1
|
Gramling DP, van Veldhuisen AL, Damen FW, Thatcher K, Liu F, McComb D, Lincoln J, Breuer CK, Goergen CJ, Sacks MS. In Vivo Three-Dimensional Geometric Reconstruction of the Mouse Aortic Heart Valve. Ann Biomed Eng 2024; 52:2596-2609. [PMID: 38874705 DOI: 10.1007/s10439-024-03555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.
Collapse
Affiliation(s)
- Daniel P Gramling
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Herma Heart Institute, Children's Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Felix Liu
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - David McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Herma Heart Institute, Children's Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Christopher K Breuer
- Tissue Engineering and Surgical Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Johnson EL, Rajanna MR, Yang CH, Hsu MC. Effects of membrane and flexural stiffnesses on aortic valve dynamics: identifying the mechanics of leaflet flutter in thinner biological tissues. FORCES IN MECHANICS 2022; 6:100053. [PMID: 36278140 PMCID: PMC9583650 DOI: 10.1016/j.finmec.2021.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Valvular pathologies that induce deterioration in the aortic valve are a common cause of heart disease among aging populations. Although there are numerous available technologies to treat valvular conditions and replicate normal aortic function by replacing the diseased valve with a bioprosthetic implant, many of these devices face challenges in terms of long-term durability. One such phenomenon that may exacerbate valve deterioration and induce undesirable hemodynamic effects in the aorta is leaflet flutter, which is characterized by oscillatory motion in the biological tissues. While this behavior has been observed for thinner bioprosthetic valves, the specific underlying mechanics that lead to leaflet flutter have not previously been identified. This work proposes a computational approach to isolate the fundamental mechanics that induce leaflet flutter in thinner biological tissues during the cardiac cycle. The simulations in this work identify reduced flexural stiffness as the primary factor that contributes to increased leaflet flutter in thinner biological tissues, while decreased membrane stiffness and mass of the thinner tissues do not directly induce flutter in these valves. The results of this study provide an improved understanding of the mechanical tissue properties that contribute to flutter and offer significant insights into possible developments in the design of bioprosthetic tissues to account for and reduce the incidence of flutter.
Collapse
Affiliation(s)
- Emily L. Johnson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Manoj R. Rajanna
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Cheng-Hau Yang
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu MC. Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Natl Acad Sci U S A 2020; 117:19007-19016. [PMID: 32709744 PMCID: PMC7431095 DOI: 10.1073/pnas.2002821117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Valvular heart disease has recently become an increasing public health concern due to the high prevalence of valve degeneration in aging populations. For patients with severely impacted aortic valves that require replacement, catheter-based bioprosthetic valve deployment offers a minimally invasive treatment option that eliminates many of the risks associated with surgical valve replacement. Although recent percutaneous device advancements have incorporated thinner, more flexible biological tissues to streamline safer deployment through catheters, the impact of such tissues in the complex, mechanically demanding, and highly dynamic valvular system remains poorly understood. The present work utilized a validated computational fluid-structure interaction approach to isolate the behavior of thinner, more compliant aortic valve tissues in a physiologically realistic system. This computational study identified and quantified significant leaflet flutter induced by the use of thinner tissues that initiated blood flow disturbances and oscillatory leaflet strains. The aortic flow and valvular dynamics associated with these thinner valvular tissues have not been previously identified and provide essential information that can significantly advance fundamental knowledge about the cardiac system and support future medical device innovation. Considering the risks associated with such observed flutter phenomena, including blood damage and accelerated leaflet deterioration, this study demonstrates the potentially serious impact of introducing thinner, more flexible tissues into the cardiac system.
Collapse
Affiliation(s)
- Emily L Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Michael C H Wu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Fei Xu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Nelson M Wiese
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Manoj R Rajanna
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Austin J Herrema
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | | | - Thomas J R Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712;
| | - Michael S Sacks
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712;
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011;
| |
Collapse
|
4
|
Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu MC. Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2019; 357:112556. [PMID: 32831419 PMCID: PMC7442159 DOI: 10.1016/j.cma.2019.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The transcatheter aortic valve replacement (TAVR) has emerged as a minimally invasive alternative to surgical treatments of valvular heart disease. TAVR offers many advantages, however, the safe anchoring of the transcatheter heart valve (THV) in the patients anatomy is key to a successful procedure. In this paper, we develop and apply a novel immersogeometric fluid-structure interaction (FSI) framework for the modeling and simulation of the TAVR procedure to study the anchoring ability of the THV. To account for physiological realism, methods are proposed to model and couple the main components of the system, including the arterial wall, blood flow, valve leaflets, skirt, and frame. The THV is first crimped and deployed into an idealized ascending aorta. During the FSI simulation, the radial outward force and friction force between the aortic wall and the THV frame are examined over the entire cardiac cycle. The ratio between these two forces is computed and compared with the experimentally estimated coefficient of friction to study the likelihood of valve migration.
Collapse
Affiliation(s)
- Michael C. H. Wu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Heather M. Muchowski
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
- Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, Iowa 50011, USA
| | - Emily L. Johnson
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Manoj R. Rajanna
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| |
Collapse
|
5
|
Zhang W, Sacks MS. Modeling the response of exogenously crosslinked tissue to cyclic loading: The effects of permanent set. J Mech Behav Biomed Mater 2017; 75:336-350. [PMID: 28780254 DOI: 10.1016/j.jmbbm.2017.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022]
Abstract
Bioprosthetic heart valves (BHVs), fabricated from exogenously crosslinked collagenous tissues, remain the most popular heart valve replacement design. However, the life span of BHVs remains limited to 10-15 years, in part because the mechanisms that underlie BHV failure remain poorly understood. Experimental evidence indicates that BHVs undergo significant changes in geometry with in vivo operation, which lead to stress concentrations that can have significant impact on structural damage. These changes do not appear to be due to plastic deformation, as the leaflets only deform in the elastic regime. Moreover, structural damage was not detected by the 65 million cycle time point. Instead, we found that this nonrecoverable deformation is similar to the permanent set effect observed in elastomers, which allows the reference configuration of the material to evolve over time. We hypothesize that the scission-healing reaction of glutaraldehyde is the underlying mechanism responsible for permanent set in exogenously crosslinked soft tissues. The continuous scission-healing process of glutaraldehyde allows a portion of the exogenously crosslinked matrix, which is considered to be the non-fibrous part of the extra-cellular matrix, to be re-crosslinked in the loaded state. Thus, this mechanism for permanent set can be used to explain the time evolving mechanical response and geometry of BHVs in the early stage. To model the permanent set effect, we assume that the exogenously crosslinked matrix undergoes changes in reference configurations over time. The changes in the collagen fiber architecture due to dimensional changes allow us to predict subsequent changes in mechanical response. Results show that permanent set alone can explain and, more importantly, predict how the mechanical response of the biomaterial change with time. Furthermore, we found is no difference in permanent set rate constants between the strain controlled and the stress controlled cyclic loading studies. An important finding we have is that the collagen fiber architecture has a limiting effect on the maximum changes in geometry that the permanent set effect can induce. This is due to the recruitment of collagen fibers as the changes in geometry due to permanent set increase. This means we can potentially optimize the BHV geometry based on the predicted the final BHV geometry after permanent set has largely ceased. Thus, we have developed the first structural constitutive model for the permanent set effect in exogenously crosslinked soft tissue, which can help to simulate BHV designs and reduce changes in BHV geometry during cyclic loading and thus potentially increasing BHV durability.
Collapse
Affiliation(s)
- Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-0027, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-0027, USA.
| |
Collapse
|
6
|
Guidoin R, Zegdi R, Lin J, Mao J, Rochette-Drouin O, How D, Guan X, Bruneval P, Wang L, Germain L, Zhang Z. Transcatheter heart valve crimping and the protecting effects of a polyester cuff. Morphologie 2016; 100:234-244. [PMID: 27461102 DOI: 10.1016/j.morpho.2016.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Prior to deployment, the percutaneous heart valves must be crimped and loaded into sheaths of diameters that can be as low as 6mm for a 23mm diameter valve. However, as the valve leaflets are fragile, any damage caused during this crimping process may contribute to reducing its long-term durability in vivo. MATERIAL AND METHOD Bovine pericardium percutaneous valves were manufactured as follows. The leaflets were sutured on a nitinol frame. A polyester cuff fabric served as a buffer between the pericardium and the stent. Two valves were crimped and one valve was used as control. The valves were examined in gross observation and micro-CT scan and then the leaflets were processed for histology and analyzed in scanning electron microscopy, light microscopy and transmission electron microscopy. RESULT Crimping of the valves resulted in the increase thickness of the leaflets and there was no evidence of additional delamination. The heavy prints of the stents were irregularly distributed on the outflow surface in the crimped devices and were shallow and did not penetrate throughout the thickness of the leaflets. However, the wavy microscopy of collagen fiber bundles was well preserved. They were found to remain individualized without any agglutination as shown by the regular banding appearance. CONCLUSION Crimping of self-deployable valves per se caused only minor damages to the leaflets. However, the procedure could be refined in order to minimize areas of high pressure and swelling of the tissue that can be accompanied with flow surface disruption and increase of the hydraulic conductance. The incorporation of a polyester buffer serves to prevent the deleterious effects that may be caused if the pericardium tissue were in direct contact with the nitinol stent.
Collapse
Affiliation(s)
- R Guidoin
- Department of surgery, faculty of medicine, Laval university and axe médecine régénérative, centre de recherche, CHU, Vandry building, 2325, rue de l'Université, GIV OA6 Québec, Canada.
| | - R Zegdi
- Services de chirurgie cardiovasculaire et de pathologie, hôpital européen Georges-Pompidou, 75015 Paris, France
| | - J Lin
- Key laboratory of textile science and technology of Ministry of Education and College of Textile, Donghua university, Shanghai, China
| | - J Mao
- Department of surgery, faculty of medicine, Laval university and axe médecine régénérative, centre de recherche, CHU, Vandry building, 2325, rue de l'Université, GIV OA6 Québec, Canada
| | - O Rochette-Drouin
- Department of surgery, faculty of medicine, Laval university and axe médecine régénérative, centre de recherche, CHU, Vandry building, 2325, rue de l'Université, GIV OA6 Québec, Canada
| | - D How
- Peninsula school of medicine and dentistry, Plymouth, Devon, United Kingdom
| | - X Guan
- Key laboratory of textile science and technology of Ministry of Education and College of Textile, Donghua university, Shanghai, China
| | - P Bruneval
- Services de chirurgie cardiovasculaire et de pathologie, hôpital européen Georges-Pompidou, 75015 Paris, France
| | - L Wang
- Key laboratory of textile science and technology of Ministry of Education and College of Textile, Donghua university, Shanghai, China
| | - L Germain
- Department of surgery, faculty of medicine, Laval university and axe médecine régénérative, centre de recherche, CHU, Vandry building, 2325, rue de l'Université, GIV OA6 Québec, Canada
| | - Z Zhang
- Department of surgery, faculty of medicine, Laval university and axe médecine régénérative, centre de recherche, CHU, Vandry building, 2325, rue de l'Université, GIV OA6 Québec, Canada
| |
Collapse
|
7
|
Lin J, Wang L, Guidoin R, Nutley M, Song G, Zhang Z, Du J, Douville Y. Stent fabric fatigue of grafts supported by Z-stents versus ringed stents: An in vitro buckling test. J Biomater Appl 2013; 28:965-77. [DOI: 10.1177/0885328213488228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stent-grafts externally fitted with a Z-shaped stents were compared to devices fitted with ringed stents in an in vitro oscillating fatigue machine at 200 cycles per minute and a pressure of 360 mmHg for scheduled durations of up to 1 week. The devices fitted with Z-stents showed a considerably lower endurance limit to buckling compared to the controls. The contact between the apexes of adjacent Z-stents resulted in significant damage to the textile scaffolds and polyester fibers due to the sharp angle of the Z-stents. The ringed stents did not cause any fraying in the textile scaffolds.
Collapse
Affiliation(s)
- Jing Lin
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, China
| | - Robert Guidoin
- Department of Surgery, Laval University and Québec Biomaterials Institute, Quebec City, QC, Canada
| | - Mark Nutley
- Section of Vascular Surgery, Peter Lougheed Health Center, University of Calgary, Calgary, AB, Canada
| | - Ge Song
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, China
| | - Ze Zhang
- Department of Surgery, Laval University and Québec Biomaterials Institute, Quebec City, QC, Canada
| | - Jia Du
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, China
| | - Yvan Douville
- Department of Surgery, Laval University and Québec Biomaterials Institute, Quebec City, QC, Canada
| |
Collapse
|
8
|
Gauvin R, Marinov G, Mehri Y, Klein J, Li B, Larouche D, Guzman R, Zhang Z, Germain L, Guidoin R. A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants. J Biomater Appl 2012; 28:552-65. [DOI: 10.1177/0885328212465482] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: Prosthetic heart valves designed to be implanted percutaneously must be loaded within delivery catheters whose diameter can be as low as 18 F (6 mm). This mandatory crimping of the devices may result in deleterious damages to the tissues used for valve manufacturing. As bovine and porcine pericardial tissue are currently given preference because of their excellent availability and traceability, a preliminary comparative study was undertaken to highlight their potential advantages. Materials and methods: Bovine and pericardium patches were compared morphologically (light microscopy, scanning electron microscopy and transmission electron microscopy). The acute thrombogenicity of both materials was measured in term of platelet uptake and observed by scanning electron microscopy, porcine intact and injured arteries being used as controls. The pericardium specimens were also subjected to uniaxial tensile tests to compare their respective mechanical characteristics. Results: Both pericardiums showed a layered architecture of collagen bundles presenting some interstitial cells. They displayed wavy crimps typical of an unloaded collagenous tissue. The collagen bundles were not bound together and the fibrils were parallel with characteristic periodicity patterns of cross striations. The mesothelial cells found in vivo on the serous surface were no longer present due to tissue processing, but the adjacent structure was far more compacted when compared to the fibrous side. The fibrinocollagenous surfaces were found to be more thrombogenic for both bovine and porcine tissues and the serous side of the porcine pericardium retained more platelets when compared to the bovine samples, making the acute thrombogenicity more important in the porcine pericardium. Conclusion: Both bovine and porcine pericardium used in cardiovascular implantology can be selected to manufacture percutaneous heart valves. The selection of one pericardium preferably to the other should deserve additional testing regarding the innocuousness of crimping when loaded in delivery catheters and the long-term durability after percutaneous deployment.
Collapse
Affiliation(s)
- Robert Gauvin
- Center of LOEX, Laval University, Quebec (QC), Canada
| | | | - Yayhe Mehri
- Montreal Heart Institute, Montreal (QC), Canada
| | | | - Bin Li
- Research Center of Saint-François d'Assise Hospital (CHU), Laval University, Quebec (QC), Canada
| | | | | | - Ze Zhang
- Research Center of Saint-François d'Assise Hospital (CHU), Laval University, Quebec (QC), Canada
| | - Lucie Germain
- Center of LOEX, Laval University, Quebec (QC), Canada
| | - Robert Guidoin
- Research Center of Saint-François d'Assise Hospital (CHU), Laval University, Quebec (QC), Canada
| |
Collapse
|