: 10.1016/j.mce.2013.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/23/2022]
Abstract
Neuroendocrine cells contain small and large vesicles, but the functional significance of vesicle diameter is unclear. We studied unitary exocytic events of prolactin-containing vesicles in lactotrophs by monitoring discrete steps in membrane capacitance. In the presence of sphingosine, which recruits VAMP2 for SNARE complex formation, the frequency of transient and full fusion events increased. Vesicles with larger diameters proceeded to full fusion, but smaller vesicles remained entrapped in transient exocytosis. The diameter of vesicle dense cores released by full fusion exocytosis into the extracellular space was larger than the diameter of the remaining intracellular vesicles beneath the plasma membrane. Labeling with prolactin- and VAMP2-antibodies revealed a correlation between the diameters of colocalized prolactin- and VAMP2-positive structures. It is proposed that sphingosine-mediated facilitation of regulated exocytosis is not only related to the number of SNARE complexes per vesicle but also depends on the vesicle size, which may determine the transition between transient and full fusion exocytosis.
Collapse
Affiliation(s)
- Ajda Flašker
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an elevation in cytosolic calcium activity. However, other second messengers, such as cAMP, have been reported to modulate secretion. The way in which cAMP influences the transitions between different fusion pore states remains unclear. Here, hormone release studies show that prolactin release from isolated rat lactotrophs stimulated by forskolin, an activator of adenylyl cyclases, and by membrane-permeable cAMP analog (dbcAMP), exhibit a biphasic concentration dependency. Although at lower concentrations (2-10 μm forskolin and 2.5-5 mm dbcAMP) these agents stimulate prolactin release, an inhibition is measured at higher concentrations (50 μm forskolin and 10-15 mm dbcAMP). By using high-resolution capacitance (Cm) measurements, we recorded discrete increases in Cm, which represent elementary exocytic events. An elevation of cAMP leaves the frequency of full-fusion events unchanged while increasing the frequency of transient events. These exhibited a wider fusion pore as measured by increased fusion pore conductance and a prolonged fusion pore dwell time. The probability of observing rhythmic reopening of transient fusion pores was elevated by dbcAMP. In conclusion, cAMP-mediated stabilization of wide fusion pores prevents vesicles from proceeding to the full-fusion stage of exocytosis, which hinders vesicle content discharge at high cAMP concentrations.
Collapse
|
9
|
Abstract
Exocytosis is a multistage process involving a merger between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel, through which secretions are released from the vesicle to the cell exterior. A stimulus may influence the pore by either dilating it completely (full-fusion exocytosis) or mediating a reversible closure (transient exocytosis). In neurons, these transitions are short-lived and not accessible for experimentation. However, in some neuroendocrine cells, initial fusion pores may reopen several hundred times, indicating their stability. Moreover, these pores are too narrow to pass luminal molecules to the extracellular space, termed release-unproductive. However, on stimulation, their diameter dilates, initiating the release of cargo without de novo fusion pore formation. To explain the stability of the initial narrow fusion pores, anisotropic membrane constituents with non-axisymmetrical shape were proposed to accumulate in the fusion pore membrane. Although the nature of these is unclear, they may consist of lipids and proteins, including SNAREs, which may facilitate and regulate the pre- and post-fusional stages of exocytosis. In the future, a more detailed insight into the molecular control of fusion pore stabilization and regulation will generate a better understanding of fusion pore physiology in health and disease.
Collapse
|
10
|
Watson DJ, Gummi RR, Papke JB, Harkins AB. Analysis of Amperometric Spike Shapes to Release Vesicles. ELECTROANAL 2011. [DOI: 10.1002/elan.201100441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
The release of hormones and neurotransmitters, mediated by regulated exocytosis, can be modified by regulation of the fusion pore. The fusion pore is considered stable and narrow initially, eventually leading to the complete merger of the vesicle and the plasma membranes. By using the high-resolution patch-clamp capacitance technique, we studied single vesicles and asked whether the Sec1/Munc18 proteins, interacting with the membrane fusion-mediating SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, affect fusion pore properties. Munc18-1 mutants were transfected into lactotrophs to affect the interaction of Munc18-1 with syntaxin1 (Synt1) (R39C), Rab3A (E466K), and Mints (P242S). Compared with wild-type, Munc18-1 E466K increased the frequency of the fusion event. The latter two mutants increased the fusion pore dwell-time. All the mutants stabilized narrow fusion pores and increased the amplitude of fusion events, likely via preferential fusion of larger vesicles, since overexpression of Munc18-1 R39C did not affect the average size of vesicles, as determined by stimulated emission depletion (STED) microscopy. Single-molecule atomic force microscopy experiments revealed that wild-type Munc18-1, but not Munc18-1 R39C, abrogates the interaction between synaptobrevin2 (Syb2) and Synt1 binary trans-complexes. However, neither form of Munc18-1 affected the interaction of Syb2 with the preformed binary cis-Synt1A-SNAP25B complexes. This indicates that Munc18-1 performs a proofing function by inhibiting tethering of Syb2-containing vesicles solely to Synt1 at the plasmalemma and favoring vesicular tethering to the preformed binary cis-complex of Synt1A-SNAP25B. The association of Munc18-1 with the ternary SNARE complex leads to tuning of fusion pores via multiple and converging mechanisms involving Munc18-1 interactions with Synt1A, Rab3A, and Mints.
Collapse
|
12
|
ABE H, OKA Y. Mechanisms of Neuromodulation by a Nonhypophysiotropic GnRH System Controlling Motivation of Reproductive Behavior in the Teleost Brain. J Reprod Dev 2011; 57:665-74. [DOI: 10.1262/jrd.11-055e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hideki ABE
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka OKA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci 2010; 30:4210-20. [PMID: 20335456 DOI: 10.1523/jneurosci.4439-09.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochlear inner hair cells (IHCs) convert sounds into receptor potentials and via their ribbon synapses into firing rates in auditory nerve fibers. Multivesicular release at individual IHC ribbon synapses activates AMPA-mediated EPSCs with widely ranging amplitudes. The underlying mechanisms and specific role for multivesicular release in encoding sound are not well understood. Here we characterize the waveforms of individual EPSCs recorded from afferent boutons contacting IHCs and compare their characteristics in immature rats (postnatal days 8-11) and hearing rats (postnatal days 19-21). Two types of EPSC waveforms were found in every recording: monophasic EPSCs, with sharp rising phases and monoexponential decays, and multiphasic EPSCs, exhibiting inflections on rising and decaying phases. Multiphasic EPSCs exhibited slower rise times and smaller amplitudes than monophasic EPSCs. Both types of EPSCs had comparable charge transfers, suggesting that they were activated by the release of similar numbers of vesicles, which for multiphasic EPSCs occurred in a less coordinated manner. On average, a higher proportion of larger, monophasic EPSCs was found in hearing compared to immature rats. In addition, EPSCs became significantly faster with age. The developmental increase in size and speed could improve auditory signaling acuity. Multiphasic EPSCs persisted in hearing animals, in some fibers constituting half of the EPSCs. The proportion of monophasic versus multiphasic EPSCs varied widely across fibers, resulting in marked heterogeneity of amplitude distributions. We propose that the relative contribution of two modes of multivesicular release, generating monophasic and multiphasic EPSCs, may underlie fundamental characteristics of auditory nerve fibers.
Collapse
|