1
|
Wevers NR, De Vries HE. Microfluidic models of the neurovascular unit: a translational view. Fluids Barriers CNS 2023; 20:86. [PMID: 38008744 PMCID: PMC10680291 DOI: 10.1186/s12987-023-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
The vasculature of the brain consists of specialized endothelial cells that form a blood-brain barrier (BBB). This barrier, in conjunction with supporting cell types, forms the neurovascular unit (NVU). The NVU restricts the passage of certain substances from the bloodstream while selectively permitting essential nutrients and molecules to enter the brain. This protective role is crucial for optimal brain function, but presents a significant obstacle in treating neurological conditions, necessitating chemical modifications or advanced drug delivery methods for most drugs to cross the NVU. A deeper understanding of NVU in health and disease will aid in the identification of new therapeutic targets and drug delivery strategies for improved treatment of neurological disorders.To achieve this goal, we need models that reflect the human BBB and NVU in health and disease. Although animal models of the brain's vasculature have proven valuable, they are often of limited translational relevance due to interspecies differences or inability to faithfully mimic human disease conditions. For this reason, human in vitro models are essential to improve our understanding of the brain's vasculature under healthy and diseased conditions. This review delves into the advancements in in vitro modeling of the BBB and NVU, with a particular focus on microfluidic models. After providing a historical overview of the field, we shift our focus to recent developments, offering insights into the latest achievements and their associated constraints. We briefly examine the importance of chip materials and methods to facilitate fluid flow, emphasizing their critical roles in achieving the necessary throughput for the integration of microfluidic models into routine experimentation. Subsequently, we highlight the recent strides made in enhancing the biological complexity of microfluidic NVU models and propose recommendations for elevating the biological relevance of future iterations.Importantly, the NVU is an intricate structure and it is improbable that any model will fully encompass all its aspects. Fit-for-purpose models offer a valuable compromise between physiological relevance and ease-of-use and hold the future of NVU modeling: as simple as possible, as complex as needed.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, De Limes 7, Oegstgeest, 2342 DH, The Netherlands.
| | - Helga E De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Ferrari F, Rossi D, Ricciardi A, Morasso C, Brambilla L, Albasini S, Vanna R, Fassio C, Begenisic T, Loi M, Bossi D, Zaliani A, Alberici E, Lisi C, Morotti A, Cavallini A, Mazzacane F, Nardone A, Corsi F, Truffi M. Quantification and prospective evaluation of serum NfL and GFAP as blood-derived biomarkers of outcome in acute ischemic stroke patients. J Cereb Blood Flow Metab 2023; 43:1601-1611. [PMID: 37113060 PMCID: PMC10414005 DOI: 10.1177/0271678x231172520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Identification of reliable and accessible biomarkers to characterize ischemic stroke patients' prognosis remains a clinical challenge. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are markers of brain injury, detectable in blood by high-sensitive technologies. Our aim was to measure serum NfL and GFAP after stroke, and to evaluate their correlation with functional outcome and the scores in rehabilitation scales at 3-month follow-up. Stroke patients were prospectively enrolled in a longitudinal observational study within 24 hours from symptom onset (D1) and monitored after 7 (D7), 30 ± 3 (M1) and 90 ± 5 (M3) days. At each time-point serum NfL and GFAP levels were measured by Single Molecule Array and correlated with National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), Trunk Control Test (TCT), Functional Ambulation Classification (FAC) and Functional Independence Measure (FIM) scores. Serum NfL and GFAP showed different temporal profiles: NfL increased after stroke with a peak value at D7; GFAP showed an earlier peak at D1. NfL and GFAP concentrations correlated with clinical/rehabilitation outcomes both longitudinally and prospectively. Multivariate analysis revealed that NfL-D7 and GFAP-D1 were independent predictors of 3-month NIHSS, TCT, FAC and FIM scores, with NfL being the biomarker with the best predictive performance.
Collapse
Affiliation(s)
- Federica Ferrari
- Dept of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Emergency Neurology Unit and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Daniela Rossi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory for Research on Neurodegenerative Disorders, Pavia, Italy
| | - Alessandra Ricciardi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Liliana Brambilla
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory for Research on Neurodegenerative Disorders, Pavia, Italy
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Renzo Vanna
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| | - Chiara Fassio
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Tatjana Begenisic
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Marianna Loi
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Daniela Bossi
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Alberto Zaliani
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute, Italy
| | - Elisa Alberici
- Istituti Clinici Scientifici Maugeri IRCCS, Neuroradiology Unit, Pavia, Italy
| | - Claudio Lisi
- Unit of Rehabilitation, Dept of Medical Sciences and Infectious Disease, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Andrea Morotti
- Neurology Unit, Dept of Neurological Sciences and Vision, ASST Spedali Civili, Brescia, Italy
| | - Anna Cavallini
- Emergency Neurology Unit and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Federico Mazzacane
- Dept of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Emergency Neurology Unit and Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Nardone
- Dept of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurorehabilitation of Pavia Institute and Neurorehabilitation Unit of Montescano Institute, Pavia, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
- Dept of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Nanomedicine and Molecular Imaging, Pavia, Italy
| |
Collapse
|
3
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:ijms23052445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
|
4
|
Still Living Better through Chemistry: An Update on Caloric Restriction and Caloric Restriction Mimetics as Tools to Promote Health and Lifespan. Int J Mol Sci 2020; 21:ijms21239220. [PMID: 33287232 PMCID: PMC7729921 DOI: 10.3390/ijms21239220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR), the reduction of caloric intake without inducing malnutrition, is the most reproducible method of extending health and lifespan across numerous organisms, including humans. However, with nearly one-third of the world’s population overweight, it is obvious that caloric restriction approaches are difficult for individuals to achieve. Therefore, identifying compounds that mimic CR is desirable to promote longer, healthier lifespans without the rigors of restricting diet. Many compounds, such as rapamycin (and its derivatives), metformin, or other naturally occurring products in our diets (nutraceuticals), induce CR-like states in laboratory models. An alternative to CR is the removal of specific elements (such as individual amino acids) from the diet. Despite our increasing knowledge of the multitude of CR approaches and CR mimetics, the extent to which these strategies overlap mechanistically remains unclear. Here we provide an update of CR and CR mimetic research, summarizing mechanisms by which these strategies influence genome function required to treat age-related pathologies and identify the molecular fountain of youth.
Collapse
|
5
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
6
|
Willey JZ, Moon YP, Dhamoon MS, Kulick ER, Bagci A, Alperin N, Cheung YK, Wright CB, Sacco RL, Elkind MSV. Regional Subclinical Cerebrovascular Disease Is Associated with Balance in an Elderly Multi-Ethnic Population. Neuroepidemiology 2018; 51:57-63. [PMID: 29953989 DOI: 10.1159/000490351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION White matter hyperintensity volume (WMHV) and subclinical brain infarcts (SBI) are associated with impaired mobility, but less is known about the association of WMHV in specific brain regions. We hypothesized that anterior WMHV would be associated with lower scores on the Short Physical Performance Battery (SPPB), a well-validated mobility scale. METHODS The SPPB was measured a median of 5 years after enrollment into the Northern Manhattan MRI sub study. Volumetric distributions for WMHV in 14 brain regions as a proportion of total cranial volume were determined. Multi-variable linear regression was performed to examine the association of SBI and regional log-WMHV with the SPPB score. RESULTS Among 668 participants with SPPB measurements (mean 74 ± 9 years, 37% male and 70% Hispanic), the mean SPPB score was 8.2 ± 2.9. Total (beta = -0.3 per SD, p = 0.001), anterior periventricular (beta = -0.4 per SD, p = 0.001), parietal (beta = -0.2 per SD, p = 0.02) and frontal (beta = -0.3 per SD, p = 0.002) WMHVs were associated with SPPB; other WMHV and SBI were not associated with the SPPB. CONCLUSIONS WMHV, especially in the anterior -cerebral regions, is associated with a lower SPPB. Prevention of subclinical cerebrovascular disease is a potential target to prevent physical decline in the elderly.
Collapse
Affiliation(s)
- Joshua Z Willey
- Department of Neurology, Columbia University, New York, New York, USA
| | - Yeseon P Moon
- Department of Neurology, Columbia University, New York, New York, USA
| | - Mandip S Dhamoon
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Erin R Kulick
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Ahmet Bagci
- Evelyn McKnight Brain Institute, University of Miami, Miami, Florida, USA
| | - Noam Alperin
- Evelyn McKnight Brain Institute, University of Miami, Miami, Florida, USA
| | - Ying Kuen Cheung
- Department of Biostatistics, Columbia University, New York, New York, USA
| | | | - Ralph L Sacco
- Evelyn McKnight Brain Institute, University of Miami, Miami, Florida, USA.,Department of Neurology, University of Miami, Miami, Florida, USA
| | - Mitchell S V Elkind
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Epidemiology, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Yu J, Zhu H, Perry S, Taheri S, Kindy MS. Daily supplementation with GrandFusion ® improves memory and learning in aged rats. Aging (Albany NY) 2017; 9:1041-1054. [PMID: 28351996 PMCID: PMC5391217 DOI: 10.18632/aging.101209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/17/2017] [Indexed: 01/10/2023]
Abstract
Studies have shown that supplementation with extracts from various sources, including fruits and vegetables reverse the age-related changes in movement and cognition. We hypothesized that these beneficial effects result from the presence of anti-oxidants and anti-inflammatory compounds in the fruits and vegetables that contribute to reduced oxidative stress, inflammation and cell death while potentially enhancing neurogenesis. The present study was performed to determine the impact of supplementation with GrandFusion®(GF) to aged Fisher 344 rats for 4 months to determine the impact on attenuation or reversal of the age-related deficits. When the aged rats consumed a diet enriched with the extracts the results showed an improved motor performance, and enhanced cognitive functions. In addition, the rats showed reduced oxidative stress and inflammation, and enhanced neurogenesis, Nrf2 and anti-oxidant expression. The effect of GF extracts on the augmentation of memory and learning is significant and may function through the modulation of antioxidant enzymes, signaling pathways and additional mechanisms to improve the aging process. These studies further support the recommendation of USDA for the consumption of fruits and vegetables to improve healthy aging.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | | | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.,James A. Haley VA Medical Center, Tampa, FL, USA.,Shriners Hospital for Children, Tampa, FL, USA
| |
Collapse
|
8
|
Tvrdik P, Kalani MYS. In Vivo Imaging of Microglial Calcium Signaling in Brain Inflammation and Injury. Int J Mol Sci 2017; 18:ijms18112366. [PMID: 29117112 PMCID: PMC5713335 DOI: 10.3390/ijms18112366] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/20/2022] Open
Abstract
Microglia, the innate immune sentinels of the central nervous system, are the most dynamic cells in the brain parenchyma. They are the first responders to insult and mediate neuroinflammation. Following cellular damage, microglia extend their processes towards the lesion, modify their morphology, release cytokines and other mediators, and eventually migrate towards the damaged area and remove cellular debris by phagocytosis. Intracellular Ca2+ signaling plays important roles in many of these functions. However, Ca2+ in microglia has not been systematically studied in vivo. Here we review recent findings using genetically encoded Ca2+ indicators and two-photon imaging, which have enabled new insights into Ca2+ dynamics and signaling pathways in large populations of microglia in vivo. These new approaches will help to evaluate pre-clinical interventions and immunomodulation for pathological brain conditions such as stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Petr Tvrdik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - M Yashar S Kalani
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Arba F, Leigh R, Inzitari D, Warach SJ, Luby M, Lees KR. Blood-brain barrier leakage increases with small vessel disease in acute ischemic stroke. Neurology 2017; 89:2143-2150. [PMID: 29070665 DOI: 10.1212/wnl.0000000000004677] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE In patients with acute ischemic stroke, we aimed to investigate the relation between preexisting small vessel disease (SVD) and the amount of blood-brain barrier (BBB) leakage in ischemic and nonischemic area before IV thrombolysis. METHODS We retrospectively accessed anonymous patient-level data from the Stroke Imaging Repository and the Virtual International Stroke Trials Archive resources and included patients treated with IV thrombolysis with pretreatment MRI. We rated SVD features using validated qualitative magnetic resonance (MR) scales. Leakage of BBB was assessed with postprocessing of perfusion-weighted images. We evaluated associations between SVD features (individually and summed in a global SVD score) and BBB leakage using linear regression analysis, adjusting for major clinical confounders. RESULTS A total of 212 patients, mean age (±SD) 69.5 years (±16.1), 102 (48%) male, had available MR before IV thrombolysis. Evidence of BBB leakage was present in 175 (80%) and 205 (94%) patients in the ischemic and nonischemic area, respectively. Lacunar infarcts (β = 0.17, p = 0.042) were associated with BBB leakage in the ischemic area, and brain atrophy was associated with BBB leakage in both ischemic (β = 0.20, p = 0.026) and nonischemic (β = 0.27, p = 0.001) areas. Increasing SVD grade was independently associated with BBB leakage in both ischemic (β = 0.26, p = 0.007) and nonischemic (β = 0.27, p = 0.003) area. CONCLUSIONS Global SVD burden is associated with increased BBB leakage in both acutely ischemic and nonischemic area. Our results support that SVD score has construct validity, and confirm a relation between SVD and BBB disruption also in patients with acute stroke.
Collapse
Affiliation(s)
- Francesco Arba
- From the NEUROFARBA Department (F.A., D.I.), University of Florence, Italy; National Institute of Neurological Disorders and Stroke (R.L., M.L.), NIH, Bethesda, MD; Institute of Cardiovascular and Medical Sciences (F.A.), Queen Elizabeth University Hospital, Glasgow, UK; Department of Neurology (S.J.W.), Dell Medical School, University of Texas at Austin; and Institute of Cardiovascular & Medical Sciences (K.R.L.), University of Glasgow, UK.
| | - Richard Leigh
- From the NEUROFARBA Department (F.A., D.I.), University of Florence, Italy; National Institute of Neurological Disorders and Stroke (R.L., M.L.), NIH, Bethesda, MD; Institute of Cardiovascular and Medical Sciences (F.A.), Queen Elizabeth University Hospital, Glasgow, UK; Department of Neurology (S.J.W.), Dell Medical School, University of Texas at Austin; and Institute of Cardiovascular & Medical Sciences (K.R.L.), University of Glasgow, UK
| | - Domenico Inzitari
- From the NEUROFARBA Department (F.A., D.I.), University of Florence, Italy; National Institute of Neurological Disorders and Stroke (R.L., M.L.), NIH, Bethesda, MD; Institute of Cardiovascular and Medical Sciences (F.A.), Queen Elizabeth University Hospital, Glasgow, UK; Department of Neurology (S.J.W.), Dell Medical School, University of Texas at Austin; and Institute of Cardiovascular & Medical Sciences (K.R.L.), University of Glasgow, UK
| | - Steven J Warach
- From the NEUROFARBA Department (F.A., D.I.), University of Florence, Italy; National Institute of Neurological Disorders and Stroke (R.L., M.L.), NIH, Bethesda, MD; Institute of Cardiovascular and Medical Sciences (F.A.), Queen Elizabeth University Hospital, Glasgow, UK; Department of Neurology (S.J.W.), Dell Medical School, University of Texas at Austin; and Institute of Cardiovascular & Medical Sciences (K.R.L.), University of Glasgow, UK
| | - Marie Luby
- From the NEUROFARBA Department (F.A., D.I.), University of Florence, Italy; National Institute of Neurological Disorders and Stroke (R.L., M.L.), NIH, Bethesda, MD; Institute of Cardiovascular and Medical Sciences (F.A.), Queen Elizabeth University Hospital, Glasgow, UK; Department of Neurology (S.J.W.), Dell Medical School, University of Texas at Austin; and Institute of Cardiovascular & Medical Sciences (K.R.L.), University of Glasgow, UK
| | - Kennedy R Lees
- From the NEUROFARBA Department (F.A., D.I.), University of Florence, Italy; National Institute of Neurological Disorders and Stroke (R.L., M.L.), NIH, Bethesda, MD; Institute of Cardiovascular and Medical Sciences (F.A.), Queen Elizabeth University Hospital, Glasgow, UK; Department of Neurology (S.J.W.), Dell Medical School, University of Texas at Austin; and Institute of Cardiovascular & Medical Sciences (K.R.L.), University of Glasgow, UK
| | | |
Collapse
|
10
|
Michalski D, Hofmann S, Pitsch R, Grosche J, Härtig W. Neurovascular Specifications in the Alzheimer-Like Brain of Mice Affected by Focal Cerebral Ischemia: Implications for Future Therapies. J Alzheimers Dis 2017; 59:655-674. [DOI: 10.3233/jad-170185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Sarah Hofmann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Roman Pitsch
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Williams PA, Marsh-Armstrong N, Howell GR. Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res 2017; 157:20-27. [PMID: 28242160 PMCID: PMC5497582 DOI: 10.1016/j.exer.2017.02.014] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Mounting evidence suggests neuroinflammation is a key process in glaucoma, yet the precise roles are not known. Understanding these complex processes, which may also be a key in other common neurodegenerations such as Alzheimer's disease, will lead to targeted therapeutics for a disease that affects as many as 80 million people worldwide. Here, we define neuroinflammation as any immune-relevant response by a variety of cell types including astrocytes, microglia, and peripherally derived cells occurring in the optic nerve head and/or retina. In this review article, we first discuss clinical evidence for neuroinflammation in glaucoma and define neuroinflammation in glaucoma. We then review the inflammatory pathways that have been associated with glaucoma. Finally, we set out key research directions that we believe will greatly advance our understanding of the role of neuroinflammation in glaucoma. This review arose from a discussion of neuroinflammation in glaucoma at the 2015 meeting of The Lasker/IRRF Initiative for Innovation in Vision Science. This manuscript sets out to summarize one of these sessions; "Inflammation and Glaucomatous Neurodegeneration", as well as to review the current state of the literature surrounding neuroinflammation in glaucoma.
Collapse
Affiliation(s)
| | - Nick Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate Program of Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
12
|
Lapchak PA, Zhang JH. The High Cost of Stroke and Stroke Cytoprotection Research. Transl Stroke Res 2016; 8:307-317. [PMID: 28039575 DOI: 10.1007/s12975-016-0518-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long disabilities that not only affect their livelihood, but also have an enormous societal economic impact. The rapid development of a neuroprotective or cytoprotective compound would allow future stroke victims to receive a treatment to reduce disabilities and further promote recovery of function. This opinion article reviews in detail the enormous costs associated with developing a small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular unit components provide opportunities to intervene and optimize new cytoprotective strategies. However, adequate research funding is mandatory to allow stroke researchers to develop and test their novel therapeutic approach to treat stroke victims.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion, Suite 8305, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| | - John H Zhang
- Director, Center for Neuroscience Research, Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
13
|
Härtig W, Appel S, Suttkus A, Grosche J, Michalski D. Abolished perineuronal nets and altered parvalbumin-immunoreactivity in the nucleus reticularis thalami of wildtype and 3xTg mice after experimental stroke. Neuroscience 2016; 337:66-87. [PMID: 27634771 DOI: 10.1016/j.neuroscience.2016.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/18/2016] [Accepted: 09/03/2016] [Indexed: 12/14/2022]
Abstract
Treatment strategies for ischemic stroke are still limited, since numerous attempts were successful only in preclinical research but failed under clinical condition. To overcome this translational roadblock, clinical relevant stroke models should consider co-morbidities, age-related effects and the complex neurovascular unit (NVU) concept. The NVU includes neurons, vessels and glial cells with astrocytic endfeet in close relation to the extracellular matrix (ECM). However, the role of the ECM after stroke-related tissue damage is poorly understood and mostly neglected for treatment strategies. This study is focused on alterations of perineuronal nets (PNs) as ECM constituents and parvalbumin-containing GABAergic neurons in mice with emphasis on the nucleus reticularis thalami (NRT) in close proximity to the ischemic lesion as induced by a filament-based stroke model. One day after ischemia onset, immunofluorescence-based quantitative analyses revealed drastically declined PNs in the ischemia-affected NRT from 3- and 12-month-old wildtype and co-morbid triple-transgenic (3xTg) mice with Alzheimer-like alterations. Parvalbumin-positive cells decreased numerically in the ischemia-affected NRT, while staining intensity did not differ between the affected and non-affected hemisphere. Additional qualitative analyses demonstrated ischemia-induced loss of PNs and allocated neuropil ECM immunoreactive for aggrecan and neurocan, and impaired immunoreactivity for calbindin, the potassium channel subunit Kv3.1b and the glutamate decarboxylase isoforms GAD65 and GAD67 in the NRT. In conclusion, these data confirm PNs as highly sensitive constituents of the ECM along with impaired neuronal integrity of GABAergic neurons. Therefore, specific targeting of ECM components might appear as a promising strategy for future treatment strategies in stroke.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany.
| | - Simon Appel
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany
| | - Anne Suttkus
- Paul Flechsig Institute for Brain Research University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; Department of Pediatric Surgery, University Hospital Leipzig, Liebigstr. 20 A, 04103 Leipzig, Germany
| | - Jens Grosche
- Effigos GmbH, Am Deutschen Platz 4, 04103 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review. J Cereb Blood Flow Metab 2016; 36:72-94. [PMID: 26058695 PMCID: PMC4758546 DOI: 10.1038/jcbfm.2015.116] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023]
Abstract
The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and brain atrophy. Endothelial dysfunction is thought to have a role in the mechanisms leading to SVD-related brain changes, and the study of endothelial dysfunction has been proposed as an important step for a better comprehension of cerebral SVD. Among available methods to assess endothelial function in vivo, measurement of molecules of endothelial origin in peripheral blood is currently receiving selective attention. These molecules include products of endothelial cells that change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible association between endothelial circulating biomarkers and SVD-related brain changes.
Collapse
Affiliation(s)
- Anna Poggesi
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Marco Pasi
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Francesca Pescini
- Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Leonardo Pantoni
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
| | - Domenico Inzitari
- Neuroscience Section, NEUROFARBA Department, University of Florence, Florence, Italy
- Institute of Neuroscience, Italian National Research Council, Florence, Italy
| |
Collapse
|
15
|
Yata K, Nishimura Y, Unekawa M, Tomita Y, Suzuki N, Tanaka T, Mizoguchi A, Tomimoto H. In Vivo Imaging of the Mouse Neurovascular Unit Under Chronic Cerebral Hypoperfusion. Stroke 2014; 45:3698-703. [DOI: 10.1161/strokeaha.114.005891] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background and Purpose—
Proper brain function is maintained by an integrated system called the neurovascular unit (NVU) comprised cellular and acellular elements. Although the individual features of specific neurovascular components are understood, it is unknown how they respond to ischemic stress as a functional unit. Therefore, we established an in vivo imaging method and clarified the NVU response to chronic cerebral hypoperfusion.
Methods—
Green mice (b-act-EGFP) with SR101 plasma labeling were used in this experiment. A closed cranial window was made over the left somatosensory cortex. To mimic chronic cerebral hypoperfusion, mice were subjected to bilateral common carotid artery stenosis operations using microcoils. In vivo real-time imaging was performed using 2-photon laser-scanning microscopy during the preoperative period, and after 1 day and 1 and 2 weeks of bilateral common carotid artery stenosis or sham operations.
Results—
Our method allowed 3-dimensional observation of most of the components of the NVU, as well as dynamic capillary microcirculation. Under chronic cerebral hypoperfusion, we did not detect any structural changes of each cellular component in the NVU; however, impairment of microcirculation was detected over a prolonged period. In the pial small arteries and veins, rolling and adhesion of leukocyte were detected, more prominently in the latter. In the deep cortical capillaries, flow stagnation because of leukocyte plugging was frequently observed.
Conclusions—
We established an in vivo imaging method for real-time visualization of the NVU. It seems that under chronic cerebral hypoperfusion, leukocyte activation has a critical role in microcirculation disturbance.
Collapse
Affiliation(s)
- Kenichiro Yata
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Yuhei Nishimura
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Miyuki Unekawa
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Yutaka Tomita
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Norihiro Suzuki
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Toshio Tanaka
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Akira Mizoguchi
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| | - Hidekazu Tomimoto
- From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.)
| |
Collapse
|
16
|
Bartnik-Olson BL, Holshouser B, Wang H, Grube M, Tong K, Wong V, Ashwal S. Impaired Neurovascular Unit Function Contributes to Persistent Symptoms after Concussion: A Pilot Study. J Neurotrauma 2014; 31:1497-506. [DOI: 10.1089/neu.2013.3213] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Harrison Wang
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Matthew Grube
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Karen Tong
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Valarie Wong
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
17
|
Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 2014; 11:18. [PMID: 25120903 PMCID: PMC4130123 DOI: 10.1186/2045-8118-11-18] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood-brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer's disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA ; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Ningna Zhou
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA ; Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
18
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
19
|
Searcy JL, Le Bihan T, Salvadores N, McCulloch J, Horsburgh K. Impact of age on the cerebrovascular proteomes of wild-type and Tg-SwDI mice. PLoS One 2014; 9:e89970. [PMID: 24587158 PMCID: PMC3935958 DOI: 10.1371/journal.pone.0089970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
The structural integrity of cerebral vessels is compromised during ageing. Abnormal amyloid (Aβ) deposition in the vasculature can accelerate age-related pathologies. The cerebrovascular response associated with ageing and microvascular Aβ deposition was defined using quantitative label-free shotgun proteomic analysis. Over 650 proteins were quantified in vessel-enriched fractions from the brains of 3 and 9 month-old wild-type (WT) and Tg-SwDI mice. Sixty-five proteins were significantly increased in older WT animals and included several basement membrane proteins (nidogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, laminin subunit gamma-1 precursor and collagen alpha-2(IV) chain preproprotein). Twenty-four proteins were increased and twenty-one decreased in older Tg-SwDI mice. Of these, increases in Apolipoprotein E (APOE) and high temperature requirement serine protease-1 (HTRA1) and decreases in spliceosome and RNA-binding proteins were the most prominent. Only six shared proteins were altered in both 9-month old WT and Tg-SwDI animals. The age-related proteomic response in the cerebrovasculature was distinctly different in the presence of microvascular Aβ deposition. Proteins found differentially expressed within the WT and Tg-SwDI animals give greater insight to the mechanisms behind age-related cerebrovascular dysfunction and pathologies and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- James L Searcy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys - Synthetic & Systems Biology, University of Edinburgh, Edinburgh, United Kingdom ; Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalia Salvadores
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - James McCulloch
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom ; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom ; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Konsolaki E, Skaliora I. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology. Cereb Cortex 2014; 25:2138-48. [PMID: 24554727 DOI: 10.1093/cercor/bhu019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons.
Collapse
Affiliation(s)
- Eleni Konsolaki
- Neurophysiology Laboratory, Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| |
Collapse
|
21
|
Forte G, Travaglia A, Magrì A, Satriano C, La Mendola D. Adsorption of NGF and BDNF derived peptides on gold surfaces. Phys Chem Chem Phys 2014; 16:1536-44. [DOI: 10.1039/c3cp52499j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Hawkes CA, Michalski D, Anders R, Nissel S, Grosche J, Bechmann I, Carare RO, Härtig W. Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations. Exp Neurol 2013; 250:270-81. [DOI: 10.1016/j.expneurol.2013.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
23
|
Bu Y, Lee K, Jung HS, Moon SK. Therapeutic effects of traditional herbal medicine on cerebral ischemia: a perspective of vascular protection. Chin J Integr Med 2013; 19:804-14. [PMID: 24170629 DOI: 10.1007/s11655-013-1341-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 12/15/2022]
Abstract
Although many agents for acute ischemic stroke treatment have been developed from extensive preclinical studies, most have failed in clinical trials. As a result, researchers are seeking other methods or agents based on previous studies. Among the various prospective approaches, vascular protection might be the key for development of therapeutic agents for stroke and for improvements in the efficacy and safety of conventional therapies. Traditional medicines in Asian countries are based on clinical experiences and literature accumulated over thousands of years. To date, many studies have used traditional herbal medicines to prove or develop new agents based on stroke treatments mentioned in traditional medicinal theory or other clinical data. In the current review, we describe the vascular factors related to ischemic brain damage and the herbal medicines that impact these factors, including Salviae Miltiorrhizae Radix, Notoginseng Radix, and Curcumae Rhizoma, based on scientific reports and traditional medical theory. Further, we point out the problems associated with herbal medicines in stroke research and propose better methodologies to address these problems.
Collapse
Affiliation(s)
- Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea,
| | | | | | | |
Collapse
|