1
|
Hu P, Cai J, Yang C, Xu L, Ma S, Song H, Yang P. SLAMF3 promotes Th17 differentiation and is reversed by iguratimod through JAK1/STAT3 pathway in primary Sjögren's syndrome. Int Immunopharmacol 2024; 126:111282. [PMID: 38061117 DOI: 10.1016/j.intimp.2023.111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE The signaling lymphocytic activation molecule family of receptors (SLAMF) is involved in the activation of T cells and plays important roles in the pathogenesis of autoimmune diseases. The purpose of this study is to observe the expression of SLAMF3 on CD4 + T cells and its effect on the differentiation of T helper 17 (Th17) in primary Sjögren's syndrome (pSS). Furthermore, we found iguratimod (IGU) could effectively reverse the aberrant Th17 differentiation through JAK1/STAT3 signaling. METHODS Peripheral blood mononuclear cells from 40 pSS and 40 healthy control subjects were enrolled for analysis of expression of SLAMF3 on CD4 + T and Th17 cells by flow cytometry. Serum IL-17 and SLAMF3 were detected by ELISA assay. Labial biopsies from 20 pSS patients and 20 non-pSS controls were performed immunohistochemical for staining expression of CD4, IL-17, and SLAMF3. Under the priming conditions with anti-CD3/CD28 or CD3/SLAMF3 antibodies on CD4 + T cells extracted from pSS and controls, the proportion of Th17 cells in CD4 + T cells and the amount of soluble IL-17A were assessed by flow cytometry and ELISA. Furthermore, RNA sequencing was performed for the transcriptomics study. Additionally, RNA level of RORγt and IL-17A and the protein level of RORγt, p-JAK1 and p-STAT3, were detected by real-time PCR and western blot. RESULTS The expression levels of SLAMF3 on CD4 + T and Th17 cells in the peripheral blood and salivary glands in pSS patients were significantly elevated than that in control groups. The serum IL-17A and SLAMF3 in pSS patients were much higher compared with the control group. Although co-stimulation of CD3/SLAMF3 could promote CD4 + T cells differentiate into Th17 cells both in pSS and controls, the CD4 + T cells from pSS have a more sensitive response in Th17 differentiation with the SLAMF3 stimulation. Transcriptomics results showed the CD3/SLAMF3 stimulation caused the activation of Th17 signaling and JAK1/STAT3 pathway. Quantitative PCR and western blotting confirmed the IGU (iguratimod), which is a safe clinical drug in treatment of autoimmune diseases, effectively reversed the increased Th17 proportion, the expression levels of RORγt, pJAK1, and pSTAT3 caused by CD3/SLAMF3 stimulation. CONCLUSION SLAMF3 upregulates Th17 cell differentiation of CD4 + T cells and IL-17A secretion through enriching RORγt and activating the transcriptomics participating in the pathogenesis of primary Sjögren's syndrome. IGU could inhibit the process through this therapeutic target in pSS.
Collapse
Affiliation(s)
- Peini Hu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Juan Cai
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Lingling Xu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Siyang Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, People's Republic of China
| | - Haining Song
- Department of Rheumatology and Immunology, Chifeng Municipal Hospital, Chifeng 024000, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
2
|
Lin Z, Tang X, Cao Y, Yang L, Jiang M, Li X, Min J, Chen B, Yang Y, Gu C. CD229 interacts with RASAL3 to activate RAS/ERK pathway in multiple myeloma proliferation. Aging (Albany NY) 2022; 14:9264-9279. [PMID: 36445333 PMCID: PMC9740379 DOI: 10.18632/aging.204405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, while CAR-T therapy offers a new direction for the treatment of MM. Recently, signaling lymphocytic activation molecule family 3 (CD229), a cell surface immune receptor belonging to the signaling lymphocyte activating molecule family (SLAMF), is emerging as a CAR-T therapeutic target in MM. However, a clear role of CD229 in MM remains elusive. In this study, MM patients with elevated CD229 expression achieved poor prognosis by analyzing MM clinical databases. In addition, CD229 promoted MM cell proliferation in vitro as well as in xenograft mouse model in vivo. Mechanism study revealed that CD229 promoted MM cell proliferation by regulating the RAS/ERK signaling pathway. Further exploration employed co-immunoprecipitation coupled with mass spectrometry to identify RASAL3 as an important downstream protein of CD229. Additionally, we developed a co-culture method combined with the immunofluorescence assay to confirm that intercellular tyrosine phosphorylation mediated self-activation of CD229 to activate RAS/ERK signaling pathway via interacting with RASAL3. Taken together, these findings not only demonstrate the oncogenic role of CD229 in MM cell proliferation, but also illustrate the potential of CD229 as a promising therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Zigen Lin
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhu Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhao Cao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijin Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinying Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Min
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Zhong MC, Lu Y, Qian J, Zhu Y, Dong L, Zahn A, Di Noia JM, Karo-Atar D, King IL, Veillette A. SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. J Exp Med 2021; 218:e20200756. [PMID: 33237304 PMCID: PMC7694575 DOI: 10.1084/jem.20200756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yingzi Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Astrid Zahn
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Javier M. Di Noia
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Danielle Karo-Atar
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L. King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020279. [PMID: 33451089 PMCID: PMC7828503 DOI: 10.3390/cancers13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable hematological malignancy characterized by an increase in abnormal plasma cells. Disease progression, drug resistance, and immunosuppression in MM are associated with immune-related molecules, such as immune checkpoint and co-stimulatory molecules, present in the tumor microenvironment. Novel agents targeting these cell-surface molecules are currently under development, including monoclonal antibodies, bispecific monoclonal antibodies, and chimera antigen receptor T-cell therapies. In this review, we focus on the signaling lymphocytic activation molecule family receptors and provide an overview of their biological functions and novel therapies in MM. Abstract The signaling lymphocytic activation molecule (SLAM) family receptors are expressed on various immune cells and malignant plasma cells in multiple myeloma (MM) patients. In immune cells, most SLAM family molecules bind to themselves to transmit co-stimulatory signals through the recruiting adaptor proteins SLAM-associated protein (SAP) or Ewing’s sarcoma-associated transcript 2 (EAT-2), which target immunoreceptor tyrosine-based switch motifs in the cytoplasmic regions of the receptors. Notably, SLAMF2, SLAMF3, SLAMF6, and SLAMF7 are strongly and constitutively expressed on MM cells that do not express the adaptor proteins SAP and EAT-2. This review summarizes recent studies on the expression and biological functions of SLAM family receptors during the malignant progression of MM and the resulting preclinical and clinical research involving four SLAM family receptors. A better understanding of the relationship between SLAM family receptors and MM disease progression may lead to the development of novel immunotherapies for relapse prevention.
Collapse
|
5
|
Yoon H, Kim EK, Ko YH. SLAMF1 contributes to cell survival through the AKT signaling pathway in Farage cells. PLoS One 2020; 15:e0238791. [PMID: 32886706 PMCID: PMC7473542 DOI: 10.1371/journal.pone.0238791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
SLAMF1 is often overexpressed in Epstein Barr virus (EBV)-infected B cell tumors. However, its role in the pathogenesis of EBV-infected B cell tumors remains largely unknown. Here, we generated SLAMF1-deficient EBV+ tumor cells and examined the effect of its deficiency on cell proliferation and cell survival. There were no significant differences in cell proliferation and cell cycle distribution for short periods between the SLAMF1-deficient and wild-type cells. However, the deficient cells were more resistant to an AKT inhibitor (MK-2206). When the both cells were co-cultured and repeatedly exposed to the limitations in nutrition and growth factors, the SLAMF1-deficient cells were gradually decreased. We observed that levels of phospho-AKT were differentially regulated according to the nutritional status between the SLAMF1-deficient and wild-type cells. A decrease in phospho-AKT was observed in SLAMF1-deficient cells as well as an increase in pro-apoptotic Bim just before cell passage, which may have been due to the loss of SLAMF1 under poor growth condition. Overall, SLAMF1 is not a strong survival factor, but it seems to be necessary for cell survival in unfavorable growth condition.
Collapse
Affiliation(s)
- Heejei Yoon
- Clinical Medicine Research Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Department of Ophthalmology, Corneal Dystrophy Research Institute, College of Medicine, Yonsei University, Seoul, South Korea
- * E-mail: (YHK); (HY)
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- * E-mail: (YHK); (HY)
| |
Collapse
|
6
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
7
|
Ishibashi M, Takahashi R, Tsubota A, Sasaki M, Handa H, Imai Y, Tanaka N, Tsukune Y, Tanosaki S, Ito S, Asayama T, Sunakawa M, Kaito Y, Kuribayashi-Hamada Y, Onodera A, Moriya K, Komatsu N, Tanaka J, Odajima T, Sugimori H, Inokuchi K, Tamura H. SLAMF3-Mediated Signaling via ERK Pathway Activation Promotes Aggressive Phenotypic Behaviors in Multiple Myeloma. Mol Cancer Res 2020; 18:632-643. [PMID: 31974290 DOI: 10.1158/1541-7786.mcr-19-0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 12/03/2019] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
The signaling lymphocytic activation molecule family 3 (SLAMF3) is a member of the immunoglobulin superfamily expressed on T, B, and natural killer cells and modulates the activation and cytotoxicity of these cells. SLAMF3 is also expressed on plasma cells from patients with multiple myeloma (MM), although its role in MM pathogenesis remains unclear. This study found that SLAMF3 is highly and constitutively expressed on MM cells regardless of disease stage and that SLAMF3 knockdown/knockout suppresses proliferative potential and increases drug-induced apoptosis with decreased levels of phosphorylated ERK protein in MM cells. SLAMF3-overexpressing MM cells promote aggressive myeloma behavior in comparison with cytoplasmic domain-truncated SLAMF3 (ΔSLAMF3) cells. SLAMF3 interacts directly with adaptor proteins SH2 domain-containing phosphatase 2 (SHP2) and growth factor receptor bound 2 (GRB2), which also interact with each other. SLAMF3 knockdown, knockout, ΔSLAMF3, and SHP2 inhibitor-treated MM cells decreased phosphorylated ERK protein levels. Finally, serum soluble SLAMF3 (sSLAMF3) levels were markedly increased in advanced MM. Patients with high levels of sSLAMF3 progressed to the advanced stage significantly more often and had shorter progression-free survival times than those with low levels. This study revealed that SLAMF3 molecules consistently expressed on MM cells transmit MAPK/ERK signals mediated via the complex of SHP2 and GRB2 by self-ligand interaction between MM cells and induce a high malignant potential in MM. Furthermore, high levels of serum sSLAMF3 may reflect MM disease progression and be a useful prognostic factor. IMPLICATIONS: SLAMF3 may be a new therapeutic target for immunotherapy and novel agents such as small-molecule inhibitors.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Risa Takahashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Asako Tsubota
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Makoto Sasaki
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Tsukune
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Sakae Tanosaki
- Department of Hematology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Shigeki Ito
- Department of Hematology/Oncology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Mika Sunakawa
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Asaka Onodera
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Moriya
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Norio Komatsu
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Odajima
- Faculty of Health Science, Daito Bunka University School of Sports and Health Science, Saitama, Japan
| | - Hiroki Sugimori
- Department of Preventive Medicine, Daito Bunka University Graduate School of Sports and Health Science, Saitama, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
8
|
Han Y, Wang X, Pang X, Hu M, Lu Y, Qu J, Chen G. Di-(2-ethylhexyl)-phthalate interferes with T-follicular helper cell differentiation and cytokine secretion through signaling lymphocytic activation molecule family member-1. J Immunotoxicol 2019; 16:155-163. [DOI: 10.1080/1547691x.2019.1649765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yu Han
- Department of Occupational Medicine and Environmental Hygiene, College of Public Health, Nantong University, Nantong, China
| | - Xiaoying Wang
- Department of Immunology College of Medicine, Nantong University, Nantong, China
| | - Xiaoxiao Pang
- Department of Immunology College of Medicine, Nantong University, Nantong, China
| | - Mangze Hu
- Department of Immunology College of Medicine, Nantong University, Nantong, China
| | - Ying Lu
- Department of Nutrition and Food Hygiene, College of Public Health, Nantong University, Nantong, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Hygiene, College of Public Health, Nantong University, Nantong, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Hygiene, College of Public Health, Nantong University, Nantong, China
| |
Collapse
|
9
|
Abstract
SLAMF9 belongs to the conserved lymphocytic activation molecule family (SLAMF). Unlike other SLAMs, which have been extensively studied, the role of SLAMF9 in the immune system remained mostly unexplored. By generating CRISPR/Cas9 SLAMF9 knockout mice, we analyzed the role of this receptor in plasmacytoid dendritic cells (pDCs), which preferentially express the SLAMF9 transcript and protein. These cells display a unique capacity to produce type I IFN and bridge between innate and adaptive immune response. Analysis of pDCs in SLAMF9-/- mice revealed an increase of immature pDCs in the bone marrow and enhanced accumulation of pDCs in the lymph nodes. In the periphery, SLAMF9 deficiency resulted in lower levels of the transcription factor SpiB, elevation of pDC survival, and attenuated IFN-α and TNF-α production. To define the role of SLAMF9 during inflammation, pDCs lacking SLAMF9 were followed during induced experimental autoimmune encephalomyelitis. SLAMF9-/- mice demonstrated attenuated disease and delayed onset, accompanied by a prominent increase of immature pDCs in the lymph node, with a reduced costimulatory potential and enhanced infiltration of pDCs into the central nervous system. These results suggest the crucial role of SLAMF9 in pDC differentiation, homeostasis, and function in the steady state and during experimental autoimmune encephalomyelitis.
Collapse
|
10
|
Yigit B, Wang N, Herzog RW, Terhorst C. SLAMF6 in health and disease: Implications for therapeutic targeting. Clin Immunol 2018; 204:3-13. [PMID: 30366106 DOI: 10.1016/j.clim.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Dollt C, Michel J, Kloss L, Melchers S, Schledzewski K, Becker K, Sauer A, Krewer A, Koll F, Schmieder A. The novel immunoglobulin super family receptor SLAMF9 identified in TAM of murine and human melanoma influences pro-inflammatory cytokine secretion and migration. Cell Death Dis 2018; 9:939. [PMID: 30232321 PMCID: PMC6145869 DOI: 10.1038/s41419-018-1011-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023]
Abstract
Melanoma is a highly immunogenic tumor with a good response to treatment with immune checkpoint inhibitors. Tumor-associated macrophages (TAMs) play an important immunosuppressive role in such tumors and have therefore been identified as possible future therapeutic targets in oncology. The aim of this study was to identify novel immunoregulatory receptors specifically expressed on TAM. Expression of Slamf9, a member of the signaling lymphocytic-activating molecule (Slam) immunoreceptor family, was found to be upregulated in a gene expression analysis of murine bone marrow-derived macrophages (BMDM) stimulated with tumor-conditioned medium of B16F1 melanoma cells. SLAMF9+ macrophages were identified in human and murine melanomas by using self-generated antibodies against human and murine SLAMF9. A comprehensive immunohistochemical analysis of tissue microarrays detected SLAMF9+ TAM in 73.3% of human melanomas, but also in 95.5% of naevi of melanoma patients and in 50% of naevi from healthy controls. In addition, 20% of melanomas and 2.3% of naevi from melanoma patients displayed a positive SLAMF9 expression also in melanocytic cells. No SLAMF9 expression was detected in naevus cells of healthy donors. Although SLAMF9 has no intracellular signaling motif, a comprehensive functional analysis revealed that the molecule was able to significantly enhance TNF-α secretion after LPS-stimulation. In addition, SLAMF9 delayed the wound closure of RAW 264.7 cells in a scratch assay, while proliferation and cell death were not affected. Taken together, SLAMF9 is a novel type-I-transmembrane receptor with immunomodulatory properties in macrophages. Further studies are required to evaluate whether SLAMF9 classifies as a promising future therapeutic target in melanoma.
Collapse
Affiliation(s)
- Claudia Dollt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Michel
- Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Loreen Kloss
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Susanne Melchers
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Kathrin Becker
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Andrea Sauer
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Andreas Krewer
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Franziska Koll
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - Astrid Schmieder
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
12
|
Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R. Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front Immunol 2018; 9:1884. [PMID: 30158933 PMCID: PMC6104131 DOI: 10.3389/fimmu.2018.01884] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells play key role in providing help to B cells during germinal center (GC) reactions. Generation of protective antibodies against various infections is an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh cell responses has been implicated in various autoimmune disorders, inflammation, and malignancy. Thus, their differentiation and maintenance must be closely regulated to ensure appropriate help to B cells. The generation and function of Tfh cells is regulated by multiple checkpoints including their early priming stage in T zones and throughout the effector stage of differentiation in GCs. Signaling pathways activated downstream of cytokine and costimulatory receptors as well as consequent activation of subset-specific transcriptional factors are essential steps for Tfh cell generation. Thus, understanding the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into spotlight potential targets for novel therapies. In this review, we discuss the recent findings related to the molecular mechanisms of Tfh cell differentiation and their role in normal immune responses and antibody-mediated diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tayab C Waseem
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anupama Sahoo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayahati Bieerkehazhi
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Roza Nurieva
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Ma CS, Phan TG. Here, there and everywhere: T follicular helper cells on the move. Immunology 2017; 152:382-387. [PMID: 28704588 DOI: 10.1111/imm.12793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
T follicular helper (Tfh) cells have the important function of providing B-cell help for the induction of antigen-specific antibody production. As such, it is important to determine the factors that regulate the development, differentiation and function of Tfh cells. This review highlights some of the recent advances in our understanding of Tfh cell migration, Tfh cell memory and the origins and fate of circulating Tfh cells in the blood, that have been revealed from studies in humans and mice.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
14
|
Zhang JY, Chen SC, Chen YY, Li SY, Zhang LL, Shen YH, Chang CX, Xiang YQ, Huang HF, Xu CM. Targeted sequencing identifies a novel SH2D1A pathogenic variant in a Chinese family: Carrier screening and prenatal genetic testing. PLoS One 2017; 12:e0172173. [PMID: 28231257 PMCID: PMC5322879 DOI: 10.1371/journal.pone.0172173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
X-linked lymphoproliferative disease type 1 (XLP1) is a rare primary immunodeficiency characterized by a clinical triad consisting of severe EBV-induced hemophagocytic lymphohistiocytosis, B-cell lymphoma, and dysgammaglobulinemia. Mutations in SH2D1A gene have been revealed as the cause of XLP1. In this study, a pregnant woman with recurrence history of birthing immunodeficiency was screened for pathogenic variant because the proband sample was unavailable. We aimed to clarify the genetic diagnosis and provide prenatal testing for the family. Next-generation sequencing (NGS)-based multigene panel was used in carrier screening of the pregnant woman. Variants of immunodeficiency related genes were analyzed and prioritized. Candidate variant was verified by using Sanger sequencing. The possible influence of the identified variant was evaluated through RNA assay. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal testing. We identified a novel de novo frameshift SH2D1A pathogenic variant (c.251_255delTTTCA) in the pregnant carrier. Peripheral blood RNA assay indicated that the mutant transcript could escape nonsense-mediated mRNA decay (NMD) and might encode a C-terminal truncated protein. Information of the variant led to success prenatal diagnosis of the fetus. In conclusion, our study clarified the genetic diagnosis and altered disease prevention for a pregnant carrier of XLP1.
Collapse
Affiliation(s)
- Jun-Yu Zhang
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Song-Chang Chen
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yi-Yao Chen
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Shu-Yuan Li
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Lan-Lan Zhang
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ying-Hua Shen
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Chun-Xin Chang
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yu-Qian Xiang
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - He-Feng Huang
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Chen-Ming Xu
- The International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
15
|
Lin LT, Richardson CD. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016; 8:v8090250. [PMID: 27657109 PMCID: PMC5035964 DOI: 10.3390/v8090250] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles “blind” to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
16
|
Cuenca M, Romero X, Sintes J, Terhorst C, Engel P. Targeting of Ly9 (CD229) Disrupts Marginal Zone and B1 B Cell Homeostasis and Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2015; 196:726-37. [PMID: 26667173 DOI: 10.4049/jimmunol.1501266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022]
Abstract
Marginal zone (MZ) and B1 B cells have the capacity to respond to foreign Ags more rapidly than conventional B cells, providing early immune responses to blood-borne pathogens. Ly9 (CD229, SLAMF3), a member of the signaling lymphocytic activation molecule family receptors, has been implicated in the development and function of innate T lymphocytes. In this article, we provide evidence that in Ly9-deficient mice splenic transitional 1, MZ, and B1a B cells are markedly expanded, whereas development of B lymphocytes in bone marrow is unaltered. Consistent with an increased number of these B cell subsets, we detected elevated levels of IgG3 natural Abs and a striking increase of T-independent type II Abs after immunization with 2,4,6-trinitrophenyl-Ficoll in the serum of Ly9-deficient mice. The notion that Ly9 could be a negative regulator of innate-like B cell responses was supported by the observation that administering an mAb directed against Ly9 to wild-type mice selectively eliminated splenic MZ B cells and significantly reduced the numbers of B1 and transitional 1 B cells. In addition, Ly9 mAb dramatically diminished in vivo humoral responses and caused a selective downregulation of the CD19/CD21/CD81 complex on B cells and concomitantly an impaired B cell survival and activation in an Fc-independent manner. We conclude that altered signaling caused by the absence of Ly9 or induced by anti-Ly9 may negatively regulate development and function of innate-like B cells by modulating B cell activation thresholds. The results suggest that Ly9 could serve as a novel target for the treatment of B cell-related diseases.
Collapse
Affiliation(s)
- Marta Cuenca
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| | - Xavier Romero
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| | - Jordi Sintes
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona 08036, Spain; and
| |
Collapse
|
17
|
Volkova O, Guselnikov S, Mechetina L, Chikaev N, Baranov K, Kulemzin S, Reshetnikova E, Najakshin A, Taranin A. Development and characterization of domain-specific monoclonal antibodies produced against human SLAMF9. Monoclon Antib Immunodiagn Immunother 2015; 33:209-14. [PMID: 25170999 DOI: 10.1089/mab.2014.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SLAMF9 is a member of the signaling lymphocyte-activating molecule (SLAM) immunoreceptor family. The SLAM family receptors are expressed in a broad range of immune cells and play an important role in immunity. To date, SLAMF9 is the least studied member of this family. Its ligand, signaling properties, and cells on whose surface it is expressed are unknown. We generated hybridoma clones 6E11 and 7G5 secreting monoclonal antibodies specific to human SLAMF9. BALB/c mice were immunized with Escherichia coli-expressed purified SLAMF9 protein; splenocytes from these mice were fused with mouse myeloma cell line NS-1. Based on isotyping of the MAbs, clone 6E11 was referred to the IgG1 subclass, while 7G5 to IgG2b. The specificity of these MAbs was assessed by ELISA, immunoblotting, immunohistochemistry, and flow cytometry. According to the results of epitope analysis, clone 6E11 reacts with the C2-like domain, whereas 7G5 is specific to the V-like domain of the SLAMF9 molecule. The generated MAbs were demonstrated to be applicable in various immunochemical analyses. They may be useful tools in studies clarifying the expression and function of human SLAMF9.
Collapse
Affiliation(s)
- Olga Volkova
- 1 Institute of Molecular and Cellular Biology , Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chaum E, Winborn CS, Bhattacharya S. Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium. Mamm Genome 2015; 26:210-21. [PMID: 25963977 DOI: 10.1007/s00335-015-9568-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/02/2015] [Indexed: 01/04/2023]
Abstract
The tumor suppressor p53 is a major regulator of genes important for cell cycle arrest, senescence, apoptosis, and innate immunity, and has recently been implicated in retinal aging. In this study we sought to identify the genetic networks that regulate p53 function in the retina using quantitative trait locus (QTL) analysis. First we examined age-associated changes in the activation and expression levels of p53; known p53 target proteins and markers of innate immune system activation in primary retinal pigment epithelial (RPE) cells that were harvested from young and aged human donors. We observed increased expression of p53, activated caspase-1, CDKN1A, CDKN2A (p16INK4a), TLR4, and IFNα in aged primary RPE cell lines. We used the Hamilton Eye Institute (HEI) retinal dataset ( www.genenetwork.org ) to identify genomic loci that modulate expression of genes in the p53 pathway in recombinant inbred BXD mouse strains using a QTL systems biology-based approach. We identified a significant trans-QTL on chromosome 1 (region 172-177 Mb) that regulates the expression of Cdkn1a. Many of the genes in this QTL locus are involved in innate immune responses, including Fc receptors, interferon-inducible family genes, and formin 2. Importantly, we found an age-related increase in FCGR3A and FMN2 and a decrease in IFI16 levels in RPE cultures. There is a complex multigenic innate immunity locus that controls expression of genes in the p53 pathway in the RPE, which may play an important role in modulating age-related changes in the retina.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA,
| | | | | |
Collapse
|
19
|
Aldhamen YA, Seregin SS, Aylsworth CF, Godbehere S, Amalfitano A. Manipulation of EAT-2 expression promotes induction of multiple beneficial regulatory and effector functions of the human innate immune system as a novel immunomodulatory strategy. Int Immunol 2013; 26:291-303. [PMID: 24374770 DOI: 10.1093/intimm/dxt061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) receptor-associated adaptor Ewing's sarcoma-associated transcript-2 (EAT-2) is primarily expressed in innate immune cells including dendritic cells (DCs), macrophages and NK cells. A recent human HIV vaccine study confirmed that EAT-2 expression was associated with the enhanced immunogenicity induced by the MRKAd5/HIV vaccine. We previously harnessed the capability of EAT-2 to modulate signaling mediated by SLAM receptors and demonstrated that by incorporating EAT-2 expression into vaccines, one could enhance innate and adaptive immune responses in mice, even in the face of pre-existing immunity to the vaccine vectors. Herein, we investigated the innate immune responses of human cells exposed to EAT-2-over-expressing vaccines. Our results demonstrate that EAT-2 over-expression can significantly alter the kinetics of critical pro-inflammatory cytokine and chemokine responses elaborated by human PBMCs. In addition, enhanced DC maturation and increased monocyte phagocytosis were observed in EAT-2-transduced human cells. We also found that EAT-2 over-expression improved antigen presentation by human cells. Moreover, EAT-2 over-expression increased the anti-tumor activity of human NK cells against K562 tumor cell targets. Many of these responses were extinguished with use of an EAT-2 variant carrying a mutant SH2 domain (R31Q), suggesting a critical role for the interaction between EAT-2 and SLAM receptors in mediating these responses. In conclusion, these results provide evidence that EAT-2 interacts with key components of multiple arms of the human innate immune system, and that this role highlights the potential for targeting EAT-2 functions so as to improve a number of human immunotherapeutic approaches, including vaccine development.
Collapse
Affiliation(s)
- Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
20
|
Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 2013; 5:a008987. [PMID: 24296166 DOI: 10.1101/cshperspect.a008987] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.
Collapse
|
21
|
Chaimowitz NS, Falanga YT, Ryan JJ, Conrad DH. Fyn kinase is required for optimal humoral responses. PLoS One 2013; 8:e60640. [PMID: 23593269 PMCID: PMC3620480 DOI: 10.1371/journal.pone.0060640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
The generation of antigen-specific antibodies and the development of immunological memory require collaboration between B and T cells. T cell-secreted IL-4 is important for B cell survival, isotype switch to IgG1 and IgE, affinity maturation, and the development of germinal centers (GC). Fyn, a member of the Src family tyrosine kinase, is widely expressed in many cell types, including lymphocytes. This kinase is known to interact with both the B cell and T cell receptor (BCR and TCR, respectively). While Fyn deletion does not impair the development of immature T cells and B cells, TCR signaling is altered in mature T cells. The current study demonstrates that Fyn deficient (KO) B cells have impaired IL-4 signaling. Fyn KO mice displayed low basal levels of IgG1, IgE and IgG2c, and delayed antigen-specific IgG1 and IgG2b production, with a dramatic decrease in antigen-specific IgG2c following immunization with a T-dependent antigen. Defects in antibody production correlated with significantly reduced numbers of GC B cells, follicular T helper cells (TFH), and splenic plasma cells (PC). Taken together, our data demonstrate that Fyn kinase is required for optimal humoral responses.
Collapse
Affiliation(s)
- Natalia S. Chaimowitz
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Yves T. Falanga
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Intronic SH2D1A mutation with impaired SAP expression and agammaglobulinemia. Clin Immunol 2012; 146:84-9. [PMID: 23280491 DOI: 10.1016/j.clim.2012.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 11/21/2022]
Abstract
X-linked lymphoproliferative (XLP) disease is a primary immunodeficiency syndrome associated with the inability to control Epstein-Barr virus (EBV), lymphoma, and hypogammaglobulinemia. XLP is caused by mutations in the SH2D1A gene, which encodes the SLAM-associated protein (SAP), or in the BIRC4 gene, which encodes the X-linked inhibitor of apoptosis protein (XIAP). Here we report a patient with recurrent respiratory tract infections and early onset agammaglobulinemia who carried a unique disease-causing intronic loss-of-function mutation in SH2D1A. The intronic mutation affected SH2D1A gene transcription but not mRNA splicing, and led to markedly reduced level of SAP protein. Despite undetectable serum immunoglobulins, the patient's B cells replicated and differentiated into antibody producing cells normally in vitro.
Collapse
|
23
|
Madapura HS, Salamon D, Wiman KG, Lain S, Klein G, Klein E, Nagy N. p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP. Cell Cycle 2012; 11:4563-9. [PMID: 23165210 DOI: 10.4161/cc.22810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lack of functional SAP protein, due to gene deletion or mutation, is the cause of X-linked lymphoproliferative disease (XLP), characterized by functionally impaired T and NK cells and a high risk of lymphoma development. We have demonstrated earlier that SAP has a pro-apoptotic function in T and B cells. Deficiency of this function might contribute to the pathogenesis of XLP. We have also shown that SAP is a target of p53 in B cell lines. In the present study, we show that activated primary T cells express p53, which induces SAP expression. p53 is functional as a transcription factor in activated T cells and induces the expression of p21, PUMA and MDM2. PARP cleavage in the late phase of activation indicates that T cells expressing high levels of SAP undergo apoptosis. Modifying p53 levels using Nutlin-3, which specifically dissociates the MDM2-p53 interaction, was sufficient to upregulate SAP expression, indicating that SAP is a target of p53 in T cells. We also demonstrated p53's role as a transcription factor for SAP in activated T cells by ChIP assays. Our result suggests that p53 contributes to T cell homeostasis through the induction of the pro-apoptotic SAP. A high level of SAP is necessary for the activation-induced cell death that is pivotal in termination of the T cell response.
Collapse
Affiliation(s)
- Harsha S Madapura
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 2012; 119:3997-4008. [PMID: 22403255 DOI: 10.1182/blood-2011-11-392985] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T follicular helper (Tfh) cells are critical for providing the necessary signals to induce differentiation of B cells into memory and Ab-secreting cells. Accordingly, it is important to identify the molecular requirements for Tfh cell development and function. We previously found that IL-12 mediates the differentiation of human CD4(+) T cells to the Tfh lineage, because IL-12 induces naive human CD4(+) T cells to acquire expression of IL-21, BCL6, ICOS, and CXCR5, which typify Tfh cells. We have now examined CD4(+) T cells from patients deficient in IL-12Rβ1, TYK2, STAT1, and STAT3 to further explore the pathways involved in human Tfh cell differentiation. Although STAT1 was dispensable, mutations in IL12RB1, TYK2, or STAT3 compromised IL-12-induced expression of IL-21 by human CD4(+) T cells. Defective expression of IL-21 by STAT3-deficient CD4(+) T cells resulted in diminished B-cell helper activity in vitro. Importantly, mutations in STAT3, but not IL12RB1 or TYK2, also reduced Tfh cell generation in vivo, evidenced by decreased circulating CD4(+)CXCR5(+) T cells. These results highlight the nonredundant role of STAT3 in human Tfh cell differentiation and suggest that defective Tfh cell development and/or function contributes to the humoral defects observed in STAT3-deficient patients.
Collapse
|
25
|
Tangye SG, Deenick EK, Palendira U, Ma CS. T cell-B cell interactions in primary immunodeficiencies. Ann N Y Acad Sci 2012; 1250:1-13. [PMID: 22288566 DOI: 10.1111/j.1749-6632.2011.06361.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
26
|
Takeda M, Tahara M, Nagata N, Seki F. Wild-Type Measles Virus is Intrinsically Dual-Tropic. Front Microbiol 2012; 2:279. [PMID: 22347873 PMCID: PMC3276359 DOI: 10.3389/fmicb.2011.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/26/2011] [Indexed: 01/30/2023] Open
Abstract
Measles is a highly contagious disease that causes temporary and severe immunosuppression in patients. Signaling lymphocyte activation molecule (SLAM) expressed on cells of the immune system functions as a receptor for measles virus (MV). In addition to SLAM, vaccine strains of MV also use a ubiquitously expressed complement regulatory protein, CD46, as a receptor, whereas wild-type (wt) MV strains do not use this receptor. However, recent studies have indicated that SLAM is not the sole receptor for wt MV strains. These strains have an intrinsic ability to enter both immune and epithelial cells using distinct receptor binding sites in their hemagglutinin (H) protein. Recently, a clear answer was obtained through the identification of an epithelial MV receptor, nectin4, expressed at adherens junctions, thereby greatly improving our knowledge of MV receptors. It is now clear that MV specifically targets two cell types, immune cells and epithelial cells, using SLAM and nectin4, respectively. MV loses the ability to use either SLAM or nectin4 when it possesses specific mutations in the H protein. However, nectin4-blind MV still infects SLAM-positive immune cells efficiently (SLAM-tropic), and conversely, SLAM-blind MV infects nectin4-positive epithelial cells efficiently (nectin4-tropic). In this regard, MV is intrinsically dual-tropic to immune cells and epithelial cells. Although many aspects and molecular mechanisms underlying immunosuppressive effects and a highly contagious nature of MV still remain to be elucidated, analyses of physiological functions of these two receptors would provide deep insights into MV pathogenesis.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
It is well established that the generation of a high-affinity long-lived antibody response requires the presence of T cells, specifically CD4+ T cells. These CD4+ T cells support the generation of a germinal centre (GC) response where somatic hypermutation and affinity maturation take place leading to the generation of memory B cells and plasma cells, which provide long-lasting protection. Greater insight into the nature of the CD4+ T cells involved in this process was provided by two studies in 2000 that described CD4+ T cells residing in the B cell follicle that expressed CXCR5. As a result these cells were named follicular B helper T cells, now more commonly known as T follicular helper (Tfh) cells. Since then there has been enormous growth in our understanding of these cells, now considered a distinct T helper (Th) cell lineage that can arise from naive CD4+ T cells following activation. This review summarizes some of the most recent work that has characterized Tfh cells and the pathways that lead to their generation.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | |
Collapse
|
28
|
Marsh RA, Filipovich AH. Familial hemophagocytic lymphohistiocytosis and X-linked lymphoproliferative disease. Ann N Y Acad Sci 2011; 1238:106-21. [DOI: 10.1111/j.1749-6632.2011.06265.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|