1
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
3
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
4
|
Varshosaz J, Jandaghian S, Mirian M, Sajjadi SE. Co-delivery of rituximab targeted curcumin and imatinib nanostructured lipid carriers in non-Hodgkin lymphoma cells. J Liposome Res 2020; 31:64-78. [PMID: 32138557 DOI: 10.1080/08982104.2020.1720718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was production of nanostructured lipid carriers (NLCs) of curcumin and imatinib for co-administration in non-Hodgkin lymphoma cells. NLCs were prepared and conjugated to rituximab to target CD20 receptors of lymphoma cell lines. Oleic acid or Labrafac and glyceryl monostearate or lecithin were used for production of NLCs. The antibody coupling efficiency to NLCs and their physical characteristics were studied. The cytotoxicity of NLCs on Jurkat T cells (CD20 receptor negative) and Ramos B cells (CD20 receptor positive) was studied by MTT assay. The cellular uptake was determined by fluorescent microscopy. The results indicated both curcumin and imatinib targeted NLCs had a significant cytotoxic effect much higher than the free drugs and non-targeted NLCs on Ramos cells. In both cell lines, the cytotoxicity of the co-administrated drugs was significantly higher than each drug alone. In Ramos cells the co-administration of curcumin (15 μg/ml)/imatinib (5 μg/ml) decreased the free curcumin IC50 from 8.3 ± 0.9 to 1.9 ± 0.2 μg/ml, and curcumin targeted NLCs from 6.7 ± 0.1 to 1.3 ± 0.2 μg/ml. In this case the IC50 of imatinib was reduced from 11.1 ± 0.7 to 2.3 ± 0.1 μg/ml and imatinib targeted NLCs from 4.3 ± 0.1 to 1.4 ± 0.0 μg/ml. The co-administration of ritoximab conjugated NLCs of curcumin and imatinib may enhance cytotoxicity of imatinib in treatment of non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghian
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Bolat ZB, Islek Z, Demir BN, Yilmaz EN, Sahin F, Ucisik MH. Curcumin- and Piperine-Loaded Emulsomes as Combinational Treatment Approach Enhance the Anticancer Activity of Curcumin on HCT116 Colorectal Cancer Model. Front Bioeng Biotechnol 2020; 8:50. [PMID: 32117930 PMCID: PMC7026030 DOI: 10.3389/fbioe.2020.00050] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Combination chemotherapy, administrating two chemotherapeutic agents concurrently, comes into prominence, as the heterogeneity or the level of the disease necessitates a collaborative action. Curcumin, isolated from turmeric, and piperine, isolated from black long pepper, are two dietary polyphenols studied for their intrinsic anti-cancer properties against various cancer types including colorectal cancer (CRC). Furthermore, piperine improves the therapeutic effect of curcumin. Addressing this mutual behavior, this study combines curcumin and piperine within emulsome nanoformulations. Curcumin- (CurcuEmulsomes) and piperine-loaded emulsomes (PiperineEmulsomes) have established a uniform, stable, spherical dispersion with average diameters of 184.21 and 248.76 nm, respectively. The solid tripalmitin inner core achieved encapsulation capacities of up to 0.10 mg/ml curcumin and 0.09 mg/ml piperine content. While piperine treatment alone - in its both free and emulsome forms - showed no inhibition in the proliferation of HCT116 cells in vitro, its presence as the second drug agent enhanced curcumin's effect. Combination of 7 μM PiperineEmulsome and 25 μM CurcuEmulsome concentrations was found to be most effective with an inhibition of cell proliferation of about 50% viability. Cell cycle arrest at G2/M phase and induced apoptosis verified the improved anti-cancer characteristics of the therapy. While CurcuEmulsomes achieved a fourfold increase in Caspase 3 level, combination of treatment with PiperineEulsomes achieved a sixfold increase in the level of this apoptotic marker. Combinational treatment of HCT116 cells with CurcuEmulsomes and PiperineEmulsomes improved the anticancer activity of the compounds and highlighted the potential of the approach for further in vivo studies.
Collapse
Affiliation(s)
- Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Zeynep Islek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Bilun Nas Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Elif Nur Yilmaz
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Mehmet Hikmet Ucisik
- Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.,Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
6
|
Dou H, Shen R, Tao J, Huang L, Shi H, Chen H, Wang Y, Wang T. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. Front Pharmacol 2017; 8:877. [PMID: 29225578 PMCID: PMC5705620 DOI: 10.3389/fphar.2017.00877] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Curcumin exhibits anti-tumor effects in several cancers, including colorectal carcinoma (CRC), but the detailed mechanisms are still unclear. Here we studied the mechanisms underlying the anti-tumor effect of curcumin in colon cancer cells. SW480 cells were injected into mice to establish the xenograft tumor model, followed by evaluation of survival rate with the treatment of curcumin. The expression levels of β-catenin, Axin and TCF4 were measured in the SW480 cells in the absence or presence of curcumin. Moreover, miRNAs related to the curcumin treatment were also detected in vitro. Curcumin could suppress the growth of colon cancer cells in the mouse model. This anti-tumor activity of curcumin was exerted by inhibiting cell proliferation rather than promoting cell apoptosis. Further study suggested that curcumin inhibited cell proliferation by suppressing the Wnt/β-catenin pathway. MiR-130a was down-regulated by curcumin treatment, and overexpressing miR-130a could abolish the anti-tumor activity of curcumin. Our study confirms that curcumin is able to inhibit colon cancer by suppressing the Wnt/β-catenin pathways via miR-130a. MiR-130a may serve as a new target of curcumin for CRC treatment.
Collapse
Affiliation(s)
- Huiqiang Dou
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Renhui Shen
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jianxin Tao
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Longchang Huang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Haoze Shi
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hang Chen
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yixin Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Tong Wang
- Department of Endoscopy Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Huminiecki L, Horbańczuk J, Atanasov AG. The functional genomic studies of curcumin. Semin Cancer Biol 2017; 46:107-118. [PMID: 28392463 DOI: 10.1016/j.semcancer.2017.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/23/2017] [Accepted: 04/02/2017] [Indexed: 10/19/2022]
Abstract
Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| | - Jarosław Horbańczuk
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
9
|
Belle A, Thiagarajan R, Soroushmehr SMR, Navidi F, Beard DA, Najarian K. Big Data Analytics in Healthcare. BIOMED RESEARCH INTERNATIONAL 2015; 2015:370194. [PMID: 26229957 PMCID: PMC4503556 DOI: 10.1155/2015/370194] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/26/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023]
Abstract
The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.
Collapse
Affiliation(s)
- Ashwin Belle
- Emergency Medicine Department, University of Michigan, Ann Arbor, MI 48109, USA
- University of Michigan Center for Integrative Research in Critical Care (MCIRCC), Ann Arbor, MI 48109, USA
| | - Raghuram Thiagarajan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - S. M. Reza Soroushmehr
- Emergency Medicine Department, University of Michigan, Ann Arbor, MI 48109, USA
- University of Michigan Center for Integrative Research in Critical Care (MCIRCC), Ann Arbor, MI 48109, USA
| | - Fatemeh Navidi
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel A. Beard
- University of Michigan Center for Integrative Research in Critical Care (MCIRCC), Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kayvan Najarian
- Emergency Medicine Department, University of Michigan, Ann Arbor, MI 48109, USA
- University of Michigan Center for Integrative Research in Critical Care (MCIRCC), Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Kim W, Kim HY, Woo J, Rhim HJ, Kang BR, Lee YD, Kim S, Kim JY, Choi EJ, Kim KS, Kim DJ, Kim Y. Real-Time Imaging Reveals Glioblastoma Suppression Effects of Curcumin in Mouse Brains. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Woong Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| | - Hye Yun Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Department of Biochemistry and Biomedical Sciences; Seoul National University College of Medicine; Seoul 110-799 Republic of Korea
| | - Jiwan Woo
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Department of Life Sciences; Korea University; Seoul 136-701 Republic of Korea
| | - Hoo Jung Rhim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Yonsei University Wonju College of Medicine; Gangwon-do 220-701 Republic of Korea
| | - Bo Ram Kang
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| | - Yong-Deok Lee
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Sehoon Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center; Korea Institute of Radiological & Medical Sciences (KIRAMS); Seoul 139-706 Republic of Korea
| | - Eun-Ju Choi
- Department of Life Sciences; Korea University; Seoul 136-701 Republic of Korea
| | - Key-Sun Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Dong Jin Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - YoungSoo Kim
- Centers for Neuro-Medicine, Neuroscience and Theragnosis; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- Biological Chemistry Program; Korea University of Science and Technology (UST); Daejeon 305-350 Republic of Korea
| |
Collapse
|
11
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
12
|
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014; 19:20839-63. [PMID: 25514225 PMCID: PMC6271749 DOI: 10.3390/molecules191220839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
13
|
Orlikova B, Chaouni W, Schumacher M, Aadil M, Diederich M, Kirsch G. Synthesis and bioactivity of novel amino-pyrazolopyridines. Eur J Med Chem 2014; 85:450-7. [DOI: 10.1016/j.ejmech.2014.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
|
14
|
Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY. Mechanisms by Which Pleiotropic Amphiphilic n-3 PUFA Reduce Colon Cancer Risk. CURRENT COLORECTAL CANCER REPORTS 2014; 10:442-452. [PMID: 25400530 DOI: 10.1007/s11888-014-0241-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the major causes of cancer-related mortality in both men and women worldwide. Genetic susceptibility and diet are primary determinants of cancer risk and tumor behavior. Experimental, epidemiological, and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFA) in preventing chronic inflammation and colon cancer. From a mechanistic perspective, n-3 PUFA are pleiotropic and multifaceted with respect to their molecular mechanisms of action. For example, this class of dietary lipid uniquely alters membrane structure/ cytoskeletal function, impacting membrane receptor function and downstream signaling cascades, including gene expression profiles and cell phenotype. In addition, n-3 PUFA can synergize with other potential anti-tumor agents, such as fermentable fiber and curcumin. With the rising prevalence of diet-induced obesity, there is also an urgent need to elucidate the link between chronic inflammation in adipose tissue and colon cancer risk in obesity. In this review, we will summarize recent developments linking n-3 PUFA intake, membrane alterations, epigenetic modulation, and effects on obesity-associated colon cancer risk.
Collapse
Affiliation(s)
- Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Center for Translational Environmental Health Research, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA. Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Vanessa DeClercq
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Molecular & Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Natividad Roberto Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Gaascht F, Teiten MH, Cerella C, Dicato M, Bagrel D, Diederich M. Plumbagin modulates leukemia cell redox status. Molecules 2014; 19:10011-32. [PMID: 25014531 PMCID: PMC6270689 DOI: 10.3390/molecules190710011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 11/16/2022] Open
Abstract
Plumbagin is a plant naphtoquinone exerting anti-cancer properties including apoptotic cell death induction and generation of reactive oxygen species (ROS). The aim of this study was to elucidate parameters explaining the differential leukemia cell sensitivity towards this compound. Among several leukemia cell lines, U937 monocytic leukemia cells appeared more sensitive to plumbagin treatment in terms of cytotoxicity and level of apoptotic cell death compared to more resistant Raji Burkitt lymphoma cells. Moreover, U937 cells exhibited a ten-fold higher ROS production compared to Raji. Neither differential incorporation, nor efflux of plumbagin was detected. Pre-treatment with thiol-containing antioxidants prevented ROS production and subsequent induction of cell death by apoptosis whereas non-thiol-containing antioxidants remained ineffective in both cellular models. We conclude that the anticancer potential of plumbagin is driven by pro-oxidant activities related to the cellular thiolstat.
Collapse
Affiliation(s)
- François Gaascht
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Grand-Duchy of Luxembourg.
| | - Denyse Bagrel
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, F-57070 Metz, France.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
16
|
Sobolewski C, Muller F, Cerella C, Dicato M, Diederich M. Celecoxib prevents curcumin-induced apoptosis in a hematopoietic cancer cell model. Mol Carcinog 2014; 54:999-1013. [PMID: 24798089 DOI: 10.1002/mc.22169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/26/2022]
Abstract
Molecules targeting pro-inflammatory pathways have demonstrated beneficial effects in cancer treatment. More recently, combination of natural and synthetic anti-inflammatory drugs was suggested as an appealing strategy to inhibit tumor growth. Herein, we show that curcumin, a polyphenol from Curcuma longa and celecoxib induce apoptosis in hematopoietic cancer cell lines (Hel, Jurkat, K562, Raji, and U937). Further investigations on the most sensitive cell line, U937, indicated that these effects were tightly associated with an accumulation of the cells in S and G2/M for curcumin and in G0/G1 phase of cell cycle for celecoxib, respectively. The effect of celecoxib on cell cycle is associated with an induction of p27 and the down-regulation of cyclin D1. However, in the case of combination experiments, the pretreatment of U937 cells with celecoxib at non-apoptogenic concentrations counteracted curcumin-induced apoptosis. We found that this effect correlated with the prevention of the accumulation in S and G2/M phase of cell cycle induced by curcumin. Similar results have been obtained when celecoxib and curcumin were co-administrated at the same time. Overall our data suggest that this natural and synthetic drug combination is detrimental for cell death induction.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 2014; 356:251-62. [PMID: 24530513 DOI: 10.1016/j.canlet.2014.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/02/2014] [Accepted: 02/09/2014] [Indexed: 12/15/2022]
Abstract
Cells reprogram their metabolism very early during carcinogenesis; this event is critical for the establishment of other cancer hallmarks. Many oncogenes and tumor suppressor genes control metabolism by interplaying with the existing nutrient-sensing intracellular pathways. Mammalian target of rapamycin, mTOR, is emerging as a collector and sorter of a metabolic network controlling upstream and downstream modulation of these same genes. Natural compounds represent a source of anti-cancer molecules with chemopreventive and therapeutic properties. This review describes selected pathways and genes orchestrating the metabolic reprogramming and discusses the potential of natural compounds to target oncogenic metabolic aberrations.
Collapse
|
18
|
Kewitz S, Volkmer I, Staege MS. Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma. CANCER GROWTH AND METASTASIS 2013; 6:35-52. [PMID: 24665206 PMCID: PMC3941149 DOI: 10.4137/cgm.s11113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Ines Volkmer
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | - Martin S Staege
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| |
Collapse
|
19
|
Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 2013; 57:1619-29. [DOI: 10.1002/mnfr.201300201] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer; Hôpital Kirchberg, Luxembourg; Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer; Hôpital Kirchberg, Luxembourg; Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy; Seoul National University; Seoul Korea
| |
Collapse
|
20
|
Zhou DH, Wang X, Yang M, Shi X, Huang W, Feng Q. Combination of low concentration of (-)-epigallocatechin gallate (EGCG) and curcumin strongly suppresses the growth of non-small cell lung cancer in vitro and in vivo through causing cell cycle arrest. Int J Mol Sci 2013; 14:12023-36. [PMID: 23739680 PMCID: PMC3709771 DOI: 10.3390/ijms140612023] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 01/09/2023] Open
Abstract
(−)-Epigallocatechin gallate (EGCG) and curcumin are two naturally derived agents that have been widely investigated worldwide. They exhibit their anti-tumor effects in many types of cancers. In the current study, the effect of the combination of the two agents on non-small cell lung cancer (NSCLC) cells was investigated. The results revealed that at low concentrations, the combination of the EGCG and curcumin strongly enhanced cell cycle arrest. Flow cytometry analysis showed that the cells were arrested at G1 and S/G2 phases. Two main cell cycle related proteins cyclin D1 and cyclin B1 were significantly inhibited at the present of EGCG and curcumin. EdU (5-ethynyl-2′-deoxyuridine) fluorescence staining showed that the DNA replication was significantly blocked. A clonal growth assay also confirmed a marked repression of cell growth. In a lung cancer xenograft node mice model, combination of EGCG and curcumin exhibited protective effect against weight loss due to tumor burden. Tumor growth was strongly repressed by the combination of the two agents, without causing any serious side-effect. Overall, these results strongly suggest that EGCG in combination with curcumin could be a candidate for chemoprevention agent of NSCLC.
Collapse
Affiliation(s)
- Dong-Hu Zhou
- Department of Nutrition and Food Safety, Nanjing Medical University, Nanjing 211166, Jiangsu, China; E-Mails: (D.-H.Z.); (X.W.); (M.Y.); (X.S.)
| | - Xuemin Wang
- Department of Nutrition and Food Safety, Nanjing Medical University, Nanjing 211166, Jiangsu, China; E-Mails: (D.-H.Z.); (X.W.); (M.Y.); (X.S.)
| | - Mingmin Yang
- Department of Nutrition and Food Safety, Nanjing Medical University, Nanjing 211166, Jiangsu, China; E-Mails: (D.-H.Z.); (X.W.); (M.Y.); (X.S.)
| | - Xiaoyan Shi
- Department of Nutrition and Food Safety, Nanjing Medical University, Nanjing 211166, Jiangsu, China; E-Mails: (D.-H.Z.); (X.W.); (M.Y.); (X.S.)
| | - Wenbin Huang
- Department of Pathology, Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing 210006, Jiangsu, China; E-Mail:
| | - Qing Feng
- Department of Nutrition and Food Safety, Nanjing Medical University, Nanjing 211166, Jiangsu, China; E-Mails: (D.-H.Z.); (X.W.); (M.Y.); (X.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-25-8686-8455; Fax: +86-25-8686-8499
| |
Collapse
|
21
|
Teiten MH, Gaigneaux A, Chateauvieux S, Billing AM, Planchon S, Fack F, Renaut J, Mack F, Muller CP, Dicato M, Diederich M. Identification of differentially expressed proteins in curcumin-treated prostate cancer cell lines. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:289-300. [PMID: 22475723 DOI: 10.1089/omi.2011.0136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to high prevalence and slow progression of prostate cancer, primary prevention appears to be attractive strategy for its eradication. During the last decade, curcumin (diferuloylmethane), a natural compound from the root of turmeric (Curcuma longa), was described as a potent chemopreventive agent. Curcumin exhibits anti-inflammatory, anticarcinogenic, antiproliferative, antiangiogenic, and antioxidant properties in various cancer cell models. This study was designed to identify proteins involved in the anticancer activity of curcumin in androgen-dependent (22Rv1) and -independent (PC-3) human prostate cancer cell lines using two-dimensional difference in gel electrophoresis (2D-DIGE). Out of 425 differentially expressed spots, we describe here the MALDI-TOF-MS analysis of 192 spots of interest, selected by their expression profile. This approach allowed the identification of 60 differentially expressed proteins (32 in 22Rv1 cells and 47 in PC-3 cells). Nineteen proteins are regulated in both cell lines. Further bioinformatic analysis shows that proteins modulated by curcumin are implicated in protein folding (such as heat-shock protein PPP2R1A; RNA splicing proteins RBM17, DDX39; cell death proteins HMGB1 and NPM1; proteins involved in androgen receptor signaling, NPM1 and FKBP4/FKBP52), and that this compound could have an impact on miR-141, miR-152, and miR-183 expression. Taken together, these data support the hypothesis that curcumin is an interesting chemopreventive agent as it modulates the expression of proteins that potentially contribute to prostate carcinogenesis.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sertel S, Eichhorn T, Bauer J, Hock K, Plinkert PK, Efferth T. Pharmacogenomic determination of genes associated with sensitivity or resistance of tumor cells to curcumin and curcumin derivatives. J Nutr Biochem 2011; 23:875-84. [PMID: 21865023 DOI: 10.1016/j.jnutbio.2011.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 03/06/2011] [Accepted: 04/13/2011] [Indexed: 01/07/2023]
Abstract
Curcuma longa L. has long been used as a medicinal plant in traditional Chinese medicine against abdominal disorders. Its active constituent curcumin has anti-inflammatory, chemopreventive and cytotoxic properties. In the present investigation, we have analyzed the cytotoxic activity of curcumin and four derivatives. Among these compounds, ethoxycurcumintrithiadiazolaminomethylcarbonate was the most cytotoxic one. The curcumin-type compounds were not cross-resistant to standard anticancer drugs and were not involved in ATP-binding cassette transporter-mediated multidrug resistance. A combined approach of messenger RNA-based microarray profiling, COMPARE analyses and signaling pathway analyses identified genes as determinants of sensitivity and resistance to curcumin and specific signaling routes involved in cellular response to curcumin. These genes may be useful as biomarkers to develop individualized treatment options in the future. From a nutritional point of view, it is a thriving perspective to further investigate whether C. longa may be used as a spice to improve cancer therapy.
Collapse
Affiliation(s)
- Serkan Sertel
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Hinault MP, Farina-Henriquez-Cuendet A, Goloubinoff P. Molecular chaperones and associated cellular clearance mechanisms against toxic protein conformers in Parkinson's disease. NEURODEGENER DIS 2011; 8:397-412. [PMID: 21411979 DOI: 10.1159/000324514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder marked by the loss of dopaminergic neurons (in particular in the substantia nigra) causing severe impairment of movement coordination and locomotion, associated with the accumulation of aggregated α-synuclein (α-Syn) into proteinaceous inclusions named Lewy bodies. Various early forms of misfolded α-Syn oligomers are cytotoxic. Their formation is favored by mutations and external factors, such as heavy metals, pesticides, trauma-related oxidative stress and heat shock. Here, we discuss the role of several complementing cellular defense mechanisms that may counteract PD pathogenesis, especially in youth, and whose effectiveness decreases with age. Particular emphasis is given to the 'holdase' and 'unfoldase' molecular chaperones that provide cells with potent means to neutralize and scavenge toxic protein conformers. Because chaperones can specifically recognize misfolded proteins, they are key specificity factors for other cellular defenses, such as proteolysis by the proteasome and autophagy. The efficiency of the cellular defenses decreases in stressed or aging neurons, leading to neuroinflammation, apoptosis and tissue loss. Thus, drugs that can upregulate the molecular chaperones, the ubiquitin-proteasome system and autophagy in brain tissues are promising avenues for therapies against PD and other mutation-, stress- or age-dependent protein-misfolding diseases.
Collapse
Affiliation(s)
- Marie-Pierre Hinault
- DBMV, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
24
|
Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 2010; 343:489-99. [PMID: 20726007 DOI: 10.1002/ardp.200900319] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin (diferuloylmethane), a derivative of turmeric is one of the most commonly used and highly researched phytochemicals. Abundant sources provide interesting insights into the multiple mechanisms by which curcumin may mediate chemotherapy and chemopreventive effects on cancer. The pleiotropic role of this dietary compound includes the inhibition of several cell signaling pathways at multiple levels, such as transcription factors (NF-κB and AP-1), enzymes (COX-2, MMPs), cell cycle arrest (cyclin D1), proliferation (EGFR and Akt), survival pathways (β-catenin and adhesion molecules), and TNF. Curcumin up-regulates caspase family proteins and down-regulates anti-apoptotic genes (Bcl-2 and Bcl-X(L)). In addition, cDNA microarrays analysis adds a new dimension for molecular responses of cancer cells to curcumin at the genomic level. Although, curcumin's poor absorption and low systemic bioavailability limits the access of adequate concentrations for pharmacological effects in certain tissues, active levels in the gastrointestinal tract have been found in animal and human pharmacokinetic studies. Currently, sufficient data has been shown to advocate phase II and phase III clinical trials of curcumin for a variety of cancer conditions including multiple myeloma, pancreatic, and colon cancer.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | | | |
Collapse
|
25
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13:1763-811. [PMID: 20446769 PMCID: PMC2966482 DOI: 10.1089/ars.2009.3074] [Citation(s) in RCA: 600] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 12/22/2022]
Abstract
Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.
Collapse
|
26
|
Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules 2010; 15:7035-74. [PMID: 20944521 PMCID: PMC6259231 DOI: 10.3390/molecules15107035] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/02/2010] [Accepted: 10/11/2010] [Indexed: 02/07/2023] Open
Abstract
Despite considerable improvements in the tolerance and efficacy of novel chemotherapeutic agents, the mortality of hematological malignancies is still high due to therapy relapse, which is associated with bad prognosis. Dietary polyphenolic compounds are of growing interest as an alternative approach, especially in cancer treatment, as they have been proven to be safe and display strong antioxidant properties. Here, we provide evidence that both resveratrol and curcumin possess huge potential for application as both chemopreventive agents and anticancer drugs and might represent promising candidates for future treatment of leukemia. Both polyphenols are currently being tested in clinical trials. We describe the underlying mechanisms, but also focus on possible limitations and how they might be overcome in future clinical use – either by chemically synthesized derivatives or special formulations that improve bioavailability and pharmacokinetics.
Collapse
Affiliation(s)
- Mareike Kelkel
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail: (M.K.)
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany; E-Mail:
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail: (M.K.)
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail: (M.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-2468-4040; Fax: +352-2468-4060
| |
Collapse
|
27
|
Shehzad A, Wahid F, Lee YS. Curcumin in Cancer Chemoprevention: Molecular Targets, Pharmacokinetics, Bioavailability, and Clinical Trials. Arch Pharm (Weinheim) 2010. [DOI: 10.1002/ardp.200900319 order by 43135--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2010; 2:128-62. [PMID: 22069551 PMCID: PMC3206621 DOI: 10.3390/toxins2010128] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 02/07/2023] Open
Abstract
As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments.
Collapse
|
29
|
Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M. Chemopreventive potential of curcumin in prostate cancer. GENES AND NUTRITION 2009; 5:61-74. [PMID: 19806380 DOI: 10.1007/s12263-009-0152-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an overview of the chemopreventive potential of curcumin (diferuloylmethane), a well-known natural compound that exhibits therapeutic promise for prostate cancer. In fact, it interferes with prostate cancer proliferation and metastasis development through the down-regulation of androgen receptor and epidermal growth factor receptor, but also through the induction of cell cycle arrest. It regulates the inflammatory response through the inhibition of pro-inflammatory mediators and the NF-kappaB signaling pathway. These results are consistent with this compound's ability to up-induce pro-apoptotic proteins and to down-regulate the anti-apoptotic counterparts. Alone or in combination with TRAIL-mediated immunotherapy or radiotherapy, curcumin is also reported to be a good inducer of prostate cancer cell death by apoptosis. Curcumin appears thus as a non-toxic alternative for prostate cancer prevention, treatment or co-treatment.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, 2540 Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|